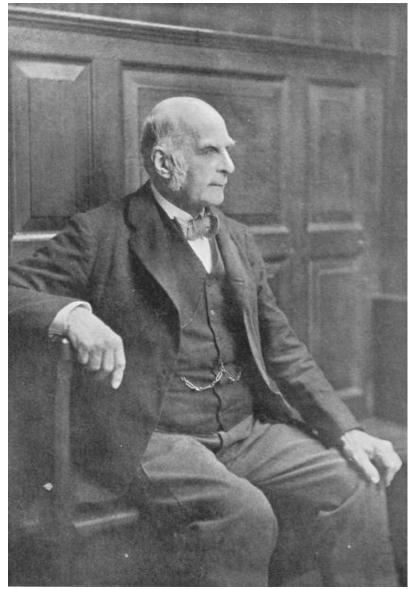
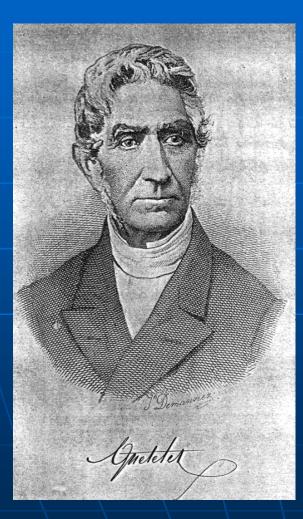
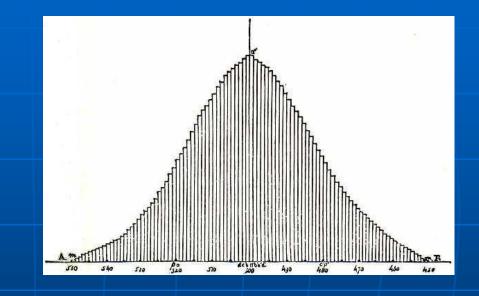
# CORRELATION RESEARCH By

Prof. Rajeev Pandey Department of Statistics University of Lucknow Lucknow


pandey\_rajeev@lkouniv.ac.in

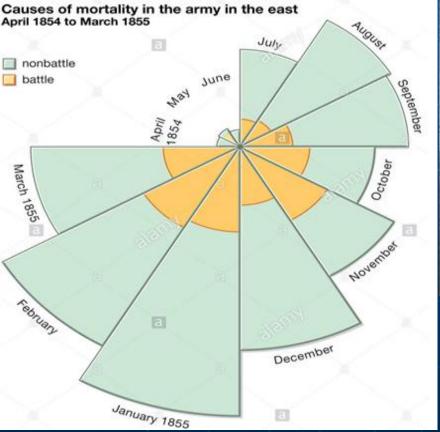
prof.rajeevlu@gmail.com


# Sir Francis Galton


1822-1911

- Obsessed with measurement
- Tried to measure everything from the weather to female beauty
- Invented correlation and regression




# Ambitions for statistics





Adolphe Quetelet (1796-1874) A Social Scientist wanted statistics to be an experimental science of legislation. Forme Nghingle exhibited a gift for mathematics from an early age and excelled in the subject under the tutelage of her father. Later, Nghingle became the first pioneer in the visual presentation of information and statistical graphice

#### graphics.



Florence Nightingale (12 May 1820 – 13 August 1910)

#### Florence Nightingale Differences between univariate and bivariate data.

| Univariate Data                                                                                                                                                                                                                                               | Bivariate Data                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>involving a single variable</li> </ul>                                                                                                                                                                                                               | <ul> <li>involving two variables</li> </ul>                                                                                                                                                                                                                                             |  |
| <ul> <li>does not deal with causes or relationships</li> </ul>                                                                                                                                                                                                | <ul> <li>deals with causes or relationships</li> </ul>                                                                                                                                                                                                                                  |  |
| <ul> <li>the major purpose of univariate analysis<br/>is to describe</li> </ul>                                                                                                                                                                               | <ul> <li>the major purpose of bivariate analysis is<br/>to explain</li> </ul>                                                                                                                                                                                                           |  |
| <ul> <li>central tendency - mean, mode, median</li> <li>dispersion - range, variance, max, min,<br/>quartiles, standard deviation.</li> <li>frequency distributions</li> <li>bar graph, histogram, pie chart, line<br/>graph, box-and-whisker plot</li> </ul> | <ul> <li>analysis of two variables simultaneously</li> <li>correlations</li> <li>comparisons, relationships, causes,<br/>explanations</li> <li>tables where one variable is contingent<br/>on the values of the other variable.</li> <li>independent and dependent variables</li> </ul> |  |
| Sample question: How many of the students in the freshman class are female?                                                                                                                                                                                   | Sample question: Is there a relationship between<br>the number of females in Computer Programming<br>and their scores in Mathematics?                                                                                                                                                   |  |

# Correlation & Association

#### Multivaria<mark>te Data Format</mark>

| Unit |                 | Variable        |                 |
|------|-----------------|-----------------|-----------------|
|      | X <sub>1</sub>  | X <sub>2</sub>  | X <sub>p</sub>  |
| 1    | X <sub>11</sub> | X <sub>12</sub> | X <sub>1p</sub> |
| 2    | X <sub>21</sub> | X <sub>22</sub> | X <sub>2p</sub> |
| 3    | X <sub>31</sub> | X <sub>32</sub> | X <sub>3p</sub> |
|      |                 |                 |                 |
|      |                 |                 |                 |
| i    | X <sub>i1</sub> | X <sub>i2</sub> | X <sub>ip</sub> |
|      |                 |                 |                 |
| n    | X <sub>n1</sub> | X <sub>n2</sub> | X <sub>np</sub> |

#### **1. Dependence Methods**

One or more variables (called *criterion variables*) are predicted by a set of independent variables (called *predictor variables*)

a. One criterion variable (i) Correlation and Regression Analysis Criterion Variable : Metric Predictor Variables: Metric & Non-Metric (ii) Logistic Regression Criterion Variable : Non-Metric Predictor Variables: Metric & Non-Metric (iii) Discriminant Analysis Criterion Variable : Non-Metric Predictor Variables: Metric b. Two or more criterion variables (i) Canonical Analysis

Criterion Variable : Metric Predictor Variables: Metric (ii) Multivariate Analysis of Variance

Criterion Variable : Metric Predictor Variables: Metric

## How to determine similarity....?

Specify as many characteristics as possible and measure them on each unit. A single characteristic may not be sufficient.



Detecting similarity is a typical task in matching learning..... Similarity is hard to define, but....

#### "we know it when see it"



#### **2.Inter-dependence** Methods

Contd

- (i) **Factor Analysis**
- (ii) Cluster Analysis
- (iii) Multidimensional Scaling
- (iv) Correspondence Analysis

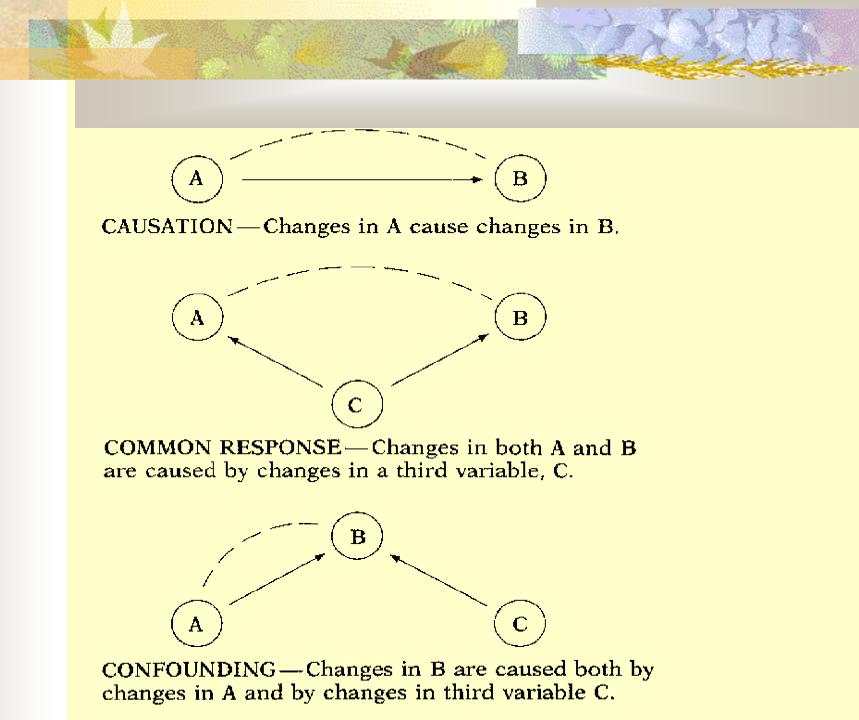
Although we can anlyse each variable individually using methods available for univariate analysis but in multivariate we try to exploit information about interrelationship among the variables to make several inferences which are not possible otherwise.

# key concepts: Correlation in SPSS

# Types of correlation

Methods of studying correlation in SPSS

- a) Scatter diagram
- b) Karl pearson's coefficient of correlation
- c) Spearman's Rank correlation coefficientd) Kendall's Tau


# **Correlation**

Correlation is a statistical tool that helps to measure and analyze the degree of relationship between two variables. Correlation analysis deals with the association between two or more variables.

# Correlation

Correlation: The degree of relationship between the variables under consideration is measure through the correlation analysis.

- The measure of correlation called the correlation coefficient.
- The degree of relationship is expressed by coefficient which range from correlation ( $-1 \le r \le +1$ )
  - The direction of change is indicated by a sign.
  - The correlation analysis enable us to have an idea about the degree & direction of the relationship between the two variables under study.



