

Primality Test

- The scheme for generating large primes like Mersenne and Fermat failed
- How to generate large prime for cryptography
- Choose a large number and test it is prime
- Two categories of testing prime:
- Deterministic algorithm: always gives a correct answer

Probabilistic algorithm: gives an answer that is correct most of the time, but not all the time

Primality test

- Deterministic algorithm:
- 1. Divisibility algorithm—use as divisors all numbers smaller than \sqrt{n}
- 2. AKS algorithm- 2002, Agarwal, Kayal, Saxena polynomial bit operation time complexity
- Probabilistic algorithm:
- 1. Fermat test
- 2. Square root test:

 $\sqrt{1} = \pm 1 \pmod{p}, \sqrt{1} = \pm 1 \pmod{n}$ And other values

3.Miller - Rabbin test: combination of 1 and 2

Factorization

Factorization plays a very important role in the security of several public key cryptography

- Factorization method
- 1. Trial division (sieve of Eratosthenes) $p \le \sqrt{n}$

Method is good if $n \le 2^{10}$ inefficient and infeasible for factoring large integers, complexity exponential

2.Fermat factorization method: $\begin{array}{l} n = x^2 - y^2 = ab \\ a = x + y, b = x - y \end{array}$

Factorization

- Pollard p-1 method
- · Pollard rho method
- Quadratic sieve : sieve procedure to find value $x^2 \pmod{n}$ used to factor integer more than 100 digits almost 300 bits .

Complexity subexponential, $O(e^{c}), c = (\ln n \ln \ln n)^{1/2}$

• Number field sieve: base on find $x^2 \equiv y^2 \pmod{n}$

Complexity is $O(e^{c}), c = 2(\ln n)^{1/3}(\ln \ln n)^{2/3}$

Factorization

Assume that there is a computer can perform 2³⁰ (almost 1 billion) bit operations per second. What is the approximate time required for this computer to factor an integer of 100 digits using Quadratic sieve method (ii) number sieve (i)

A number with 100 digits has almost 300 bits

 $n = 2^{20}$, $\ln 2^{30} = 207$, $\ln \ln 2^{30} = 5$. For quadratic sieve method We have $(207)^{12}(5)^{12} = 14 \times 2.23$ this means we need $e^{-3/2}$ bit operations that can be done in $e^{32}/2^{30}$ 20 hours

• For N.F.S. : $(207)^{13} \times (5)^{22} = 6 \times 3 = 18$ this meand we need $e^{1.8}$ Bit operations that can be done in $e^{1.8} / 2^{30} = 6$ seconds

Discrete logarithm

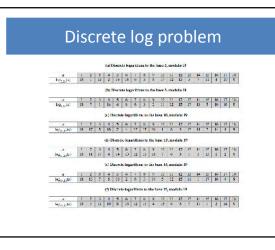
- Exponential and logarithm are inverse process Exponential $y = a^x$ Logarithm: $x = log_a y$
- In cryptography a common modular operation is exponential $y = a^x \pmod{n}$, n has primitive roots.
- Discrete $\log x = d\log_a y \pmod{n}$
- Fast exponential is possible using square and multiply method.
- In cryptography if we use exponentiation to encrypt or decrypt, the adversary can use logarithm to attack .
- Exhaust search: write an algorithm that continuously calculate $y = a^x \pmod{n}$ until it find value of given y.
- $y = a^x \pmod{n}$ until it find value of given y. This algorithm is very inefficient for large integers. The complexity is this algorithm is exponential.

Discrete log problem

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- > that is to find i such that $b = a^i \pmod{p}$
- > this is written as $i = dlog_a b \pmod{p}$
- if a is a primitive root then it always exists, otherwise it may not, e.g.,
 - $x = \log_3 4 \mod 13$ has no answer
 - $x = \log_2 3 \mod 13 = 4$ by trying successive powers
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

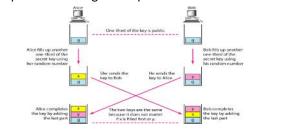
Discrete log cryptography

- The following questions arises in this cryptosystem
- 1. Given an element a and a group $G = \langle Z_n^*, \rangle$ how to find the a is primitive root of G?
- (i)We need to find (n), which is as difficult as factorization of n. (ii)We need to check o(a) = (n),
- Given a group G, how to check all primitive roots of G? this is more difficult than first task because we need to repeat part (ii) for all elements of G
- 3. Given G how to select a primitive root of G?
- In cryptography the user choose the value of n so he/she knows the value of (n). To find primitive root user tries several elements until he finds the first one.



