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Category of cryptographyCategory of cryptography

Symmetric and public key encryptionSymmetric and public key encryption

Public key Bob Private key Bob

Symmetric key encryption

Public key encryption

Keys in cryptographyKeys in cryptography

Public (Asymmetric) key cryptographyPublic (Asymmetric) key cryptography Prime NumbersPrime Numbers
• A number is said to be prime if it is dividible

by 1 and itself.
• There is infinitely many prime numbers.
•
• No function to generate all primes
• Mersenne Prime:

• Fermat Prime:
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Primality TestPrimality Test

• The scheme for generating large primes like
Mersenne and Fermat failed

• How to generate large prime for cryptography
• Choose a large number and test it is prime
• Two categories of testing prime:
Deterministic algorithm: always gives a correct

answer
Probabilistic algorithm: gives an answer that is

correct most of the time, but not all the time

Primality testPrimality test
• Deterministic algorithm:
1. Divisibility algorithm—use as divisors all

numbers smaller than
2. AKS algorithm– 2002, Agarwal, Kayal, Saxena

polynomial bit operation time complexity
• Probabilistic algorithm:
1. Fermat test
2. Square root test:
And other values
3.Miller –Rabbin test: combination of 1 and 2

n
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FactorizationFactorization

• Factorization plays a very important role in the
security of several public key cryptography

• Factorization method
1. Trial division (sieve of Eratosthenes)
Method is good if             inefficient and infeasible

for factoring large integers, complexity
exponential

2.Fermat factorization method:
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FactorizationFactorization

• Pollard p-1 method
• Pollard rho method
• Quadratic sieve : sieve procedure to find value

used to factor integer more than 100
digits almost 300 bits .

Complexity subexponential,
• Number field sieve: base on find
Complexity is

2(mod )x n

1 / 2( ) , ( ln ln ln )cO e c n

2 2 (m od )x y n

1/3 2/3( ), 2(ln ) (ln ln )cO e c n n

FactorizationFactorization
• Assume that there is a computer can perform       (almost 1 billion)

bit operations per second. What is the approximate time required
for this computer to factor an integer of 100 digits using

(i) Quadratic sieve method (ii) number sieve
• A number with 100 digits has almost 300 bits

.    For quadratic sieve method
We have                                                this means we need
bit operations that can be done in                          hours
• For N.F.S. :                                         this meand we need
Bit operations that can be done in                       seconds

302

300 300 3002 ,ln2 207,lnln2 5n  
1/2 1/2(207) (5) 14 2.23 32  

3 2e
32 30/ 2 20e 

1/3 2/3(207) (5) 6 3 18   
1 8e

18 30/ 2 6e 

Discrete logarithmDiscrete logarithm
• Exponential and logarithm are inverse process
• Exponential y =y = aaxx Logarithm: x=x=loglogaayy
• In cryptography a common modular operation is exponential y =y = aaxx (mod(mod

n), n has primitive roots.n), n has primitive roots.
• Discrete log x =x = dlogdlogaa y (mod ny (mod n )

• Fast exponential is possible using square and multiply method.
• The main idea behind this method to treat the exponent as a binary number

of bits.
• In cryptography if we use exponentiation to encrypt or decrypt, the

adversary can use logarithm to attack .
• Exhaust search: write an algorithm that continuously calculate

y =y = aaxx (mod n)(mod n) until it find value of given y.
• This algorithm is very inefficient for large integers. The complexity is this

algorithm is exponential.
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Discrete log problemDiscrete log problem

 the inverse problem to exponentiation is to find thethe inverse problem to exponentiation is to find the
discrete logarithmdiscrete logarithm of a number modulo pof a number modulo p

 that is to findthat is to find ii such thatsuch that b =b = aaii (mod p)(mod p)

 this is written asthis is written as ii == dlogdlogaa b (mod p)b (mod p)

 ifif aa is a primitive root then it always exists, otherwiseis a primitive root then it always exists, otherwise
it may not, e.g.,it may not, e.g.,
x = logx = log33 4 mod 13 has no answer4 mod 13 has no answer
x = logx = log22 3 mod 13 = 4 by trying successive powers3 mod 13 = 4 by trying successive powers

 whilst exponentiation is relatively easy, findingwhilst exponentiation is relatively easy, finding
discrete logarithms is generally adiscrete logarithms is generally a hardhard problemproblem

Discrete log cryptographyDiscrete log cryptography
• The following questions arises in this cryptosystem
1. Given an element a and a group G= <         >  how to find the a is

primitive root of G?
(i)We need to find ϕ(n), which is as difficult as factorization of n.
(ii)We need to check o(a)= ϕ(n),
2. Given a group G, how to check all primitive roots of G? this is more

difficult than first task because we need to repeat part (ii) for all
elements of G

3. Given G how to select a primitive root of G?

In cryptography the user choose the value of n so he/she knows the
value of ϕ(n). To find primitive root user tries several elements
until he finds the first one.

*,nZ 

Discrete log problemDiscrete log problem Diffie Hellman Key exchangeDiffie Hellman Key exchange

• The symmetric key in the Diffie Hillman
protocol is K = gxy mod p.