## **Correlation & Causation**

- Causation means cause & effect relation.
- Correlation denotes the interdependency among the variables for correlating two phenomenon, it is essential that the two phenomenon should have cause-effect relationship,& if such relationship does not exist then the two phenomenon can not be correlated.
  - If two variables vary in such a way that movement in one are accompanied by movement in other, these variables are called cause and effect relationship.
- Causation always implies correlation but correlation does not necessarily implies causation.

# **Spurious Relationship**

- The final type of relationship could be spurious.
   The relationship between the jail population (X) and the crime rate (Y) could be associated with a third variable.
- The size of the jail population (X<sup>1</sup>) could be related to the unemployment rate (X<sup>2</sup>), which may be strongly associated with the crime rate (Y).

# **Types of Correlation Type** I

## Correlation

## **Positive Correlation**

**Negative Correlation** 

# **Types of Correlation Type** I

- Positive Correlation: The correlation is said to be positive correlation if the values of two variables changing with same direction.
  - Ex. Arrest Rate & Performance, clearance rate & Performance
- Negative Correlation: The correlation is said to be negative correlation when the values of variables change with opposite direction.
   Ex. Area Crime Rate & Performance.

# **Direction of the Correlation**

- Positive relationship Variables change in the same direction.
  - As X is increasing, Y is increasing
  - As X is decreasing, Y is decreasing



E.g., As CLR increases, so does Performance.

**Negative relationship** – Variables change in opposite directions.

- As X is increasing, Y is decreasing
- As X is decreasing, Y is increasing
- E.g., As ACR increases, Performance decrease

# **More examples**

 Positive relationships
 water consumption and temperature.
 study time and grades.

## Negative relationships:

- alcohol consumption and driving ability.
- Price & quantity demanded



# **Types of Correlation Type** II

- Simple correlation: Under simple correlation problem there are only two variables are studied.
- Multiple Correlation: Under Multiple Correlation three or more than three variables are studied. Ex.  $Q_d = f$  (ACR, CLR, Performance)
- Partial correlation: analysis recognizes more than two variables but considers only two variables keeping the other constant.
- Total correlation: is based on all the relevant variables, which is normally not feasible.

# **Types of Correlation Type III**

# Correlation

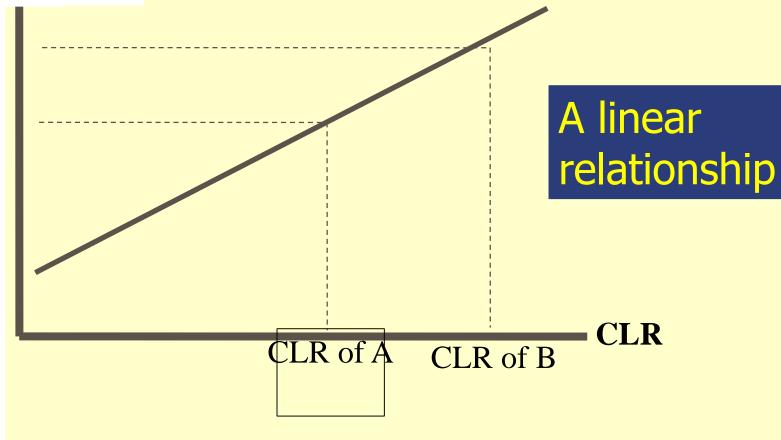
#### LINEAR

## **NON LINEAR**

# **Types of Correlation Type III**

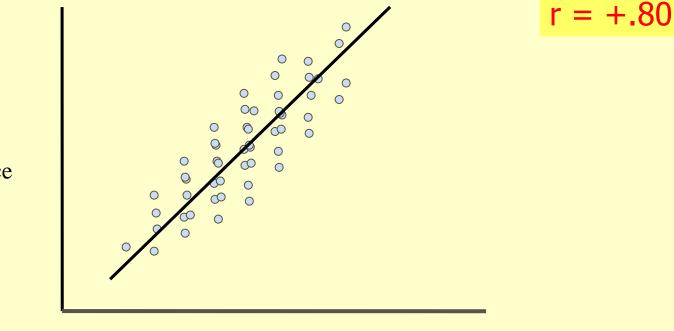
Linear correlation: Correlation is said to be linear when the amount of change in one variable tends to bear a constant ratio to the amount of change in the other. The graph of the variables having a linear relationship will form a straight line.

Ex X = 1, 2, 3, 4, 5, 6, 7, 8,  
Y = 5, 7, 9, 11, 13, 15, 17, 19,  
Y = 
$$3 + 2x$$


**Non Linear correlation:** The correlation would be non linear if the amount of change in one variable does not bear a constant ratio to the amount of change in the other variable.

# **Scatter Diagram Method**

Scatter Diagram is a graph of observed plotted points where each points represents the values of X & Y as a coordinate. It portrays the relationship between these two variables graphically.

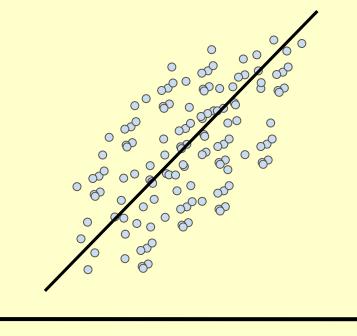

# A perfect positive correlation

#### Performance



# **High Degree of positive correlation**

### Positive relationship

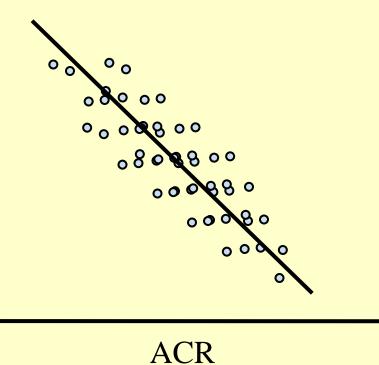



Performance

CLR

# Degree of correlation Moderate Positive Correlation

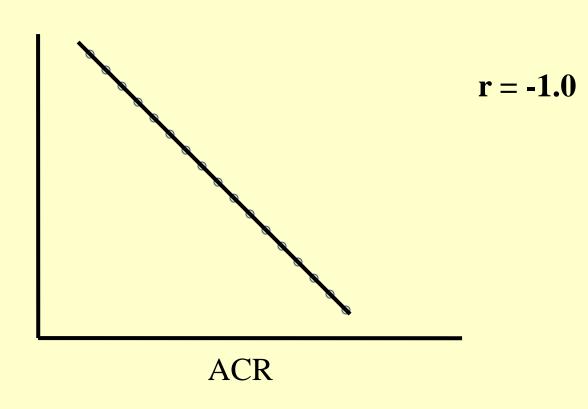
PERFORMANCE




r = +0.4

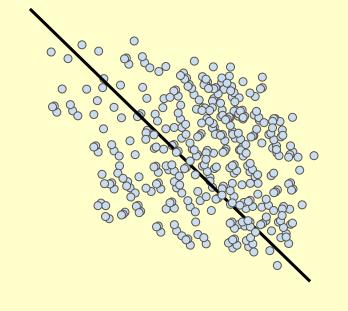
**CLR** 

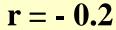
#### Moderate Negative Correlation


Performance



r = -.80

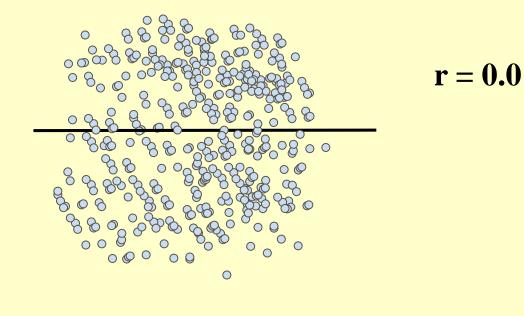

#### Perfect Negative Correlation


Performance

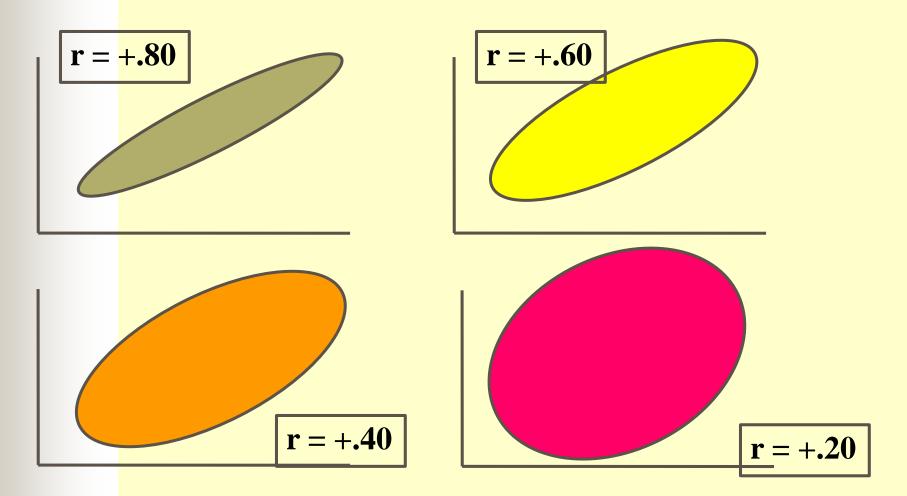


### Weak negative Correlation

Performance







ACR

## No Correlation (horizontal line)

Performance



% Gangster Cases



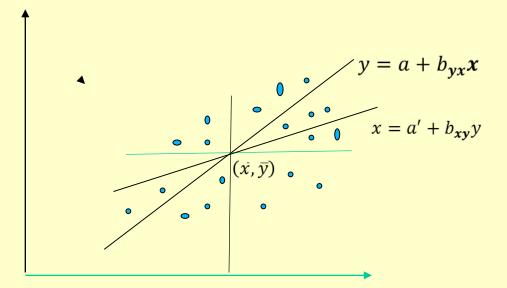
Advantages of Scatter Diagram
 Simple & Non Mathematical method

- Not influenced by the size of extreme item
- First step in investing the relationship between two variables
- **Disadvantage of scatter diagram** Can not adopt the an exact degree of correlation

#### **Karl Pearson's Coefficient of Correlation**

- Pearson's 'r' is the most common correlation coefficient.
- Karl Pearson's Coefficient of Correlation denoted by 'r'. The coefficient of correlation 'r' measure the degree of linear relationship between two variables say x & y.

