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MODULE-I 
 

What is TOC? 

In theoretical computer science, the theory of computation is the branch that deals with 

whether and how efficiently problems can be solved on a model of computation, using an 

algorithm. The field is divided into three major branches: automata theory, computability theory 

and computational complexity theory. 

In order to perform a rigorous study of computation, computer scientists work with a 

mathematical abstraction of computers called a model of computation. There are several models 

in use, but the most commonly examined is the Turing machine. 

Automata theory 

In theoretical computer science, automata theory is the study of abstract machines (or more 

appropriately, abstract 'mathematical' machines or systems) and the computational problems that 

can be solved using these machines. These abstract machines are called automata. 

This automaton consists of 

 states (represented in the figure by circles), 

 and transitions (represented by arrows). 

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, 

according to its transition function (which takes the current state and the recent symbol as its 

inputs). 

Uses of Automata: compiler design and parsing. 

 

Introduction to formal proof: 

Basic Symbols used : 

U – Union 
∩- Conjunction 

ϵ - Empty String 

Φ – NULL set 

7- negation 

‘ – compliment 

= > implies 



Additive inverse: a+(-a)=0 

Multiplicative inverse: a*1/a=1 

Universal set U={1,2,3,4,5} 

Subset A={1,3} 

A’ ={2,4,5} 

Absorption law: AU(A ∩B) = A, A∩(AUB) = A 

 

De Morgan’s Law: 

(AUB)’ =A’ ∩ B’ 
(A∩B)’ = A’ U B’ 

Double compliment 

(A’)’ =A 

A ∩ A’ = Φ 

 

Logic relations: 

a € b = > 7a U b 
7(a∩b)=7a U 7b 

 

Relations: 

Let a and b be two sets a relation R contains aXb. 

Relations used in TOC: 

Reflexive: a = a 

Symmetric: aRb = > bRa 

Transition: aRb, bRc = > aRc 

If a given relation is reflexive, symmentric and transitive then the relation is called equivalence 

relation. 

 

Deductive proof: Consists of sequence of statements whose truth lead us from some initial 

statement called the hypothesis or the give statement to a conclusion statement. 

 
 

Additional forms of proof: 

Proof of sets 
Proof by contradiction 

Proof by counter example 

 

Direct proof (AKA) Constructive proof: 

If p is true then q is true 
Eg: if a and b are odd numbers then product is also an odd number. 

Odd number can be represented as 2n+1 

a=2x+1, b=2y+1 

product of a X b = (2x+1) X (2y+1) 

= 2(2xy+x+y)+1 = 2z+1 (odd number) 



 

 

Proof by contrapositive: 
 

 



 
 

Proof by Contradiction: 

 

H and not C implies falsehood. 
 

 

Be regarded as an observation than a theorem. 
 

 

For any sets a,b,c if a∩b = Φ and c is a subset of b the prove that a∩c =Φ 

Given : a∩b=Φ and c subset b 

Assume: a∩c Φ 

Then 

= > a∩b Φ = > a∩c=Φ(i.e., the assumption is wrong) 



Proof by mathematical Induction: 
 

 

Languages : 
 

The languages we consider for our discussion is an abstraction of natural languages. That is, 

our focus here is on formal languages that need precise and formal definitions. Programming 

languages belong to this category. 

 

Symbols : 
 

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the atoms 

of the world of languages. A symbol is any single object such as , a, 0, 1, #, 

begin, or do. 

 

Alphabets : 
 

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally denoted 

by . When more than one alphabets are considered for discussion, then 

subscripts may be used (e.g.  etc) or sometimes other symbol like G may also be 

introduced. 

 
 
 
 

 
Example : 

 

Strings or Words over Alphabet : 

 
A string or word over an alphabet         is a finite sequence of concatenated symbols of . 



Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } . 

aab, abcb, b, cc are four strings over the alphabet { a, b, c }. 

It is not the case that a string over some alphabet should contain all the symbols from the alpha- 

bet. For example, the string cc over the alphabet { a, b, c } does not contain the symbols a and b. 

Hence, it is true that a string over an alphabet is also a string over any superset of that alphabet. 

 

Length of a string : 

The number of symbols in a string w is called its length, denoted by |w|. 

