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Relation between ML and Integration

Statistical 

Concepts/Techniques

Concepts in Integration Theory

Probability measures An Integral of some non-negative 

function w.r.t. a particular 

measure

Probability of an event Evaluation of the integral over that 

event

Mean, Moments, Variance, - -- Integration of a rv/ positive power 

of a rv,a deviated rv w.r.t. 

appropriate probability measure

Lp space
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Relation between ML and Integration

Statistical 

Concepts/Techniques

Concepts in Integration Theory

Covariance, Correlation Integration of product of two 

deviated rvs/ two standardized rvs 

w.r.t. appropriate probability 

measure

Distributional Convergence

In Stochastic Process --

Integral  seen as a linear functional on 

the set of Probability measures

( ) ( )  ( ),  

< ,  is a met ric space

n

n
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Probability Theory

(Convergence, Limit, Cont., Integration and 

Diff.)

.                                                                       

.Theory of Statistics (Sampling Distribution 

and Inference)

MEASURE THEORY HELPS STATISTICS IN TWO WAYS

Real Analysis And  

Complex Analysis

Analysis and Statistics
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R R

f,a function

What is Integration?

S

The product as well as the series should be defined





 Δif Δix

The series should be convergent
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R2 R/R2

f,a  function

What is Integration?

Integration is nothng but infinite sum of infinitesimal quantities
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Rn R

f,a  function

Integration is nothng but infinite sum of infinitesimal quantities

Whenever we want to measure overall characteristic of 

something complicated we need some type of integration.

What is Integration?
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Ω, any set R

f,a  function

Integration =Integrate+ion

What is Integration?

How long will the patient survive?

What percent of people earn more than 50,000 Tk permonth?
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Ω

B,

B-space

f,a  function

What is Integration?

Bochner Integral
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Folland (1984) summarized the difference between the Riemann and 

Lebesgue approaches thus:

Lebesgue versus Riemann

"to compute the Riemann integral of f, one partitions the domain [a, b] into 

subintervals", while in the Lebesgue integral, "one is in effect partitioning the 

range of f".
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A little perspective:

Riemann did this...

...

Lebesgue versus Riemann
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A little perspective:

Lebesgue did this...

Lebesgue versus Riemann
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A little perspective:

Lebesgue did this...

Why is this better????

Lebesgue versus Riemann
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Consider the function:






rationalsat 0

sirrationalat 1
f

If we follow Lebesgue’s reasoning, 

then the integral of this function 

over the set [0,1] should be:

(Height) x (width of irrationals)

= 1 x (measure of irrationals)

Height

Width of Irrationals

If we can “measure” the size of super level sets, we can integrate a lot of 

function!

Lebesgue versus Riemann
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Measure Theory begins from this simple motivation.

If you remember a couple of simple principles, measure and integration 

theory becomes quite intuitive.  

The first principle is this...

Integration is about functions.  Measure theory is about sets.  The 

connection between functions and sets is super/sub-level sets.

Lebesgue versus Riemann
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Lebesgue versus Riemann

Let f be a  bounded function on [a,b]:

f is Riemann integrable on [a,b] if and only the set of discontinuities of f has 

Lebesgue measure 0

If  f is Riemann integrable on [a,b] , f is Lebesgue integrable on [a,b] . 

Two are equal.
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Lebesgue versus Riemann

In case of improper integrals

Their does not exist any clear-cut relationship.

Caution:The type is very important.

f may be not Lebesgue integrable despite its Riemann integrability  

The same is true if types of integration change their places

For examples, see “ Lebesgue Measure and Intgration” by Jain and Gupta 

(1987), pp 165-167.
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Measure theory is about measuring the size of things.

In math we measure the size of sets.

Set A

How big is the set A?

s-Algebras??
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“Size” should have the following property:
The size of the union of disjoint sets should equal the sum of the 

sizes of the individual sets. 

Makes sense.... but there is a problem with this...

Consider the interval [0,1].  It is the disjoint union of all real numbers 

between 0 and 1.  Therefore, according to above, the size of [0,1] 

should be the sum of the sizes of a single real number.    

If the size of a singleton is 0 then the size of [0,1] is 0.

If the size of a singleton is non-zero, then the size of [0,1] is infinity!

This shows we have to be a bit more careful.  

s-Algebras??
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Sigma Algebras (s-algebra)

Consider a set . 