**Karl Pearson's Coefficient of Correlation** 


Karl Pearson's Coefficient of Correlation denoted by "r"

 $-1 \leq r \leq +1$ 

Degree of Correlation is expressed by a value of Coefficient

Direction of change is Indicated by sign
 (-ve) or (+ve)

#### **Product Moment Correlation coefficient** (Pearson's Correlation Coefficient)



we assume that Y depends on x and relationship is linear

 $y = a + b_{yx}x$  Regression of Yon x

on the other hand if we assume that X depends on Y

 $x = a' + b_{xy}y$  **Regession of X on Y** 

$$r_{xy} = \frac{covariance (X,Y)}{\sqrt{Variance (X).Variance (Y)}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

# **Interpretation of Correlation Coefficient (r)**

- The value of correlation coefficient 'r' ranges from -1 to +1
- If r = +1, then the correlation between the two variables is said to be perfect and positive
- If r = -1, then the correlation between the two variables is said to be perfect and negative
- If r = 0, then there exists no correlation between the variables

## **Properties of Correlation coefficient**

- The correlation coefficient lies between -1 & +1 symbolically (  $1 \le r \le 1$  )
- The correlation coefficient is independent of the change of origin & scale.
- The coefficient of correlation is the geometric mean of two regression coefficient.

$$r = \sqrt{byx * bxy}$$

The one regression coefficient is (+ve) other regression coefficient is also (+ve) correlation coefficient is (+ve)

# **Assumptions of Pearson's Correlation Coefficient**

There is linear relationship between two variables, i.e. when the two variables are plotted on a scatter diagram a straight line will be formed by the points.

 Cause and effect relation exists between different forces operating on the item of the two variable series.

## **Advantages of Pearson's Coefficient**

It summarizes in one value, the degree of correlation & direction of correlation also.

# **Limitation of Pearson's Coefficient**

Always assume linear relationship
Interpreting the value of r is difficult.
Value of Correlation Coefficient is affected by the extreme values.
Time consuming methods

# **Coefficient of Determination**

- The convenient way of interpreting the value of correlation coefficient is to use of square of coefficient of correlation which is called Coefficient of Determination.
- The Coefficient of Determination =  $R^2$ .

Suppose: r = 0.9,  $R^2 = 0.81$  this would mean that 81% of the variation in the dependent variable has been explained by the independent variable.  $Y = a + b_{yx} x \dots (1)$ 

 $Cov(y, Y) = R^2$ 

| Independent<br>Variable | Dependent<br>Variable | Estimated Value<br>from (1) |
|-------------------------|-----------------------|-----------------------------|
|                         | У                     | Υ                           |
| x <sub>1</sub>          | <b>y</b> <sub>1</sub> | Y <sub>1</sub>              |
| X <sub>2</sub>          | $\mathbf{y}_2$        | Y <sub>2</sub>              |
|                         |                       |                             |
|                         | •••                   | •••                         |
|                         |                       |                             |
| X <sub>n</sub>          | Уn                    | <b>y</b> <sub>n</sub>       |

# **Coefficient of Determination**

The maximum value of R<sup>2</sup> is 1 because it is possible to explain all of the variation in y but it is not possible to explain more than all of it.

Coefficient of Determination = Explained variation / Total variation

# **Coefficient of Determination: An example**

• Suppose: r = 0.60

r = 0.30 It does not mean that the first correlation is twice as strong as the second the 'r' can be understood by computing the value of  $r^2$ .

When r = 0.60  $r^2 = 0.36$  -----(1) r = 0.30  $r^2 = 0.09$  -----(2)

This implies that in the first case 36% of the total variation is explained whereas in second case 9% of the total variation is explained.

## **Spearman's Rank Coefficient of Correlation**

When statistical series in which the variables under study are not capable of quantitative measurement but can be arranged in serial order, in such situation pearson's correlation coefficient can not be used in such case Spearman Rank correlation can be used.

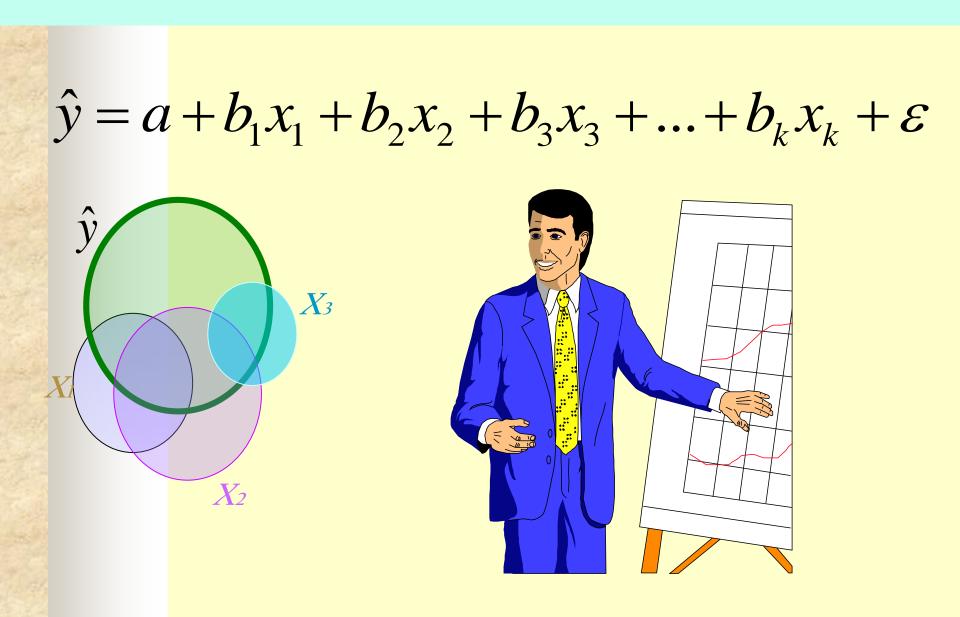
- 1. When two persons or judges give their ranks in same characteristics (variable).
- 2. When one person gives ranks to two different characteristics (variables).

| []anla     |         |         |             |                      |               | 2        |                       | Par         | Y.T            |          |
|------------|---------|---------|-------------|----------------------|---------------|----------|-----------------------|-------------|----------------|----------|
|            | Murdor  | Dacoity | L B         | Y-                   | X-            | (Y-      |                       | (Y-Mean)(X- | CAL +          | Carrow . |
| zone       |         | _Fir(X) | <b>Y</b> *X |                      | A-<br>Mean(X) | •        | (X-Mean) <sup>2</sup> |             | X <sup>2</sup> | Y2       |
|            |         |         |             |                      |               |          |                       |             |                |          |
| Agra-1     | 1698    | 415     | 704670      | 2 <mark>27.87</mark> | -12.62        | 51927.02 | 159.39                | -2876.92    | 172225         | 2883204  |
| Allaha     |         |         |             |                      |               |          |                       |             |                |          |
| Bad - 2    | 1055    | 220     | 232100      | -415.12              | -207.62       | 172328.8 | 43108.14              | 86190.32    | 48400          | 1113025  |
|            |         |         |             |                      |               |          |                       |             |                |          |
| Kanpur-3   |         | 318     | 418806      | -153.12              | -109.62       | 23447.27 | 12017.64              | 16786.32    | 101124         | 1734489  |
| Gorakhp    |         |         |             |                      |               |          |                       |             |                |          |
|            |         | 397     | 434715      | -375.12              | -30.62        | 140718.8 | 937.89                | 11488.20    | 157609         | 1199025  |
| Bareilly - |         |         |             |                      |               |          |                       |             |                |          |
|            | 1518    | 514     | 780252      | 47.87                | 86.37         | 2292.016 | 7460.64               | 4135.20     | 264196         | 2304324  |
| Meerut -   |         |         |             |                      |               |          |                       |             |                |          |
| 6          | 1881    | 823     | 1548063     | 410.87               | 395.37        | 168818.3 | 156321.39             | 162449.70   | 677329         | 3538161  |
| Lucknow    |         |         |             |                      |               |          |                       |             |                |          |
| -7         | 2176    | 540     | 1175040     | 705.87               | 112.37        | 498259.5 | 12628.14              | 79322.70    | 291600         | 4734976  |
| Varanasi   |         |         |             |                      |               |          |                       |             |                |          |
| -8         | 1021    | 194     | 198074      | -449.12              | -233.625      | 201713.3 | 54580.64              | 104926.82   | 37636          | 1042441  |
|            |         |         |             |                      |               |          |                       |             |                |          |
| TOTAL      | 11761   | 3421    | 5491720     |                      |               | 1259505  | 287213.87             | 462422.37   | 1750119        | 18549645 |
| MEAN       | 1470 12 | 127 62  | 686465      |                      |               |          |                       |             |                |          |
|            | 1470.12 | 427.02  | 000405      | /                    | /             |          |                       |             |                |          |

The correlation coefficient = *Covariance* (X,Y) $\sqrt{Variance}$  (X)*.Variance* (Y)= 0.76Regression of Y (Murder) on X (Dacoity) Y = a + byx xY = 781.648 + 1.61xRegression of X (Dacoity) on Y (Murder) X = a' + bxyyX = -111.91 + 0.367v $\mathbf{r} = \sqrt{b_{yx}} \cdot b_{xy} = \sqrt{(1.61 \times 0.367)} = 0.76$ 

## **Spearman's Rank Correlation Coefficient**

$$r_{s} = \frac{\sum_{i=1}^{n} (u_{i} - \overline{u})(v_{i} - \overline{v})}{\sqrt{\{\sum_{i=1}^{n} (u_{i} - \overline{u})^{2}\}\{\sum_{i=1}^{n} (v_{i} - \overline{v})^{2}\}}}$$
(1)


### Remark:

- >  $u_i = rank(x_i) v_i = rank(y_i)$
- >  $d_i = u_i v_i$  are the difference in ranks
- > n=number of pairs of X's and Y's.