 

Example : | 011 | = 4, |11| = 2, | b | = 1 

 

Convention : We will use small case letters towards the beginning of the English alphabet 

to denote symbols of an alphabet and small case letters towards the end to 

denote strings over an alphabet. That is, 

(symbols) and 

are strings. 
 

Some String Operations : 

Let and be two strings. The concatenation of x and y 

denoted by xy, is the string . That is, the concatenation of x and y 

denoted by xy is the string that has a copy of x followed by a copy of y without any intervening 

space between them. 

 

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and 

substrings of this string are listed below. 

 

Prefixes: ε, 0, 01, 011. 

Suffixes: ε, 1, 11, 011. 

Substrings: ε, 0, 1, 01, 11, 011. 

 

Note that x is a prefix (suffix or substring) to x, for any string x and ε is a prefix (suffix or 

substring) to any string. 

 
A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x ≠ y. 

In the above example, all prefixes except 011 are proper prefixes. 

Powers of Strings : For any string x and integer , we use to denote the string 
formed by sequentially concatenating n copies of x. We can also give an inductive 

definition of as follows: 

= e, if n = 0 ; otherwise 



Example : If x = 011, then = 011011011, = 011 and 
 

Powers of Alphabets : 

We write (for some integer k) to denote the set of strings of length k with symbols 

from . In other words, 

= { w | w is a string over and  | w | = k}. Hence, for any alphabet, denotes the set 

of all strings of length zero. That is, = { e }. For the binary alphabet { 0, 1 } we have 

the following. 

 
The  set  of  all  strings  over an alphabet is denoted by . That is, 

 

 
 

The set contains all the strings that can be generated by iteratively concatenating sym- 

bols from  any number of times. 

 
Example : If = { a, b }, then = { ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}. 

 
Please note that if , then that is . It may look odd that one can proceed 

from the empty set to a non-empty set by iterated concatenation. But there is a reason for this 

and we accept this convention 

 
The set of all nonempty strings over an alphabet is denoted by . That is, 

 

 
Note that is infinite. It contains no infinite strings but strings of arbitrary lengths. 

 
Reversal : 

For any string the reversal of the string is . 

 

An inductive definition of reversal can be given as follows: 



Languages : 

A  language  over  an  alphabet  is  a  set  of strings over  that alphabet. Therefore, a 

language L is any subset of . That is, any is a language. 

Example : 
 

1. F is the empty language. 

2. is a language for any . 

3. {e} is a language for any . Note that, . Because the language F does not 

contain any string but {e} contains one string of length zero. 

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's. 

5. The set of all strings over {a, b, c} that starts with a. 

 

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to 

denote languages. 

 

Set operations on languages : Since languages are set of strings we can apply set operations to 

languages. Here are some simple examples (though there is nothing new in it). 

 

Union : A string 

     iff or 
 

Example :  { 0, 11, 01, 011 } { 1, 01, 110 } = { 0, 11, 01, 011, 111 } 
 

Intersection : A string, xϵ L1 ∩ L2 iff x ϵ L1 and x ϵ L2 . 

 

Example : { 0, 11, 01, 011 } { 1, 01, 110 } = { 01 } 

 
Complement : Usually, is the universe that a complement is taken with respect to. 

Thus for a language L, the complement is  L(bar) = { | }. 

 
Example : Let L = { x | |x| is even }. Then its complement is the language { | |x| is 
odd }. 

Similarly we can define other usual set operations on languages like relative com- 

plement, symmetric difference, etc. 

 

Reversal of a language : 

The reversal of a language L, denoted as , is defined as: . 

 
Example : 

 
1.   Let L = { 0, 11, 01, 011 }. Then = { 0, 11, 10, 110 }. 



2.   Let L = { | n is an integer }. Then =  { | n is an integer }. 

 
Language concatenation : The concatenation of languages  and is defined as 

= { xy | and }. 

 

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }. 
 

Note that , 

1. in general. 

2. 

3. 

 

Iterated concatenation of languages : Since we can concatenate two languages, we also repeat 

this to concatenate any number of languages. Or we can concatenate a language with itself any 

number of times. The operation denotes the concatenation of 

L with itself n times. This is defined formally as follows: 

 

 

 

 
Example : Let L = { a, ab }. Then according to the definition, we have 

 

 
and so on. 