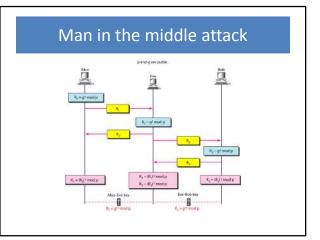
Diffie Hellman Key exchange

 The symmetric key in the Diffie Hillman protocol is K = g^{xy} mod p.



Diffie Hellman key exchange example

- Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume g = 7 and p = 23. The steps are as follows:
- 1. Alice chooses x = 3 and calculates $R_1 = 7^3 \mod 23 = 21$.
- 2. Bob chooses y = 6 and calculates $R_2 = 7^6 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 4^3 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 21^6 \mod 23 = 18$.
- The value of K is the same for both Alice and Bob; $g^{xy} mod p = 7^{18} mod 23 = 18$.



Public key encryption scheme

- RSA public key cryptosystem
- Elgamal public key cryptosystem
- Digital signature based on public key cryptosystem

Public key cryptography requirements

- > need a trapdoor one-way function
- > one-way function has
 - \succ Y = f(X) easy \succ X = f⁻¹(Y) infeasible
- > a trap-door one-way function has
- $Y = f_k(X)$ easy, if k and X are known
- $> X = f_k^{(-1)}(Y)$ easy, if k and Y are known
- $> X = f_k^{-1}(Y)$ infeasible, if Y known but k not known
- ➤ a practical public-key scheme depends on a suitable trap-door one-way function

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, but is made hard enough to be impractical to break
- requires the use of very large numbers
- ➤ hence is slow compared to private key schemes

Public key cryptography: RSA

- ▹ by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - exponentiation takes O((log n)³) operations (easy)
- ➤ uses large integers (eg. 1024 bits)
- ➤ security due to cost of factoring large numbers
 - factorization takes O(e log n log log n) operations (hard)
 - Finding (n) is as difficult as factoring the number n



RSA: Example

▶ Bob chooses 7 and 11 as p and q and calculates $n = 7 \cdot 11 = 77$. The value of F = (7 - 1)(11 - 1) or 60. Now he chooses two keys, e and d. If he chooses e to be 13, then d is 37. Now imagine Alice sends the plaintext 5 to Bob. She uses the public key 13 to encrypt 5.

Plaintext: 5
$C = 5^{13} = 26 \mod{77}$
Ciphertext: 26

RSA: Example

Jennifer creates a pair of keys for herself. She chooses p = 397and q = 401. She calculates n = 159,197 and $F = 396 \cdot 400 =$ 158,400. She then chooses e = 343 and d = 12,007. Show how Ted can send a message to Jennifer if he knows e and n.

 Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a number (from 00 to 25) with each character coded as two digits. He then concatenates the two coded characters and gets a four-digit number. The plaintext is 1314. Ted then uses e and n to encrypt the message. The ciphertext is 1314³⁴³ = 33,677 mod 159,197. Jennifer receives the message 33,677 and uses the decryption key d to decipher it as 33,677^{12,007} = 1314 mod 159,197. Jennifer then decodes 1314 as the message "NO". Figure 30.25 shows the process.

PSA: Example • currently assume 1024-2048 bit RSA is secure $\int_{100/72}^{10} = -345 \qquad \text{fd} = -2007 \qquad \text{fd$

RSA: Realistic example

• Let us give a realistic example. We randomly chose an integer of 512 bits. The integer p is a 159-digit number.