### **Pearson's and Spearman's Correlation Coefficients**

|      | Dacoity_FIR                                                         | A CONTRACTOR AND A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR AND A CONTRACTOR A |
|------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Y)  | (X)                                                                 | <b>Pearson's</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1698 | 415                                                                 | Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                     | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1055 | 220                                                                 | <b>= + 0.76</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1317 | 318                                                                 | <b>Spearman's</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                     | rho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1095 | 397                                                                 | <b>= + 0.39</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1518 | 514                                                                 | N = 08 Zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1881 | 823                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2176 | 540                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1021 | 194                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | (Y)<br>1698<br>1055<br>1317<br>1317<br>1095<br>1518<br>1881<br>2176 | (Y)(X)1698415105522013173181095397151851418818232176540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

**Regression Analysis** 



### STATITICAL DATA ANALYSIS

### COMMON TYPES OF ANALYSIS?

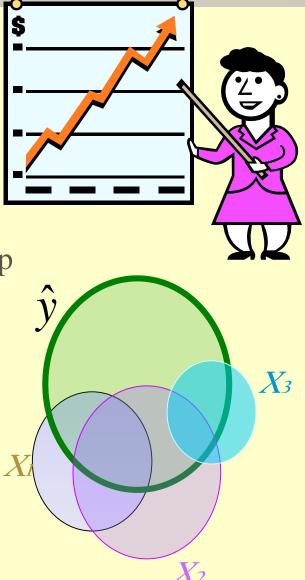
### 1. Compare Groups

- a. Compare Proportions (e.g., Chi Square Test-χ<sup>2</sup>)
   ✓ H<sub>0</sub>: P<sub>1</sub> = P<sub>2</sub> = P<sub>3</sub> = ... = P<sub>k</sub>
- b. Compare Means (e.g., Analysis of Variance)  $\vee$  H<sub>0</sub>:  $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$

### 2. Examine Strength and Direction of Relationships

- a. Bivariate (e.g., Pearson Correlation-r)
  - Between one variable and another:  $Y = a + b_1 x_1$
- **b.** Multivariate (e.g., Multiple Regression Analysis)
  - Between <u>one dep. var</u>. and <u>each of several</u> indep. variables, while holding all other indep. variables constant:
     Y = a + b<sub>1</sub> x<sub>1</sub> + b<sub>2</sub> x<sub>2</sub> + b<sub>3</sub> x<sub>3</sub> + ... + b<sub>k</sub> x<sub>k</sub>

#### What does regression analysis do?


- Examines whether changes/differences in values of one variable (dependent variable Y) are linked to changes/differences in values of one or more other variables (independent variables X<sub>1</sub>, X<sub>2</sub>, etc.), while controlling for the changes in values of all other X<sub>s</sub>.
  - E.g., Relationship between <u>ACR</u> and <u>Police Personals(No X<sub>1</sub>)</u> and gender  $X_2$  for districts who <u>have the same levels of</u> education, work experience, position level, seniority, etc.
  - The DV (Y) must be <u>metric</u>.
  - The IVs (Xs) must be either <u>metric</u> or <u>non metric</u> var.
  - Central Question Addressed:
    - Is Y(ACR) a function of  $X_1, X_2$ , etc.? How ?
    - Is there a relationship between Y and X<sub>1</sub>, X<sub>2</sub>, etc., (in each case, after controlling for the effects of all other Xs)? In what way?
    - What is the relative impact of each X on Y, holding all other Xs constant (that is, <u>all other Xs being equal</u>)?

## More specifically,

**Do values of Y tend to increase/decrease as values of X\_1, X\_2, etc. increase/decrease?** 

## If so,

- By how much? And
- How strong is the connection/relationship between Xs and Y?
  - what % of differences/variations in Y values (e.g., ACR) among study subjects can be explained by (or attributed to) differences in X values (e.g. years of service, years of their present posting, etc.)?



- NOTE: Once we can determine <u>how values of Y change as a</u> <u>function of values of  $X_1, X_2$ , etc.</u>, we will also be able to **predict/estimate** the value of Y from specific values of  $X_1, X_2$ , etc.  $Y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + ... + b_k x_k + \epsilon$
- Therefore, regression analysis, in a sense, is about ESTIMATING
   values of Y, using information about
   values of Xs:
- Estimation, by definition, involves?
  - The <u>objective</u>?
    - To minimize error in estimation.
    - Or, to compute <u>estimates</u> that are as <u>close to the true/actual values</u> as possible.

**QUESTION:** What is the <u>simplest way to</u> obtain an <u>estimate</u> for some population characteristic (e.g., <u>number of FIRs, Heinous FIRs etc.</u> per districts)?

#### **ANSWER:**

- **1.** <u>Select a representative sample from the population and</u>
- 2. Compute the <u>mean for that sample (e.g., compute the</u> average number of FIRs for the sample District).
- **Regression analysis can be viewed as a technique that often** significantly <u>improves the accuracy</u> of estimation results <u>relative to</u> <u>using the mean</u> value.
- **So, suppose** we were to estimate the number of FIRs for a particular district, based on information from a random sample of, say, n = 8 Zones in that district.

#### **Estimating Number of FIRs\***

| i<br>Zone | es | y <sub>i</sub><br><b>Murder # FIR</b> |
|-----------|----|---------------------------------------|
| 1         |    | 1698                                  |
| 2         |    | 1055                                  |
| 3         |    | 1317                                  |
| 4         |    | 1095                                  |
| 5         |    | 1518                                  |
| 6         |    | 1881                                  |
| 7         |    | 2176                                  |
| 8         |    | 1021                                  |

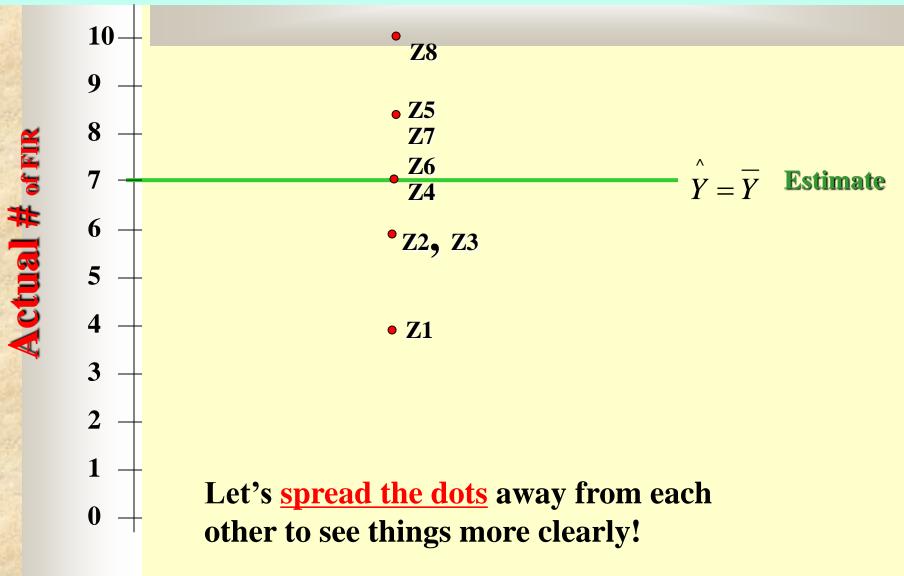
 $\sum Y_i = 11761$ 

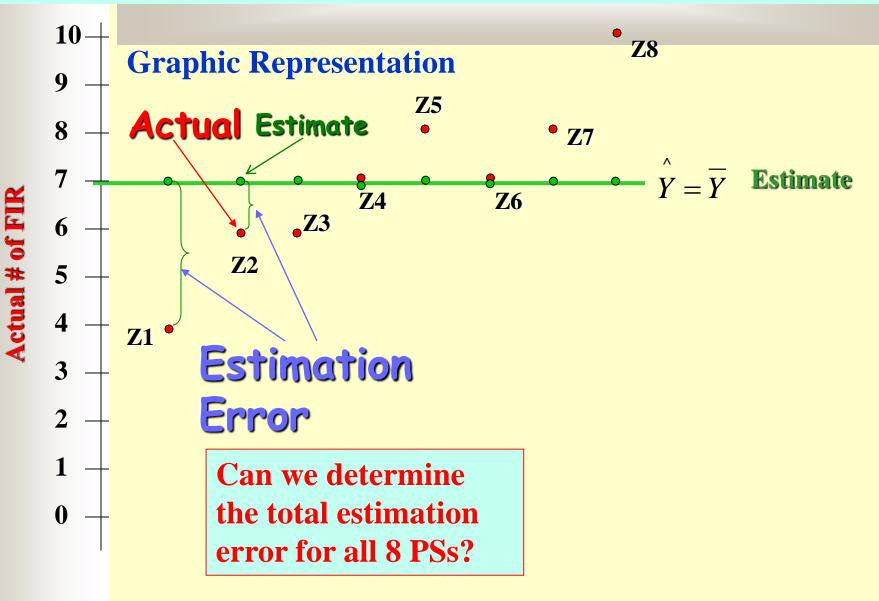
$$\hat{y} =$$
**Estimate**  
?  
 $\hat{y} = \overline{y} = \frac{11761}{8} = 1470.125$ 

**QUESTION:** Can we determine how much error in estimation we are committing by using  $\overline{Y} = 1470.125$  as our estimate, for each of these ZNs?