Diffie Hellman key exchange exampleDiffie Hellman key exchange example

• Let us give a trivial example to make the procedure clear.
Our example uses small numbers, but note that in a real
situation, the numbers are very large. Assume g = 7 and
p = 23. The steps are as follows:

• 1. Alice chooses x = 3 and calculates R1 = 73 mod 23 = 21.
• 2. Bob chooses y = 6 and calculates R2 = 76 mod 23 = 4.
• 3. Alice sends the number 21 to Bob.
• 4. Bob sends the number 4 to Alice.
• 5. Alice calculates the symmetric key K = 43 mod 23 = 18.
• 6. Bob calculates the symmetric key K = 216 mod 23 = 18.
• The value of K is the same for both Alice and Bob;

gxy mod p = 718 mod 23 = 18.

Man in the middle attackMan in the middle attack
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Public key encryption schemePublic key encryption scheme

• RSA public key cryptosystem
• Elgamal public key cryptosystem
• Digital signature based on public key

cryptosystem

Public key cryptography requirementsPublic key cryptography requirements

need a trapdoor one-way function
one-way function has
 Y = f(X) easy
 X = f–1(Y) infeasible

a trap-door one-way function has
 Y = fk(X) easy, if k and X are known
 X = fk

–1(Y) easy, if k and Y are known
 X = fk

–1(Y) infeasible, if Y known but k not known

a practical public-key scheme depends on a
suitable trap-door one-way function

Security of Public Key SchemesSecurity of Public Key Schemes

 like private key schemes brute force exhaustive
search attack is always theoretically possible
but keys used are too large (>512bits)
security relies on a large enough difference in

difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems
more generally the hard problem is known, but is

made hard enough to be impractical to break
 requires the use of very large numbers
hence is slow compared to private key schemes

Public key cryptography: RSAPublic key cryptography: RSA

 by Rivest, Shamir & Adleman of MIT in 1977
 best known & widely used public-key scheme
 based on exponentiation in a finite (Galois) field over

integers modulo a prime
 exponentiation takes O((log n)3) operations (easy)

 uses large integers (eg. 1024 bits)
 security due to cost of factoring large numbers
 factorization takes O(e log n log log n) operations (hard)
 Finding ϕ(n) is as difficult as factoring the number n

Public key cryptography: RSAPublic key cryptography: RSA

In RSA, e and n are announced to the public; d and Φ are kept secret.
1<e<ø(n), gcd(e,ø(n))=1, e.d ≡ 1 mod ø(n) and 0≤d≤n
Security due to cost of factoring large numbers, Finding ϕ(n) is as difficult as
factoring the number n

In RSA, e and n are announced to the public; d and Φ are kept secret.
1<e<ø(n), gcd(e,ø(n))=1, e.d ≡ 1 mod ø(n) and 0≤d≤n
Security due to cost of factoring large numbers, Finding ϕ(n) is as difficult as
factoring the number n

Select  large primes randomly p and q. Find product n=p.q, calculate ø(n=(p-1)(q-1)

RSA: ExampleRSA: Example

Bob chooses 7 and 11 as p and q and calculates
n = 7 · 11 = 77. The value of F = (7 − 1) (11 − 1) or
60. Now he chooses two keys, e and d. If he chooses e
to be 13, then d is 37. Now imagine Alice sends the
plaintext 5 to Bob. She uses the public key 13 to
encrypt 5.
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RSA: ExampleRSA: Example

Jennifer creates a pair of keys for herself. She chooses p = 397
and q = 401. She calculates n = 159,197 andF= 396 · 400 =
158,400. She then chooses e = 343 and d = 12,007. Show how
Ted can send a message to Jennifer if he knows e and n.

• Suppose Ted wants to send the message “NO” to Jennifer. He changes each
character to a number (from 00 to 25) with each character coded as two
digits. He then concatenates the two coded characters and gets a four-digit
number. The plaintext is 1314. Ted then uses e and n to encrypt the
message. The ciphertext is 1314343 = 33,677 mod 159,197. Jennifer
receives the message 33,677 and uses the decryption key d to decipher it as
33,67712,007 = 1314 mod 159,197. Jennifer then decodes 1314 as the
message “NO”. Figure 30.25 shows the process.

RSA: ExampleRSA: Example

• currently assume 1024-2048 bit RSA is secure

RSA: Realistic exampleRSA: Realistic example

• Let us give a realistic example. We randomly chose
an integer of 512 bits. The integer p is a 159-digit
number.

The integer q is 160-digit number

RSA: Realistic exampleRSA: Realistic example

We calculate n=pq. It has 309 digits:

We calculateF. It has 309 digits:

RSA: Realistic exampleRSA: Realistic example

We choose e = 35,535. We then find d.

Alice wants to send the message “THIS IS A TEST”
which can be changed to a numeric value by using the
00–26 encoding scheme (26 is the space character).

RSA: Realistic exampleRSA: Realistic example

The ciphertext calculated by Alice is C = Pe, which is.

Bob can recover the plaintext from the ciphertext by using
P = Cd, which is
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RSA: Realistic exampleRSA: Realistic example
The ciphertext calculated by Alice is C = Pe, which is.

Bob can recover the plaintext from the ciphertext by using
P = Cd, which is

The recovered plaintext is THIS IS A TEST after decoding.

Elgamal CryptosystemElgamal Cryptosystem

Elgamal Cryptosystem: key generationElgamal Cryptosystem: key generation
Elgamal Cryptosystem:

Encryption and decryption process
Elgamal Cryptosystem:

Encryption and decryption process


