(4)

Unit-III

6.	(a)	What is flip-flop? Explain the working of
		clocked R-S flip flop. 71/2
	(b)	What is Race condition? How this condi-
		tion is removed or solved? 71/2
7.	(a)	Explain J-K Master-Slave flip-flop along
		with it's circuit diagram. 71/2
	(b)	Explain the working of shift-right register
		with an example. $7\frac{1}{2}$
		Unit-I V
8.	(a)	Write short note on following : $7\frac{1}{2}$
		(i) RAM
		(ii) ROM
		(iii) PROM
		(iv) EPROM
		(v) EEPROM
	(b)	Design MOD-9 counter and explain it's
		working. 71/2
9.	Wha	t do you mean by Multivibrator? Explain
	the	following : 15
	(a)	Astable multivibrator
	(b)	Monostable multivibrator
	(c)	Bistable multivibrator

А

(Printed Pages 4)

Roll No. _____

SFS-4697

B.C.A. (Semester-II) Examination, May 2015 (Old Course) Digital Electronics Paper - V (BCA-205)

Time Allowed : Three Hours] [Maximum Marks :100

- Note : Answer five questions in all. Question No. 1 is compulsory and attempt one question from each of the four units, I, II, III and IV.
- (a) What do you mean by number system? Discuss various types of number system. 4×10=40

4×10=40

- (b) State & Prove De-Morgan's theorem.
- (c) What do you mean by Universal gates?
- (d) Differentiate between combinational and sequential circuits.

(2)

- (e) Explain the working of 2's complement adder/subtractor circuit.
- (f) What is decoder? Explain Binary-to-octal decoder.
- (g) What is flip-flop? Differentiate between latch and flip-flop.
- (h) What do you mean by shift register? Explain shift-left register.
- (i) What is counter? Differentiate between up counter and down counter.
- (j) Write a short note on RAM and it's types. Unit-I
- 2. (a) Construct the following gates using NAND gate only : $7\frac{1}{2}$
 - (i) AND gate
 - (ii) OR gate
 - (iii) NOT gate
 - (iv) XOR gate
 - (v) XNOR gate

(3)

- (b) Convert the following : $7\frac{1}{2}$
- (i) $(1428)_{10} = (?)_2$ (ii) $(7854)_{10} = (?)_8$ (iii) $(A24C)_{16} = (?)_2$ (iv) $(1101110010010111)_2 = (?)_8$ (v) $(BC 52)_{16} = (?)_8$
- 3. Solve the following using K-Map : $5 \times 3 = 15$
 - (a) $F(A,B,C,D) = \Sigma m (0,1,4,5,8,9,14, 15)$
 - (b) $F(A,B,C,D) = \Sigma m (1, 2, 5, 8, 14) + d(3,7,15)$
 - (c) $F(A,B,C,D) = \pi m (1, 3, 5, 7, 9, 10, 12)$ Unit-II
- 4. (a) What do you mean by Arithmatic circuit?
 Draw half adder and full adder circuit and explain.
 10
 - (b) Simplify the given expressions : 5
 - (i) $\overline{(A + \overline{B} + \overline{C})} \cdot (\overline{A} + B + C) \cdot \overline{(A + B + C)}$ (ii) $\overline{A \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot C + ABC}$
- 5. (a) What is Multiplexer? Draw 8×1 multiplexer and explain its working. $7\frac{1}{2}$
 - (b) What do you mean by Encoder? Draw and explain Octal-to-Binary encoder.7¹/₂

P.T.O.

SFS-4697

SFS-4697