#### **Estimating Number of FIRs**

| i<br>Zones | y <sub>i</sub><br>Murder # FIR | $\hat{y} = \overline{y}$<br>Estimate for # | Error in   |
|------------|--------------------------------|--------------------------------------------|------------|
|            |                                | of FIRs                                    | Estimation |
| 1          | 1698                           | 1470.125                                   | 227.875    |
| 2          | 1055                           | 1470.125                                   | -415.125   |
| 3          | 1317                           | 1470.125                                   | -153.125   |
| 4          | 1095                           | 1470.125                                   | -375.125   |
| 5          | 1518                           | 1470.125                                   | 47.875     |
| 6          | 1881                           | 1470.125                                   | 410.875    |
| 7          | 2176                           | 1470.125                                   | 705.875    |
| 8          | 1021                           | 1470.125                                   | -449.125   |


$$\sum y_i = 11761 \quad \hat{y} = \overline{y} = \frac{11761}{8} = 1470.125$$


## **Simple and Multiple Regression Analysis** Estimating Number of FIRs

| i<br>Zones | y <sub>i</sub><br>Actual # of<br>FIRs | $\hat{y} = \overline{y}$<br><b>Estimate</b> for #<br>of FIRs | $y_i - \overline{y}$<br>Error in<br>Estimation |
|------------|---------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| 1          | 1698                                  | 1470.125                                                     | 227.875                                        |
| 2          | 1055                                  | 1470.125                                                     | -415.125                                       |
| 3          | 1317                                  | 1470.125                                                     | -153.125                                       |
| 4          | 1095                                  | 1470.125                                                     | -375.125                                       |
| 5          | 1518                                  | 1470.125                                                     | 47.875                                         |
| 6          | 1881                                  | 1470.125                                                     | 410.875                                        |
| 7          | 2176                                  | 1470.125                                                     | 705.875                                        |
| 8          | 1021                                  | 1470.125                                                     | -449.125                                       |

Lets now see all this graphically

$$\sum y_i = 11761 \quad \hat{y} = \overline{y} = \frac{11761}{8} = 1470.125$$





|                                                                                                    | $y_i - \overline{y}$<br>Error in<br>Estimation | $\hat{y} = \overline{y}$<br><b>Estimate</b> for #<br>of FIRs | <i>Y<sub>i</sub></i><br>Actual # of<br>FIRs | i<br>Zones     |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|----------------|--|--|--|
|                                                                                                    | 227.875                                        | 1470.125                                                     | 1698                                        | 1              |  |  |  |
|                                                                                                    | -415.125                                       | 1470.125                                                     | 1055                                        | 2              |  |  |  |
| What would be                                                                                      | -153.125                                       | 1470.125                                                     | 1317                                        | 3              |  |  |  |
| the total estimation                                                                               | -375.125                                       | 1470.125                                                     | 1095                                        | 4              |  |  |  |
| error for all 8                                                                                    | 47.875                                         | 1470.125                                                     | 1518                                        | 5              |  |  |  |
| ZONEs                                                                                              | 410.875                                        | 1470.125                                                     | 1881                                        | 6              |  |  |  |
| combined?                                                                                          | 705.875                                        | 1470.125                                                     | 2176                                        | 7              |  |  |  |
|                                                                                                    | -449.125                                       | 1470.125                                                     | 1021                                        | 8              |  |  |  |
| = 0                                                                                                | $\frac{1}{25} \sum (y_i - \overline{y}) =$     | $=\frac{11761}{2}=1470.1$                                    | 1761 $\hat{y} = \overline{y} =$             | $\sum y_i = 1$ |  |  |  |
| = 11761 $\hat{y} = \bar{y} = \frac{11761}{8} = 1470.125 \sum (y_i - \bar{y}) = 0$ <b>Solution?</b> |                                                |                                                              |                                             |                |  |  |  |

## **Simple and Multiple Regression Analysis** Estimating Number of FIRs

|   | i                                                                                                                         | Actual # of                  | <b>Estimate</b> for #    | Error in             | Errors Squared           |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|----------------------|--------------------------|--|--|--|
|   | Zones                                                                                                                     | FIRs                         | of FIRs                  | Estimation           | 2                        |  |  |  |
|   |                                                                                                                           |                              | $\hat{y} = \overline{y}$ | $y_i - \overline{y}$ | $(y_i - \overline{y})^2$ |  |  |  |
|   | 1                                                                                                                         | <i>Y<sub>i</sub></i><br>1698 | 1470.125                 | 227.875              | 51927.02                 |  |  |  |
|   | 2                                                                                                                         | 1055                         | 1470.125                 | -415.125             | 172328.8                 |  |  |  |
|   | 3                                                                                                                         | 1317                         | 1470.125                 | -153.125             | 23447.27                 |  |  |  |
|   | 4                                                                                                                         | 1095                         | 1470.125                 | -375.125             | 140718.8                 |  |  |  |
|   | 5                                                                                                                         | 1518                         | 1470.125                 | 47.875               | 2292.016                 |  |  |  |
|   | 6                                                                                                                         | 1881                         | 1470.125                 | 410.875              | 168818.3                 |  |  |  |
|   | 7                                                                                                                         | 2176                         | 1470.125                 | 705.875              | 498259.5                 |  |  |  |
|   | 8                                                                                                                         | 1021                         | 1470.125                 | -449.125             | 201713.3                 |  |  |  |
| Σ | $y_i = 11761  \hat{y} = \bar{y} = \frac{11761}{8} = 1470.125  \sum (y_i - \bar{y}) = 0  \sum (y_i - \bar{y})^2 = 1259505$ |                              |                          |                      |                          |  |  |  |

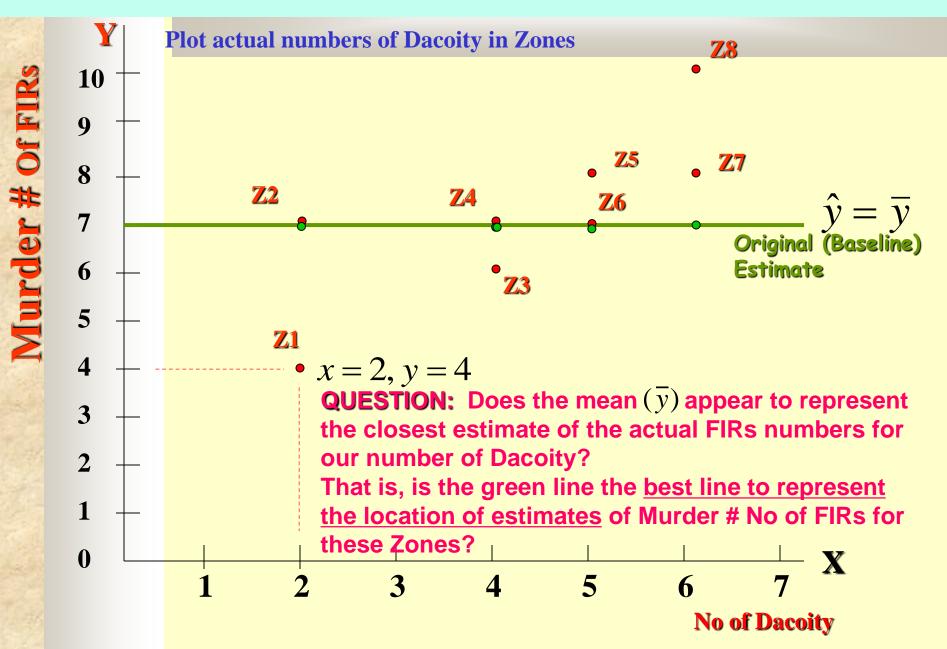
SST- Sum of Squares Total

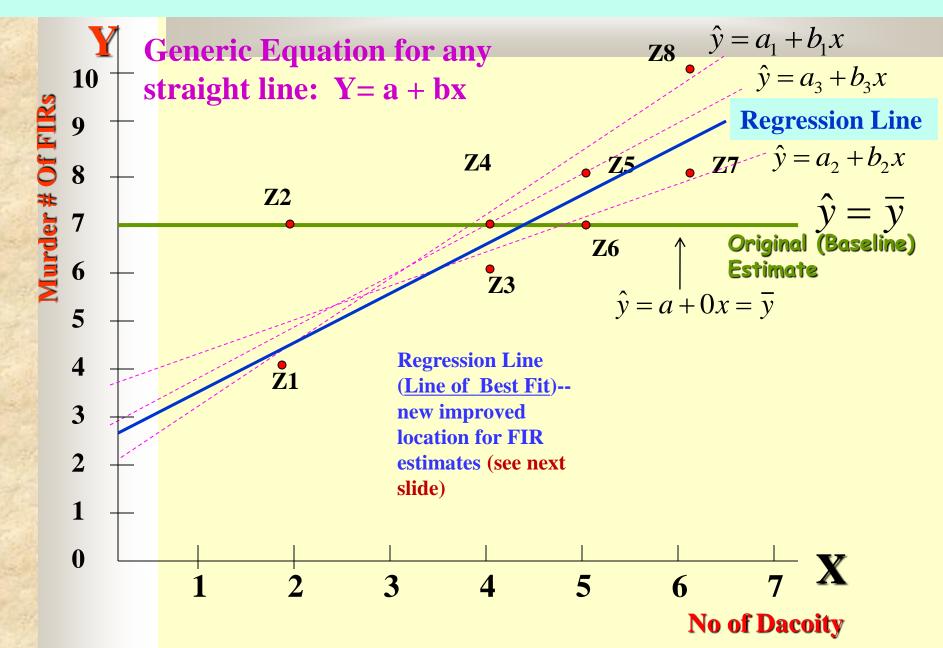
1259505 = SST = Index <u>for total (combined) amount of estimation</u> <u>error</u>