 $\begin{array}{l} p=96130345313583504574191581280615427909309845594996215822583150879647940\\ 45505647063849125716018034750312098666606492420191808780667421096063354\\ 219926661209 \end{array}$

The integer q is 160-digit number

q = 12060191957231446918276794204450896001555925054637033936061798321731482 14848376465921538945320917522527322683010712069560460251388714552496900 0359660045617

RSA: Realistic example

We calculate n=pq. It has 309 digits:

n = 11593504173967614968892509864615887523771457375454144775485526137614788 54083263508172768788159683251684688493006254857641112501624145523391829 27162507656772727400097082714127730434960500556347274566628060099924037 10299142447229221577279853172703383938133469268413732762200096667667183 1831088373420823444370953

We calculate F. It has 309 digits:

$$\begin{split} \varphi &= 11593504173967614968892509864615887523771457375454144775485526137614788\\ 54083263508172768788159683251684688493006254857641112501624145523391829\\ 27162507656751054233608492916752034482627988117554787657013923444405716\\ 98958172819609822636107546721186461217135910735864061400888517026537727\\ 7264467341066243857664128 \end{split}$$

RSA: Realistic example

We choose e = 35,535. We then find d.

e = 35535

d = 58008302860037763936093661289677917594669062089650962180422866111380593852 82235873170628691003002171085904433840217072986908760061153062025249598844 48047568240966247081485817130463240644077704833134010850947385295645071936 77406119732655742423721761767462077637164207600337085333288532144708859551 36670294831

Alice wants to send the message "THIS IS A TEST" which can be changed to a numeric value by using the 00–26 encoding scheme (26 is the space character).

RSA: Realistic example

The ciphertext calculated by Alice is $C = P^e$, which is.

$$\label{eq:constraint} \begin{split} \mathbf{C} &= 4753091236462268272063655506105451809423717960704917165232392430544529\\ & 6061319932856661784341835911415119741125200568297979457173603610127821\\ & 8847892741566090480023507190715277185914975188465888632101148354103361\\ & 6578984679683867637337657774656250792805211481418440481418443081277305\\ & 9004692874248559166462108656 \end{split}$$

Bob can recover the plaintext from the ciphertext by using

 $P = C^d$, which is P = 1907081826002619041819

RSA: Realistic example

The ciphertext calculated by Alice is $C = P^e$, which is.

C = 4753091236462268272063655506105451809423717960704917165232392430544529 6061319932856661784341835911415119741125200568297979457173603610127821 8847892741566090480023507190715277185914975188465888632101148354103361 6578984679683867637337657774656250792805211481418440481418443081277305 9004692874248559166462108656

Bob can recover the plaintext from the ciphertext by using $P = C^d$, which is

P = 1907081826081826002619041819

The recovered plaintext is THIS IS A TEST after decoding.

Elgamal Cryptosystem

Presented in 1984 by Tather Elgamal

Key aspects:

- · Based on the Discrete Logarithm problem
- · Randomized encryption

Application:

- · Establishing a secure channel for key sharing
- · Encrypting messages

Elgamal Cryptosystem: key generation

Participant A generates the public/private key pair

- 1. Generate large prime p and generator g of the multiplicative Group \mathbb{Z}_p^* pf of the integers modulo p.
- 2. Select a random integer $a, 1 \le a \le p-2$, and compute $g^a \mod p$.
- 3. A's Public key is (p, g, g^a) ; A's Private key is a.

Elgamal Cryptosystem: Encryption and decryption process

Participant B encrypts a message m to A

- Obtain A's authentic public key (p, g, g^a).
 Represent the message as integers m in the range {0, 1, ..., p = 1}.
- 3 Select a random integer k_i $1 \le k \le p-2$
- 4 Compute $\gamma = g^k \mod p$ and $\delta = m + (g^k)^k$ 5. Send ciphertext $e = (\gamma, \delta)$ to A

Participant A receives encrypted message m from B

- Use private key a to compute (γ^{p−1−a}) mod p. Note: γ^{p−1−a} γ^{−a} a^{−ak} y a
- 2. Recover *m* by computing $(\gamma^{-n}) * \delta \mod p$.