Let F be a collection of subsets of .

F is a s-algebra if: An algebra of sets is 

closed under finite set 

operations.  A s-

algebra is closed 

under countable set 

operations.  In 

mathematics, s often 

refers to “countable”.  

F1)

FAFA C 2)

FAAFAA  2121,3)

FAFAAA
i

i 





1

321 ,...,,4)
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General Measurable Functions I

f:   Ω1 Ω2

Ω1 and Ω2 are endowed with σ algebras F1 and F2 respectively.

Let us take any B in F2 and take inverse of B, f-1{B}. Since B, subset of Ω2 , f-1{B} 

is a subset Ω1..

If f-1{B} belong to F1 for all B in F2 , f is called measurable  w.r. t. F1 and F2
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General Measurable Functions II

f:   Ω1 Ω2

In applications Ω2 is a metric space and F2 ,, Borel σ-algebra , the σ-algebra  

generated by open sets.

How can we test measurability of a f?

The theorem that helps: f-1(σ(S))=σ(f-1(S))

1

1
 If ( )f S F 

That implies f  is F1 -F2 measurable.
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Algebras are what we need for super/sub-level sets of a vector space of 

indicator functions.  

Superlevel Sets  

21 AA 

21 AA 

1A

1
1A

2A

2
1A

2A1A

21
11 21 AA  
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2A1A
Superlevel Sets  

21 AA 

21 AA 
21

11 21 AA  

salgebras let us take limits of these.  That is more interesting!!

Simple Functions

Simple functions are finite linear combinations of of indicator functions.




n

i

Ai i

1

1



27

Measurable Functions

Given a Measurable Space (,F)

We say that a function:                         is measurable with respect to F if:

:f
)(fy 

Fyf  })({1  

This simply says that a function is measurable with respect to the s-

algebra if all its superlevel sets are in the s-algebra.

Hence, a measurable function is one that when we slice it like Lebesgue, 

we can measure the “width” of the part of the function above the slice.  

Simple...right?
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Another equivalent way to think of measurable functions is as the pointwise 

limit of simple functions.  

In fact, if a measurable function is non-negative, we can say it is the 

increasing pointwise limit of simple functions.    

This is simply going back to Lebesgue’s picture...   
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Intuition behind measurable functions. 

They are “constant on the sets in the sigma algebra.” 

[0,1) 

)}1,[),,0[),1,0[,{
2
1

2
1F

What do measurable functions look like?

12
1012

10 12
10

Yes Yes No

Intuitively speaking, Measurable functions are constant on the sets in 

the s-alg.
More accurately, they are limits of functions that are constant on the 

sets in the s-algebra.  The s in s-algebra gives us this.
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“Information” and s-Algebras.

12
10

Since measurable functions are “constant” on the s-algebra, if I am trying to 

determine information from a measurable function, the s-algebra 

determines the information that I can obtain.  

I measure )(fy  What is the most information that I 

determine about ? 

s-algebras determine the amount of information possible in a function.

The best possible I can do is to say that A FAwith
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Measures and Integration

A measurable space (,F) defines the sets can be measured.

Now we actually have to measure them...

What are the properties that “size” should satisfy.  

If you think about it long enough, there are really only two...
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Definition of a measure:
Given a Measurable Space (,F),

A measure is a function
F:

satisfying two properties:

0)( 1)











11

)()(
i

i

i

i AA  

disjoint are ,...,, If 321 AAA2)

(2) is known as “countable additivity”.  However,  it can be interpreted 

as  “linearity and left continuity for sets”.
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Different Measures

Infinite different measures are available on a sample space

Counting measure: Let μ (A)= n if A contains n number of elements, ∞ 

otherwise.

Discrete measure: Let Ω={x1, x2, -- - ,xn,-,- } .

1

1, 0,

( )

i i

i

i

x x
i

x
x A

p p i

A p







  






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Different Measures

Lebesgue measure ) : There is a unique measure m  on  ( R ,B )  that satisfies            

m ( [a , b] ) = b - a

for every finite interval  [a , b] , . This is called the Lebesgue measure . If we 

restrict  m  to measurable  space  ( [0 , 1] , B) , then m  is a  probability measure

Lebesgue –Stieltjes measure ) :Let F be a non-decreasing and right-

continuous function from from R to R.There is a unique measure m  on  ( R ,B

)  that satisfies            

m ( [a , b] ) = F(b) – F(a) … … … … …                                                                                         

for every finite interval  [a , b] . This is called the Lebesgue-Stieltjes measure . 