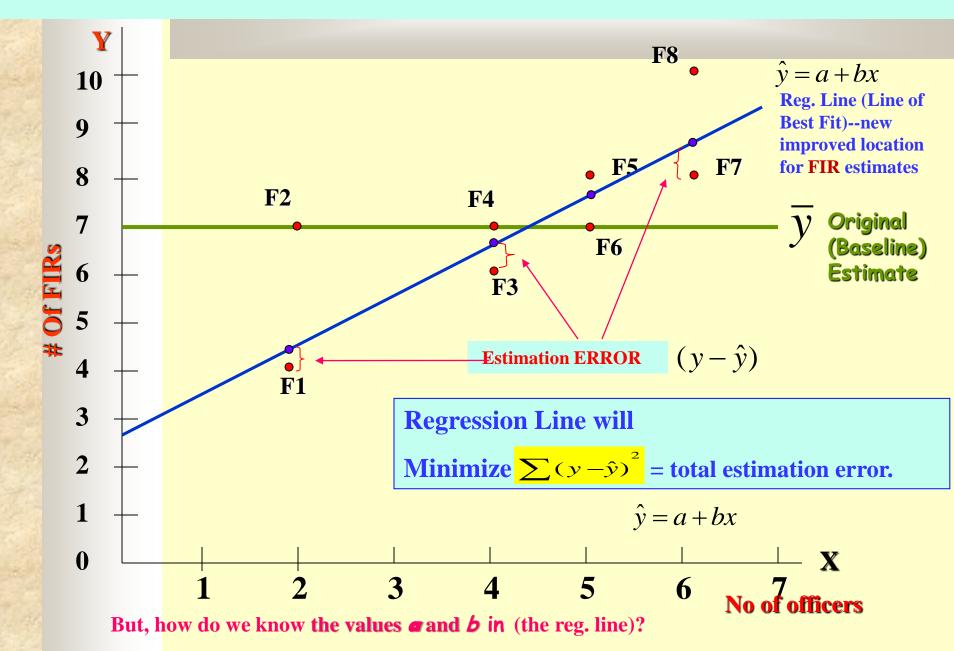
for all Zones (observations) in the sample <u>when using the</u> <u>mean</u>

as th<mark>e estimate.</mark>

- ✓ SST is also the sum of squared deviations from the mean.
  - <u>Remember</u> the formula for computing Variance?
- Objective in Estimation?


Minimize error, maximize precision.


 Can we cut down the amount of estimation error (SST)? How? Yes, we can, by using information about other variables suspected to be strong predictors (strongly related to) # of FIRs possessed by Zones (e.g., FIRs of Dacoity, Rape, Loot etc.).


| i     | У            | X             |
|-------|--------------|---------------|
| Zones | Act ual      | No of         |
|       | Murder# FIRs | FIR # Dacoity |
| 1     | 1698         | 415           |
| 2     | 1055         | 220           |
| 3     | 1317         | 318           |
| 4     | 1095         | 397           |
| 5     | 1518         | 514           |
| 6     | 1881         | 823           |
| 7     | 2176         | 540           |
| 8     | 1021         | 194           |

We now can attempt to <u>estimate</u> Murder # of FIRs <u>from the information on no</u> <u>of Dacoity</u>, rather than from its own mean.

Let's first see this graphically!







# Actual Murders # of FIRs

**EQUATION FOR REGRESSION LINE (LINE OF BEST FIT)**— Values of *a* and *b* for the regression line:

$$\hat{y} = a + bx \quad \left\{ \begin{array}{c} b = \frac{\sum(x - \bar{x})(y - \bar{y})}{\sum(x - \bar{x})^2} \\ a = \bar{y} - b\bar{x} \end{array} \right.$$

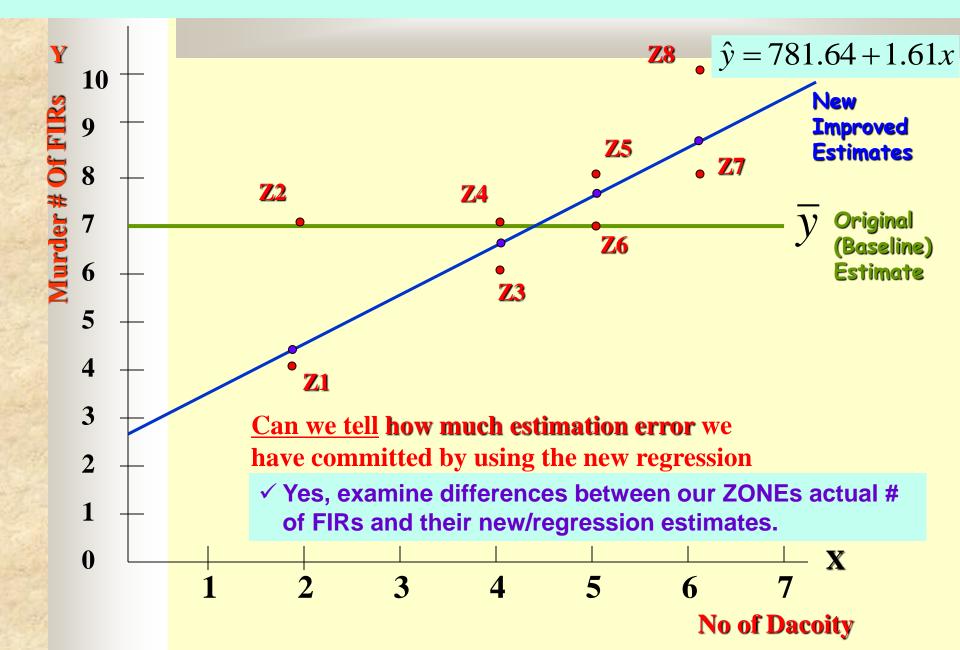
Let's use above formulas to compute the values of "*a*" and "*b*" for the regression line in our example. We will need:  $\overline{y}$ ,  $\overline{x}$ ,  $\Sigma(x-\overline{x})(y-\overline{y})$ , and  $\Sigma(x-\overline{x})^2$ 

We need: 
$$\overline{y}$$
,  $\overline{x}$ ,  $\sum (x-\overline{x})(y-\overline{y})$ , and  $\sum (x-\overline{x})^2$ 

| i                                  | у                         | X                                   |                    |                    |                                            | 2                               |
|------------------------------------|---------------------------|-------------------------------------|--------------------|--------------------|--------------------------------------------|---------------------------------|
| Zones                              | <b>Murder</b>             | No                                  | $x - \overline{x}$ | $y - \overline{y}$ | $(x-\overline{x})(y-\overline{y})$         | $(x-\overline{x})^2$            |
|                                    | Actual #                  | Of                                  |                    |                    |                                            |                                 |
|                                    | FIRs                      | Dacoity                             |                    |                    |                                            |                                 |
| 1                                  | 1 <mark>698</mark>        | 415                                 | ?                  | ?                  | ?                                          | ?                               |
| 2                                  | 1 <mark>055</mark>        | 220                                 | ?                  | ?                  | ?                                          | ?                               |
| 3                                  | 1 <mark>317</mark>        | 318                                 | ?                  | ?                  | ?                                          | ?                               |
| 4                                  | 1 <mark>095</mark>        | 397                                 | ?                  | ?                  | ?                                          | ?                               |
| 5                                  | 1518                      | 514                                 | ?                  | ?                  | ?                                          | ?                               |
| 6                                  | 1881                      | 823                                 | ?                  | ?                  | ?                                          | ?                               |
| 7                                  | <mark>2176</mark>         | 540                                 | ?                  | ?                  | ?                                          | ?                               |
| 8                                  | 1 <mark>021</mark>        | 194                                 | ?                  | ?                  | ?                                          | ?                               |
| $\overline{Y} = \frac{11761}{8} =$ | =147 <mark>0.125 Ā</mark> | $\overline{z} = \frac{3421}{8} = 4$ | 427.625            | Σ                  | $(x - \overline{x})(y - \overline{y}) = ?$ | $\sum (x - \overline{x})^2 = 2$ |

We need:  $\overline{y}$ ,  $\overline{x}$ ,  $\sum (x-\overline{x})(y-\overline{y})$ , and  $\sum (x-\overline{x})^{T}$ 

| i<br>Zones | y<br>Murder<br>Actual #<br>FIRs | No<br>Of<br>Dacoity | $x - \overline{x}$ | $y - \overline{y}$ | $(x-\overline{x})(y-\overline{y})$ | $(x-\overline{x})^2$ |
|------------|---------------------------------|---------------------|--------------------|--------------------|------------------------------------|----------------------|
| 1          | 1 <mark>698</mark>              | 415                 | -12.625            | 227.875            | -2876.921875                       | 159.390625           |
| 2          | 1 <mark>055</mark>              | 220                 | -207.625           | -415.125           | 86190.32813                        | 43108.14063          |
| 3          | 1 <mark>317</mark>              | 318                 | -109.625           | -153.125           | 16786.32813                        | 12017.64063          |
| 4          | 1 <mark>095</mark>              | 397                 | -30.625            | -375.125           | 11488.20313                        | 937.890625           |
| 5          | 1 <mark>518</mark>              | 514                 | 86.375             | 47.875             | 4135.203125                        | 7460.640625          |
| 6          | 1 <mark>881</mark>              | 823                 | 395.375            | 410.875            | 162449.7031                        | 156321.3906          |
| 7          | 2 <mark>176</mark>              | 540                 | 112.375            | 705.875            | 79322.70313                        | 12628.14063          |
| 8          | 1 <mark>021</mark>              | 194                 | -233.625           | -449.125           | 104926.8281                        | 54580.64063          |


 $\overline{Y} = \frac{11761}{8} = 1470.125 \ \overline{x} = \frac{3421}{8} = 427.625 \sum (x - \overline{x})(y - \overline{y}) = 462422.375 \\ \sum (x - \overline{x})^2 = 287213.875$ 