 

 
Kleene's Star operation :  The Kleene star operation on a language L, denoted as is 

defined as follows : 

 
= ( Union n in N ) 

 
= 

 

= { x | x is the concatenation of zero or more strings from L } 



 
Thus is the set of all strings derivable by any number of concatenations of strings in 
L. It is also useful to define 

 
= , i.e., all strings derivable by one or more concatenations of strings in L. That is 

 
= (Union n in N and n >0) 

= 
 

Example : Let L = { a, ab }. Then we have, 
 

= 
 

= {e} {a, ab} {aa, aab, aba, abab} … 
 

= 
 

= {a, ab} {aa, aab, aba, abab} … 
 

Note :  ε is in , for every language L, including . 

 
The previously introduced definition of is an instance of Kleene star. 

 

 

 

(Generates) (Recognizes) 
Grammar Language Automata 

 

Automata: A algorithm or program that automatically recognizes if a particular string belongs to 

the language or not, by checking the grammar of the string. 

 

An automata is an abstract computing device (or machine). There are different varities of such 

abstract machines (also called models of computation) which can be defined mathematically. 

 
Every Automaton fulfills the three basic requirements. 

 

• Every automaton consists of some essential features as in real computers. It has a mech- 

anism for reading input. The input is assumed to be a sequence of symbols over a given 

alphabet and is placed on an input tape(or written on an input file). The simpler automata 

can only read the input one symbol at a time from left to right but not change. Powerful 

versions can both read (from left to right or right to left) and change the input. 



 The automaton can produce output of some form. If the output in response to an input 

string is binary (say, accept or reject), then it is called an accepter. If it produces an out- 

put sequence in response to an input sequence, then it is called a transducer(or automaton 

with output). 

• The automaton may have a temporary storage, consisting of an unlimited number of 

cells, each capable of holding a symbol from an alphabet ( whcih may be different from 

the input alphabet). The automaton can both read and change the contents of the storage 

cells in the temporary storage. The accusing capability of this storage varies depending 

on the type of the storage. 

• The most important feature of the automaton is its control unit, which can be in any 

one of a finite number of interval states at any point. It can change state in some de- 

fined manner determined by a transition function. 

 

 
Figure 1: The figure above shows a diagrammatic representation of a generic automa- 

tion. 

 

Operation of the automation is defined as follows. 

At any point of time the automaton is in some integral state and is reading a particular symbol 

from the input tape by using the mechanism for reading input. In the next time step the automa- 

ton then moves to some other integral (or remain in the same state) as defined by the transition 

function. The transition function is based on the current state, input symbol read, and the content 

of the temporary storage. At the same time the content of the storage may be changed and the 

input read may be modifed. The automation may also produce some output during this transition. 

The internal state, input and the content of storage at any point defines the configuration of the 

automaton at that point. The transition from one configuration to the next ( as defined by the 

transition function) is called a move. Finite state machine or Finite Automation is the simplest 

type of abstract machine we consider. Any system that is at any point of time in one of a finite 

number of interval state and moves among these states in a defined manner in response to some 

input, can be modeled by a finite automaton. It doesnot have any temporary storage and hence a 

restricted model of computation. 



Finite Automata 

 

Automata (singular : automation) are a particularly simple, but useful, model of compu- 

tation. They were initially proposed as a simple model for the behavior of neurons. 

 

States, Transitions and Finite-State Transition System : 

 
 

Let us first give some intuitive idea about a state of a system and state transitions before 

describing finite automata. 

 

Informally, a state of a system is an instantaneous description of that system which gives all 

relevant information necessary to determine how the system can evolve from that point on. 

 

Transitions are changes of states that can occur spontaneously or in response to inputs to the 

states. Though transitions usually take time, we assume that state transitions are instantaneous 

(which is an abstraction). 

Some examples of state transition systems are: digital systems, vending machines, etc. A system 

containing only a finite number of states and transitions among them is called 

a finite-state transition system. 

 

Finite-state transition systems can be modeled abstractly by a mathematical model called 

finite automation 

 

Deterministic Finite (-state) Automata 

 

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an in- 

put string -- one symbol at a time -- and then, after the input has been completely read, decides 

whether to accept or reject the input. As the symbols are read from the tape, the automaton can 

change its state, to reflect how it reacts to what it has seen so far. A machine for which a deter- 

ministic code can be formulated, and if there is only one unique way to formulate the code, then 

the machine is called deterministic finite automata. 