If we take bounded  F, then m  is a  probability measure 
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Measure-Probability Measure-Cumulative 

Distribution Function

Bounded measure Probability 

measure

Cumulative 

Distribution 

Function
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F(x)=Pr{X<=x}

Point function Vs  Set Function

Point 

Function
Set 

Function

What is the relation between them??
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F(x)||f(x), p(x)

Cumulative Distribution Function 

Vs  Probability Function

Directly 

Related to

measure

No easy

connection 

with

measure 

What is the relation between them??
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Continuity of Functions

f: <S1,d1>                   <S2,d2>

is continuous at s in S1.              

For all sn s                                f(sn)          f(s)

it is
 tru

e
 in
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 g
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Fundamental properties of measures (or “size”):

Left Continuity: This is a trivial consequence of the definition!

Right Continuity:  Depends on boundedness!

(Here is why we need boundedness. Consider                    then           )),[  iAi
A

Let AAi  )()(lim AAi  then

Let AAi 

)()(lim AAi  

and for some i )( iA

then
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Continuity –above-

property of Measure

Let
AAi  )()(lim AAi  then

A
=

A
1 U

(A
2 -A

1 )U
------(A

n -A
n
-1 )-------

μ
(A

)=
 μ

(A
1 )+

 μ
(A

2
 )-

μ
(A

1 )+
------+

 μ
(A

n
 0 -

μ

(A
n

-1 )-------
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Induced Measures by Measurable 

Functions
f:   Ω1 Ω2

Ω1 and Ω2 are endowed with σ algebras F1 and F2 respectively.

Let us take any B in F2 and take inverse of B, f-1{B}. Since B, subset of Ω2 , f-1{B} 

is a subset Ω1..

If f-1{B} belong to F1 for all B in F2 , f is called measurable  w.r. t. F1 and F2
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Any Measurable Function

Induces  a Measure on Its Measurable 

Codomain

 But How?

The domain should be a measure space with  a measure. Let μ be the measure 

on the domain

m(B)=μ(f-1(B)) for all B in B . The definition is possible since f-1{B} belong to A.. M 

is written as μ▫f-1.

<Ω, A,μ>
f(A)

<S,B>

f-1(B)
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Now we can define the integral.  





n

i

ii Ad
1

)(

Since positive measurable functions can be written as the increasing 

pointwise limit of simple functions, we define the integral as




 


dfd
f

sup


   dfdffd

Simple Functions: 



n

i

Ai i

1

1

Positive Functions:

For a general measurable function write   fff
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This picture says everything!!!!

A

f

This is a set! and 

the integral is 

measuring the 

“size” of this set!

Integrals are like 

measures!  They 

measure the size 

of a set.  We just 

describe that set 

by a function.

Therefore, 

integrals should 

satisfy the 

properties of 

measures.


A

fdHow should I think about
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Measures and integrals are different 

descriptions of of the same concept.  Namely, 

“size”.    
Therefore, they should satisfy the same 

properties!!

This leads us to another important principle...

Lebesgue defined the integral so that this would 

be true!
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Left Continuous Left Continuous

Bdd Right Cont. Bdd Right Cont.

etc...

Measures are: Integrals are:

AAi  )()(lim AAi   ffi     fddfilim

AAi  )( iA

)()(lim AAi  

and ffi 

   fddfilim

 dfi
and



(Monotone Convergence Thm.)

(Bounded Convergence Thm.)

etc...

(Fatou’s Lemma, etc...)
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The Lp Spaces

A function is in Lp(,F,) if  df p||

The Lp spaces are Banach Spaces with norm:

  p
p

p
dff

/1

|| 

L2 is a Hilbert Space with inner product:

 fgdgf ,

1 p  
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Examples of Normed spaces
Lp spaces

 Lp={f:<X, A, μ>→C| (∫|f|pd μ)1/p <∞ , 1<=p<∞} 

with ||f||= (∫|f|pd μ)1/pis a Banach space if we consider f=g 

a.e. are equal. For counting measure the condition is not 

needed, 

C(X) is dense in it  if X=Rk, A=B(Rk) and μ=Lebesgue

Stieltjes measure.

