
3/24/2020

1

Cryptography
Block cipher-AES

Cryptography
Block cipher-AES

Anand Ballabh Joshi
Department of Mathematics

University of Lucknow, Lucknow, India

Anand Ballabh Joshi
Department of Mathematics

University of Lucknow, Lucknow, India

AES Requirements

• private key symmetric block cipher
• 128-bit data, 128/192/256-bit keys
• stronger & faster than Triple-DES
• active life of 20-30 years (+ archival use)
• provide full specification & design details
• both C & Java implementations
• NIST have released all submissions &

unclassified analyses

AES Evaluation Criteria

• initial criteria:
– security – effort for practical cryptanalysis
– cost – in terms of computational efficiency
– algorithm & implementation characteristics

• final criteria
– general security
– ease of software & hardware implementation
– implementation attacks
– flexibility (in en/decrypt, keying, other factors)

AES Shortlist

• after testing and evaluation, shortlist in Aug-99:
– MARS (IBM) - complex, fast, high security margin
– RC6 (USA) - v. simple, v. fast, low security margin
– Rijndael (Belgium) - clean, fast, good security margin
– Serpent (Euro) - slow, clean, v. high security margin
– Twofish (USA) - complex, v. fast, high security margin

• then subject to further analysis & comment
• saw contrast between algorithms with

– few complex rounds verses many simple rounds
– which refined existing ciphers verses new proposals

The AES Cipher - Rijndael

• designed by Rijmen-Daemen in Belgium
• has 128/192/256 bit keys, 128 bit data
• an iterative rather than feistel cipher

– processes data as block of 4 columns of 4 bytes
– operates on entire data block in every round

• designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– design simplicity

Rijndael
• data block of 4 columns of 4 bytes is state
• key is expanded to array of words
• has 9/11/13 rounds in which state undergoes:

– byte substitution (1 S-box used on every byte)
– shift rows (permute bytes between groups/columns)
– mix columns (subs using matrix multipy of groups)
– add round key (XOR state with key material)
– view as alternating XOR key & scramble data bytes

• initial XOR key material & incomplete last round
• with fast XOR & table lookup implementation



3/24/2020

2

Rijndael Byte Substitution

• a simple substitution of each byte
• uses one table of 16x16 bytes containing a

permutation of all 256 8-bit values
• each byte of state is replaced by byte indexed by row

(left 4-bits) & column (right 4-bits)
– eg. byte {95} is replaced by byte in row 9 column 5
– which has value {2A}

• S-box constructed using defined transformation of
values in GF(28)

• designed to be resistant to all known attacks

Byte Substitution Shift Rows

• a circular byte shift in each each
– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left

• decrypt inverts using shifts to right
• since state is processed by columns, this step

permutes bytes between the columns

Shift Rows Mix Columns

• each column is processed separately
• each byte is replaced by a value dependent on

all 4 bytes in the column
• effectively a matrix multiplication in GF(28)

using prime poly m(x) =x8+x4+x3+x+1



3/24/2020

3

Mix Columns Mix Columns

• can express each col as 4 equations
– to derive each new byte in col

• decryption requires use of inverse matrix
– with larger coefficients, hence a little harder

• have an alternate characterisation
– each column a 4-term polynomial
– with coefficients in GF(28)
– and polynomials multiplied modulo (x4+1)

Add Round Key

• XOR state with 128-bits of the round key
• again processed by column (though effectively

a series of byte operations)
• inverse for decryption identical

– since XOR own inverse, with reversed keys

• designed to be as simple as possible
– a form of Vernam cipher on expanded key
– requires other stages for complexity / security

Add Round Key

AES Round AES Key Expansion

• takes 128-bit (16-byte) key and expands into
array of 44/52/60 32-bit words

• start by copying key into first 4 words
• then loop creating words that depend on

values in previous & 4 places back
– in 3 of 4 cases just XOR these together
– 1st word in 4 has rotate + S-box + XOR round

constant on previous, before XOR 4th back



3/24/2020

4

AES Key Expansion Key Expansion Rationale

• designed to resist known attacks
• design criteria included

– knowing part key insufficient to find many more
– invertible transformation
– fast on wide range of CPU’s
– use round constants to break symmetry
– diffuse key bits into round keys
– enough non-linearity to hinder analysis
– simplicity of description

AES Decryption

• AES decryption is not identical to encryption
since steps done in reverse

• but can define an equivalent inverse cipher
with steps as for encryption
– but using inverses of each step
– with a different key schedule

• works since result is unchanged when
– swap byte substitution & shift rows
– swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects

• can efficiently implement on 8-bit CPU
– byte substitution works on bytes using a table of

256 entries
– shift rows is simple byte shift
– add round key works on byte XOR’s
– mix columns requires matrix multiply in GF(28)

which works on byte values, can be simplified to
use table lookups & byte XOR’s

Implementation Aspects

• can efficiently implement on 32-bit CPU
– redefine steps to use 32-bit words
– can precompute 4 tables of 256-words
– then each column in each round can be computed

using 4 table lookups + 4 XORs
– at a cost of 4Kb to store tables

• designers believe this very efficient
implementation was a key factor in its
selection as the AES cipher


