(b) Find the derivative of

 $7\frac{1}{2}$

$$\frac{x^2}{(x-1)^2(x+2)}$$
.

Unit-III

6. (a) Evaluate :
$$\int \frac{x^8}{(1-x^3)^{1/3}} dx$$
. 5

(b) Evaluate :
$$\int \sqrt[4]{\frac{a+x}{a-x}} dx$$
 5

(c) Evaluate :
$$\int x \tan^{-1} x dx$$
. 5

OR

7. (a) Evaluate
$$7\frac{1}{2}$$

$$\int \sec x \cdot \tan x \sqrt{\tan^2 x - 4} \, dx$$

(b) Prove
$$\int_{0}^{\pi/4} \log \sin 2\theta \, d\theta = -\frac{\pi}{4} \log 2$$
 7 $\frac{1}{2}$

Unit-IV

8. (a) Solve
$$x^2 dy + y(x+y) dx = 0$$
 $7\frac{1}{2}$

(b) Solve
$$y \log y \frac{dy}{dx} + x - \log y = 0$$
 $7 \frac{1}{2}$ OR

9. (a) Solve
$$(3y-2xy^3) dx + (4x-3x^2y^2)dy = 0$$

(b) Solve
$$x dx + y dy = \frac{a^2 (x dy - y dx)}{x^2 + y^2}$$
. $7 \frac{1}{2}$

Α

(Printed Pages 4)

Roll No. _____

SFS-4694

B.C.A. (Second Semester)

Examination, 2015

(Old Course)

Foundation Course in Mathematics for Computing (BCA-202)

Time Allowed: Three Hours] [Maximum Marks:100

Note: Attempt five questions in all. Question No.

1 is compulsory. Attempt one question from each unit.

- 1. Attempt all parts: 4×10
 - (a) Find A^{-1} if:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1 \end{bmatrix}$$

(b) Define Hermitian Matrix and give an example. 4

- (c) Define Symmetric and Antisymmetric Matrix with help of appropriate example. 4
- (d) If $y = (ax+b)^{p/q}$, find $\frac{d^2y}{dx^2}$.
- (e) Find differential coefficient of cot⁻¹ x by first principle.
- (f) Find differential coefficient of sin [cos(tanx)].

4

- (g) Integrate $\int \frac{1}{1-\cos 2x} dx$.
- (h) Integrate : $\int \frac{\tan^{-1} x}{(1+x^2)^{3/2}} dx$ 4
- (i) Find the solution of differential equation

$$\frac{dy}{dx} - x \tan(y - x) = 1$$

- (j) Solve $\frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$ Unit-I
- 2. (a) Write the following matrix sum of Symmetric and Skew-Symmetric Matrix.

$$A = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$$
 $7 \mathcal{V}_2$

b) Find the value of K for which the following system of equation is consistent.

$$3x_1 - 2x_2 + 2x_3 = 3$$
, $x_1 + kx_2 - 3x_3 = 0$, $4x_1 + x_2 + 2x_3 = 7$ $7\frac{1}{2}$

OR

3. (a)
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 0 & 2 \\ 4 & -3 & 2 \end{bmatrix}$, $7 \frac{1}{2}$

verify that $(A+B)^2 \neq A^2+2AB+B^2$

(b) If x, y, z all are different and if

$$\begin{bmatrix} x & x^2 & 1 + x^3 \\ y & x^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{bmatrix} = 0;$$
71/2

Prove that xyz = -1.

Unit-II

4. (a) Differentiate $\sqrt{\cot x}$ from first principle.

7 1/2

(b) Find
$$\frac{dy}{dx}$$
 if $y = tan^{-1} \left(\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)$

OR

5. (a) Find differential coefficient of $\tan \sqrt{x}$.

71/2