 0<p<1 it is a Fréchet soace

 For p=∞, if define ||f||∞=ess sup|f| <∞ and ess sup g=inf{c 

: μ{ω:g(ω)> c}=0}, under this norm the space is Banach

 R
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Examples of Normed spaces
Lp spaces (Cont.)

 The space is very  very large.

 The space is not only important for Kernel methods  

but also for the development  of Fucntional Analysis as 

well as Foundation of Theory of Statistics

When X is finite, μ, the counting measure and p=2, 

we have our well-known, Rk
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Checking of Existence of Mean of Cauchy Distribution:

Let X be a standard Cauchy variate with probability density 

function,



 x

x
xf ;

)1(

1
)(

2

Since X be a continuous random variable, therefore by 

definition of  mean,

 ;)()( dxxxfXE Provided that the integration exists.

Here we use two way of  integral to determine the above 

integration, they are;

(i) Lebesgue Integral

(ii)Riemann Integral



52

Checking of Existence of Mean of Cauchy Distribution:

Lebesgue Integral Way

2

2 2

0

_

2 2

0

1
( )

1

1 1 1

1 1

1 1 1

1 1

x
xf x dx dx

x

x dx x dx
x x

x dx x dx
x x







 

 

 

 

 










 
  

  
 

  
  

 

 

 

Now,



2 2

0 1

2

[1, )
, 1

1 1

1
n n

x x
dx dx

x x
x

dx
x

 

 
 


 




 



put

dzxdx

zx





2

1 2

x n+1 1+(n+1)2

z n 1+n2 
2

2

1 ( 1)

11

2

2
1

1
log

2
1 1 ( 1)

log
2 1

n

xn

n

z

n

n

  







 
 

 







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Checking of Existence of Mean of Cauchy Distribution:

Since 
2

2

2

2

21

)1(1
log

1

)1(1
log

n

n

n

n










And

)(

1

2

1

1

)1(1
loglim

0

2

2

2

XE

dx
x

x

n

n

n
















does not exist

does not exist

Therefore mean of  the Cauchy distribution does not exist
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Checking of Existence of Mean of Cauchy Distribution:

Riemann Integral Way

Method (i):

We know that,

 
2

2

2

2

1

1 4

2

2

But lim
1

1
lim log

2
1 1

lim log
2 1 4

1

2
( )

a

a
a

a

a a

a

x
dx

x

z

a

a

E X






 





 
 












does not exist.

Since         is an odd function21 x

x

2
lim 0;

1

a

a
a

x
dx

x






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Checking of Existence of Mean of Cauchy Distribution:

Riemann Integral Way

Method (ii):

2

0 1

( )

x
dx

x

E X









does not exist by 

quotient test

does not exist

Therefore, mean of  the Cauchy distribution does not exist.

2 2
2

2 2

1 lim 1 0
1 1 1x

x
x xx

x x

x



    
 
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Measure-Probability Measure-Cumulative 

Distribution Function

Bounded measure Probability 

measure

Cumulative 

Distribution 

Function
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Broad Categories of   

Probability Measures

Probability 

Measures

Discrete P(A)=1, 

#(A)=finite or

Continuous

P{x}=0 for all x

Absolutely Continous w.r.t. 

Lebesgue measure
Non A.C.



O
n

 E
u

c
lid

e
a
n

 s
a
m

p
le

 

s
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A random variable is a measurable function.

)(X

The expectation of a random variable is its integral:

 XdPXE )(

A density function is the Radon-Nikodym derivative wrt Lebesgue 

measure:

dx

dP
fX  





 dxxxfXdPXE X )()(

Expectation

=∑xipi

Counting measure p=dP/dμ
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Expectation

Change of variables. Let f  be measurable from (Ω, F , v) to (Λ,ζ) and 

g be Borel on (Λ,ζ). Then

i.e. , if either integral exists, then so does the other, and the two are the 

same.

Note that integration domains are indicated on both sides of 1. This 

result extends the change of variable formula for Reimann 

integrals, i.e. ,

(1)
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In statistics we will talk about expectations with respect to different 

measures.

P  XdPXEP )(

Q  XdQXEQ )(

)()(  XEdQXdQ
dQ

dP
XXdPXE QP  

where 
dQ

dP
or dQdP 

And write expectations in terms of the different measures:

Expectation






































