**REGRESSION LINE (LINE OF BEST FIT):** 

$$\hat{y} = a + bx + bx + bx = bx = 1470.125 - 1.61(427.625) = 781.640$$

a =781.64 b = 1.61

$$\hat{y} = 781.64 + 1.61x$$
  
Y-Intercept  $\hat{y}$  Regression Coefficient



ŷ

| $\hat{y} = 781.648 + 1.61x$ |  |
|-----------------------------|--|
|                             |  |

| i<br>Zones | y<br>Murder<br>Actual #<br>FIRs | x<br>No of<br>Dacoity | ŷ<br>Regression<br>Estimate | $y - \hat{y}$<br>Error<br>(Residual) | $(y - \hat{y})^2$<br>Errors<br>Squared |
|------------|---------------------------------|-----------------------|-----------------------------|--------------------------------------|----------------------------------------|
| 1          | 1698                            | 415                   | ?                           | ?                                    | ?                                      |
| 2          | 1055                            | 220                   | ?                           | ?                                    | ?                                      |
| 3          | 1317                            | 318                   | ?                           | ?                                    | ?                                      |
| 4          | 1095                            | 397                   | ?                           | ?                                    | ?                                      |
| 5          | 1518                            | 514                   | ?                           | ?                                    | ?                                      |
| 6          | 1881                            | 823                   | ?                           | ?                                    | ?                                      |
| 7          | 2176                            | 540                   | ?                           | ?                                    | ?                                      |
| 8          | 1021                            | 194                   | ?                           | ?                                    | ?                                      |

 $\sum (y-\hat{y})^2$ 

## Simple and Multiple Regression Analysis $\hat{y} = 781.648 + 1.61x$ $\hat{y} = 781.648 + 1.61(415) = 1449.798$

| Z | i<br>Zones | y<br><b>Murder</b><br>Actual #<br>FIRs | x<br>No of<br>Dacoity | ŷ<br>Regression<br>Estimate | $y - \hat{y}$<br>Error<br>(Residual) | $(y - \hat{y})^2$<br>Errors<br>Squared |  |
|---|------------|----------------------------------------|-----------------------|-----------------------------|--------------------------------------|----------------------------------------|--|
|   | 1          | 1698                                   | 415                   | 1449.798                    | 248.202                              | 61604.23                               |  |
|   | 2          | 1055                                   | 220                   | 1135.848                    | -80.848                              | 6536.39                                |  |
|   | 3          | 1317                                   | 318                   | 1293.628                    | 23.372                               | 546.25                                 |  |
|   | 4          | 1095                                   | 397                   | 1420.818                    | -325.818                             | 106157.37                              |  |
|   | 5          | 1518                                   | 514                   | 1609.188                    | -91.188                              | 8315.25                                |  |
|   | 6          | 1881                                   | 823                   | 2106.678                    | -225.678                             | 50930.56                               |  |
|   | 7          | 2176                                   | 540                   | 1651.048                    | 524.952                              | 275574.60                              |  |
|   | 8          | 1021                                   | 194                   | 1093.988                    | -72.988                              | 5327.25                                |  |

 $514991.9 = \sum (y - \hat{y})^2$ 

**SSE = Sum of Squares Error (SS Residual)** 

Total Baseline Error using the mean (SS Total)1259505New or Remaining Error (SS Error or SS Residual)514991

**QUESTION:** <u>How much</u> of the original estimation error have we <u>explained</u> away (eliminated) by <u>using the regression model</u> (instead of the mean)?

1259505-514991= 744514 (SS Regression or SS Explained)

**QUESTION:** <u>What %</u> of estimation error have we <u>explained</u> (eliminated by using the regression model?

**R<sup>2</sup>** = 744514 / 1259505 = 0.591 or 60% <u>What is this called?</u>

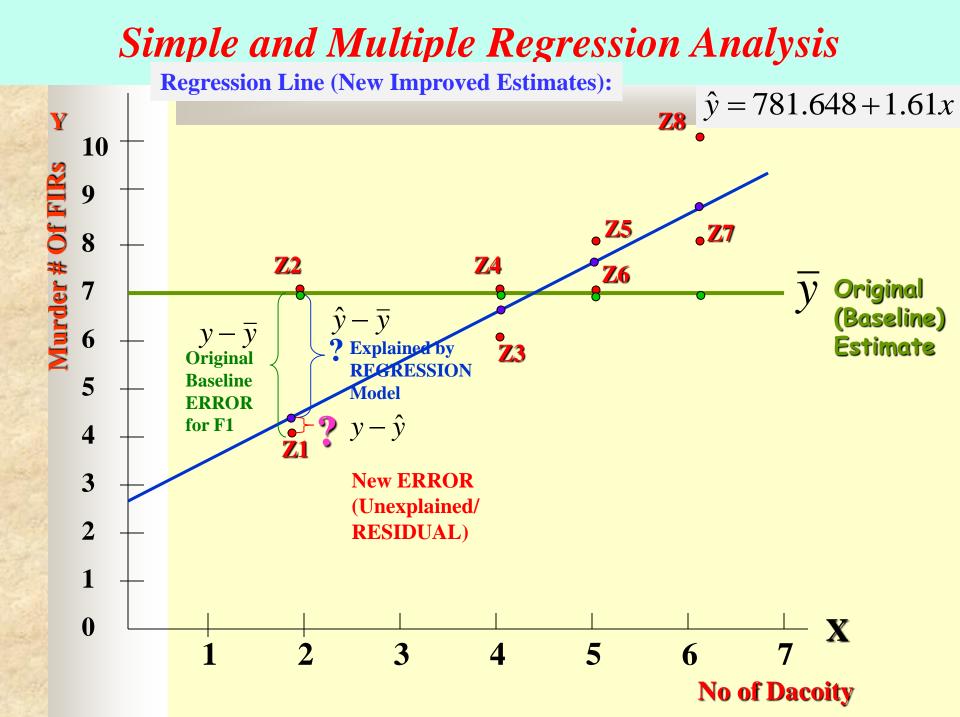
<u>% of differences</u> in # of FIRs among ZONEs that is <u>explained by</u> differences in their <u>No of dacoity.</u>

What does the remaining 40% represent?

Percent of variation (differences) in number of FIRs owned by Zones that can be <u>accounted for by:</u> (a) <u>all other potential predictors</u> not included in the model, beyond No of dacoity, and (b) unexplainable <u>random/chance variations</u>.

**Simple and Multiple Regression Analysis** R<sup>2</sup> = SS Regression / SS Total = 0.591 = 60%

**R<sup>2</sup>** is a measure of our success regarding accuracy of our estimation effort.


- $\checkmark R^2 = \frac{\% \text{ of estimation error that we have been able to explain}}{away}$  by using the regression model, instead of using the mean.
- R<sup>2</sup> indicates <u>how much better we can predict Y</u> from information about Xs, rather than from using its own mean.
- R<sup>2</sup> = % of differences (variations) in Y values that is explained by (attributable to) differences in X values.

Note: When dealing with <u>only two variables</u> (<u>a single X</u> and Y):

$$r = \sqrt{R^2} = \sqrt{0.591} = 0.769$$

Pearson Correlation of Y with X<sub>1</sub> (NOT controlling for any other var.)

Let's now examine all this graphically!



**SSE** = The amount of <u>estimation error</u> for the 8 ZONEs when <u>using simple regression</u> (i.e., a regression model that includes <u>only</u> information about <u>No of Dacoity</u>).

**<u>Can we reduce</u>** the amount of <u>estimation</u> <u>error</u> (SSE) to an even lower level and, thus, improving the estimation process? How?

Yes, by <u>adding information on a second variables</u> suspected to be strongly related to Murder # of FIRs (e.g., No of Rape Cases-X<sub>2</sub>).

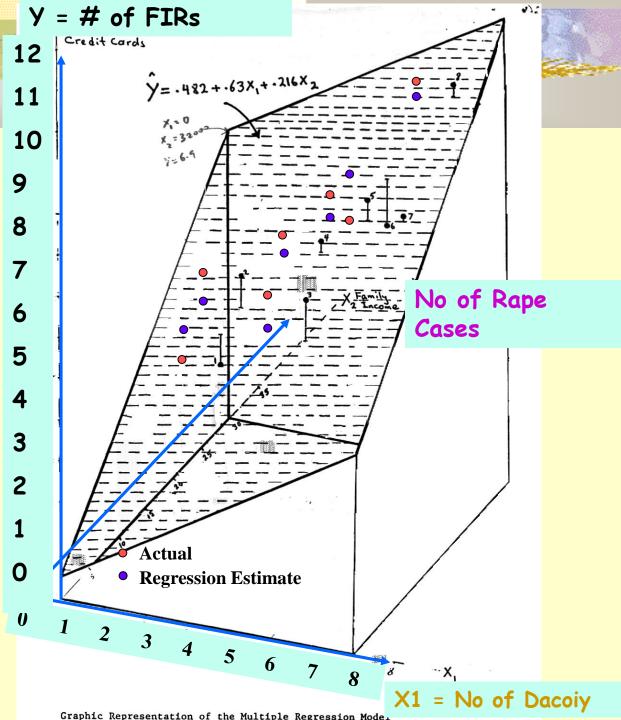
| I<br>ZONEs |   | y <sub>i</sub><br><b>urder</b><br>al # FIRs | <i>X</i> <sub>1</sub><br><b>No of Dacoity</b> | X <sub>2</sub><br>No of Rape Cases |
|------------|---|---------------------------------------------|-----------------------------------------------|------------------------------------|
| 1          | 1 | L698                                        | 415                                           | 2984                               |
| 2          | 1 | L055                                        | 220                                           | 2064                               |
| 3          | 1 | L317                                        | 318                                           | 2144                               |
| 4          | 1 | L095                                        | 397                                           | 4074                               |
| 5          | 1 | L518                                        | 514                                           | 4653                               |
| 6          | 1 | L881                                        | 823                                           | 4374                               |
| 7          | 2 | 2176                                        | 540                                           | 4383                               |
| 8          | 1 | L021                                        | 194                                           | 2340                               |
| 0          |   | 1021                                        | 194                                           | 2340                               |

We now can attempt to <u>estimate</u> Murder # of FIRs <u>from</u> our information on <u>No</u> <u>of Dacoity</u> and No of Rape cases!

