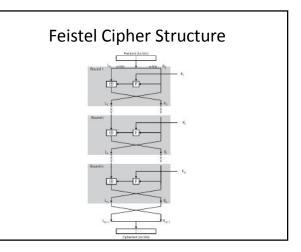


Block Cipher Principles

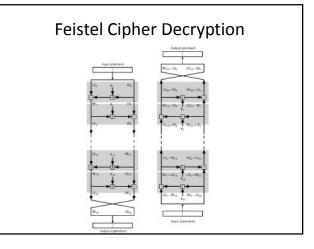
- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Claude Shannon and Substitution-Permutation Ciphers


- Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
- form basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
- provide confusion & diffusion of message & key

Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining S & P elements to obtain:
- **diffusion** dissipates statistical structure of plaintext over bulk of ciphertext
- confusion makes relationship between ciphertext and key as complex as possible


Feistel Cipher Structure

- Horst Feistel devised the **feistel cipher** - based on concept of invertible product cipher
- partitions input block into two halves – process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 then have permutation swapping halves
- implements Shannon's S-P net concept

Feistel Cipher Design Elements

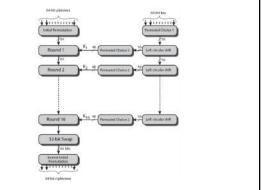
- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis

Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST) – as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

DES History

- IBM developed Lucifer cipher
 by team led by Feistel in late 60's
 used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES

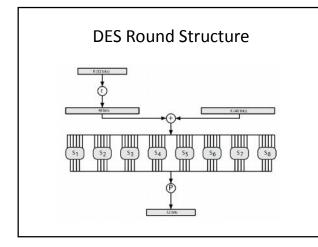

DES Design Controversy

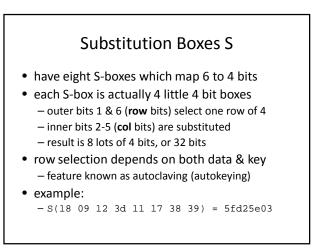
- although DES standard is public
- was considerable controversy over design

 in choice of 56-bit key (vs Lucifer 128-bit)
 and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished

 especially in financial applications
 still standardised for legacy application use

DES Encryption Overview


Initial Permutation IP


- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as: $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus \mathsf{F}(R_{i-1}, K_i)$
- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

DES Key Schedule

- forms subkeys used in each round
 - initial permutation of the key (PC1) which selects
 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating **each half** separately either 1 or 2 places depending on the **key rotation schedule** K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 -
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value