Our regression model will now be a <u>linear plane</u>, rather than a straight line!

Generic Equation for a linear plane:  $\hat{y} = a + b_1 x_1 + b_2 x_2$ 

Let's examine the regression plane for our example graphically.


$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

#### Formulas are available for computing values of a, b<sub>1</sub> and b<sub>2</sub>

MULTIPLE REGRESSION MODEL FOR OUR EXAMPLE:

 $\hat{y} = 774.367 + .76x_1 + 0.013x_2$ 

Let's now see how much error in estimation we are committing by using this multiple regression model.



ŵ

 $\hat{y} = 774.367 + .76x_1 + .013x_2$ 

| i<br>PSs | y<br>Actual #<br>FIR | X <sub>1</sub><br>No of<br>Dacoity | $\begin{pmatrix} x_2 \\ \text{No of} \\ \text{Rape} \\ \text{Cases} \end{pmatrix}$ | $\hat{Y}$<br>Regression<br>Estimate | $y - \hat{y}$<br>Error<br>(Residual) | $(y - \hat{y})^2$<br>Errors<br>Squared |
|----------|----------------------|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|
| 1        | 1 <mark>698</mark>   | 415                                | 2984                                                                               | ?⁺                                  | ?                                    | ?                                      |
| 2        | 1 <mark>055</mark>   | 220                                | 2064                                                                               | ?                                   | ?                                    | ?                                      |
| 3        | 1 <mark>317</mark>   | 318                                | 2144                                                                               | ?                                   | ?                                    | ?                                      |
| 4        | 1 <mark>095</mark>   | 397                                | 4074                                                                               | ?                                   | ?                                    | ?                                      |
| 5        | 1 <mark>518</mark>   | 514                                | 4653                                                                               | ?                                   | ?                                    | ?                                      |
| 6        | 1 <mark>881</mark>   | 823                                | 4374                                                                               | ?                                   | ?                                    | ?                                      |
| 7        | 2 <mark>176</mark>   | 540                                | 4383                                                                               | ?                                   | ?                                    | ?                                      |
| 8        | 1 <mark>021</mark>   | 194                                | 2340                                                                               | ?                                   | ?                                    | ?                                      |

 $\sum (y-\hat{y})^2$ 

 $\hat{y} = 774.367 + .76x_1 + .013x_2$   $\hat{y} = 774.367 + .76x_1 + .013x_2$ 

| i<br>Zones | y <sub>i</sub><br>Murder<br>Actual #<br>FIRs | x <sub>1</sub><br>No of<br>Dacoity | X <sub>2</sub><br>No of<br>Rape<br>Cases | Ŷ<br>Regression<br>Estimate | $y - \hat{y}$<br>Error<br>(Residual) | $(y - \hat{y})^2$<br>Errors<br>Squared |
|------------|----------------------------------------------|------------------------------------|------------------------------------------|-----------------------------|--------------------------------------|----------------------------------------|
| 1          | 1 <mark>698</mark>                           | 415                                | 2984                                     | 1089.78                     | 608.22                               | 369931.57                              |
| 2          | 1 <mark>055</mark>                           | 220                                | 2064                                     | 1209.89                     | -154.89                              | 23990.91                               |
| 3          | 1 <mark>317</mark>                           | 318                                | 2144                                     | 1045.22                     | 271.78                               | 73864.37                               |
| 4          | 1 <mark>095</mark>                           | 397                                | 4074                                     | 1129.05                     | -34.05                               | 1159.40                                |
| 5          | 1 <mark>518</mark>                           | 514                                | 4653                                     | 1225.50                     | 292.50                               | 85556.25                               |
| 6          | 1 <mark>881</mark>                           | 823                                | 4374                                     | 1456.71                     | 424.29                               | 184289.90                              |
| 7          | 2 <mark>176</mark>                           | 540                                | 4383                                     | 1241.75                     | 934.25                               | 872823.06                              |
| 8          | 1 <mark>021</mark>                           | 194                                | 2340                                     | 952.23                      | 68.77                                | 4729.31                                |

**SSE = Sum of Squares Error (Residual)** 

→**1**616344.77 =  $\sum (y - \hat{y})^2$ 

Unique (additional) contribution of  $X_2$  (No of Rape cases) beyond  $X_1 = ?$ 

### The MULTIPLE REGRESSION MODEL FOR OUR EXAMPLE: $\hat{y} = 774.367 + 0.76x_1 + 0.013x_2$

### **Y-Intercept**, "*a*"

(NOTE: Only when all Xs can meaningfully take on value of zero, the intercept will have a meaningful/direct/ practical interpretation. Otherwise, it is simply an aid in increasing accuracy of estimation.

#### $\boldsymbol{b}_1$ and $\boldsymbol{b}_2$ = Regression Coefficients

0.76: <u>Among ZONEs</u>, an increase in number of Dacoity by one would, on average, result in .76 more Murde FIRs

0.013: <u>Among ZONEs</u>, number of Rape cases increase by 1, results in an <u>average increase</u> of 0.013 Rape FIRs.

*"b"s* represent <u>effect of each X</u> on Y <u>when all other Xs are</u> <u>controlled for/held constant/taken into account</u>

• i.e., after impacts of all other variables are accounted for (remember the high blood pressure-hearing problem connection?)

#### The MULTIPLE REGRESSION MODEL FOR OUR EXAMPLE:

### $\hat{y} = 774.367 + 0.76x_1 + 0.013x_2$ what is our new R<sup>2</sup>?

### $R^2 = 0.64 \text{ or } 64\%$

#### The Remaining 36%? →

Percent of differences in ZONEs' number of Murder FIRs that is explained by differences in No of Dacoity and number of Rape cases FIRs

Percent of variation in number of FIRs that can be accounted for by (a) <u>all other</u> <u>relevant factors</u> not included in the model, beyond No of Dacoity and Rape cases FIRs and (b) <u>unexplainable</u> <u>random/chance</u> variations.

| I<br>ZONE<br>s | y <sub>i</sub><br>Murder<br>Actual #<br>FIRs | X <sub>1</sub><br>No of<br>Dacoity | X <sub>2</sub><br>No of Rape<br>Cases | X <sub>3</sub><br>No of Loot<br>Cases |
|----------------|----------------------------------------------|------------------------------------|---------------------------------------|---------------------------------------|
| 1              | 1 <mark>698</mark>                           | 415                                | 2984                                  | 3379                                  |
| 2              | 1 <mark>055</mark>                           | 220                                | 2064                                  | 2512                                  |
| 3              | 1 <mark>317</mark>                           | 318                                | 2144                                  | 2371                                  |
| 4              | 1 <mark>095</mark>                           | 397                                | 4074                                  | 2878                                  |
| 5              | 1 <mark>518</mark>                           | 514                                | 4653                                  | 3167                                  |
| 6              | 1 <mark>881</mark>                           | 823                                | 4374                                  | 5397                                  |
| 7              | 2 <mark>176</mark>                           | 540                                | 4383                                  | 5121                                  |
| 8              | 1 <mark>021</mark>                           | 194                                | 2340                                  | 3052                                  |

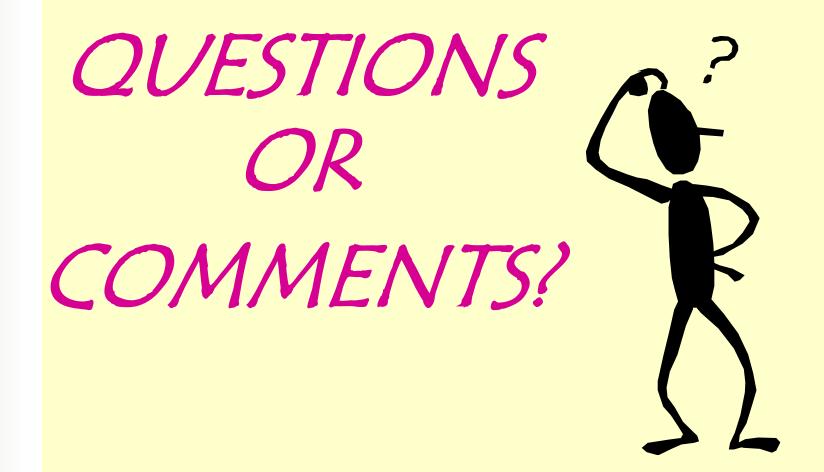
We now can attempt to <u>estimate</u> Murder # of FIRs <u>from</u> our information on <u>No</u> of Dacoity , No of Rape cases and no of Loots!

Our regression model will now be a <u>4D figure</u> rather than a straight line!

Generic Equation for a linear plane:

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + b_3 x_3$$

#### The MULTIPLE REGRESSION MODEL FOR OUR EXAMPLE:


### $\hat{y} = 392.195 + 0.17x_1 + 0.023x_2 + 0.694x_3$

### what is our new $R^2$ ? $R^2 = 0.749 \text{ or } 75\%$

#### The Remaining 25%? →

Percent of differences in ZONEs' number of Murder FIRs that is explained by differences in No of Dacoity, number of Rape cases FIRs and no of FIRs in Loot.....

Percent of variation in number of FIRs that can be accounted for by (a) <u>all other</u> <u>relevant factors</u> not included in the model, beyond No of Dacoity and Rape cases FIRs and (b) <u>unexplainable</u> <u>random/chance</u> variations.



# Thank You