 

Thus, a DFA conceptually consists of 3 parts: 

 

 
 

1. A tape to hold the input string. The tape is divided into a finite number of cells. Each 

cell holds a symbol from . 
2. A tape head for reading symbols from the tape 
3. A control , which itself consists of 3 things: 

o finite number of states that the machine is allowed to be in (zero or more states 

are designated as accept or final states), 

o a current state, initially set to a start state, 



o a state transition function for changing the current state. 

 

An automaton processes a string on the tape by repeating the following actions until the tape 

head has traversed the entire string: 

 

1. The tape head reads the current tape cell and sends the symbol s found there to the 

control. Then the tape head moves to the next cell. 

2. he control takes s and the current state and consults the state transition function to get 

the next state, which becomes the new current state. 

 

Once the entire string has been processed, the state in which the automation enters is examined. 

If it is an accept state , the input string is accepted ; otherwise, the string is rejected . Summariz- 

ing all the above we can formulate the following formal definition: 

Deterministic Finite State Automaton : A Deterministic Finite State Automaton (DFA) is 

a 5-tuple :  

 Q is a finite set of states. 

• is a finite set of input symbols or alphabet 

 is the “next state” transition function (which is total ). Intuitively, is a 
function that tells which state to move to in response to an input, i.e., if M is in 

state q and sees input a, it moves to state . 

 is the start state. 

• is the set of accept or final states. 

 
Acceptance of Strings : 

 
A DFA accepts a string if there is a sequence of states in Q 

such that 

 
1. is the start state. 

2. for all . 

3. 

Language Accepted or Recognized by a DFA : 

 

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and 

is denoted by i.e. The notion of 

acceptance can also be made more precise by extending the transition function . 

Extended transition function : 



Extend (which is function on symbols) to a function on strings, i.e. . 

 

That is, is the state the automation reaches when it starts from the state q and finish 

processing the string w. Formally, we can give an inductive definition as follows: 

The language of the DFA M is the set of strings that can take the start state to one of the 

accepting states i.e. 

 

 
L(M) = { | M accepts w } 

 

= { | } 

 
Example 1 : 

 

 

 
is the start state 

 

 

 

 
It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the 

DFA is any string over { 0, 1} having at least one 1 

 

We can describe the same DFA by transition table or state transition diagram as follow- 

ing: 

 

 
 

Transition Table : 

 
 0 1 
 

  
 

 
 

 



 

  
 

 
 

 

 

It is easy to comprehend the transition diagram. 

 

 
Explanation  :  We  cannot  reach  find  state w/0 or in the i/p string. There can be any no. 

of 0's at the beginning. ( The self-loop at on label 0 indicates it ). Similarly there 

can be any no. of 0's & 1's in any order at the end of the string. 

 

Transition table : 

 

It is basically a tabular representation of the transition function that takes two arguments (a state 

and a symbol) and returns a value (the “next state”). 

 

• Rows correspond to states, 

• Columns correspond to input symbols, 

• Entries correspond to next states 

• The start state is marked with an arrow 

• The accept states are marked with a star (*). 
 

 

 
 

 0 1 
 

  
 

 
 

 

 

  
 

 
 

 

(State) Transition diagram : 

 

A state transition diagram or simply a transition diagram is a directed graph which can be 
constructed as follows: 

 

1. For each state in Q there is a node. 

2. There is a directed edge from node q to node p labeled a iff . (If there 

are several input symbols that cause a transition, the edge is labeled by the list of these 

symbols.) 

3. There is an arrow with no source into the start state. 

4. Accepting states are indicated by double circle. 



 

 

 

 

 

 

5. 
6. Here is an informal description how a DFA operates. An input to a DFA can be any 

s. tring Put a pointer to the start state q. Read the input string w from left 

to right, one symbol at a time, moving the pointer according to the transition 

function, . If the next symbol of w is a and the pointer is on state p, move the 

pointer to  . When the end of the input string w is encountered, the pointer is on 

some state, r. The string is said to be accepted by the DFA if and 

rejected if . Note that there is no formal mechanism for moving the pointer. 

7. A language  is said to be regular if L = L(M) for some DFA M. 
 

 

Regular Expressions: Formal Definition 

 
We construct REs from primitive constituents (basic elements) by repeatedly applying certain 

recursive rules as given below. (In the definition) 

 

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows. 

 

Basis : 

 
i) is a RE 

 

ii) is a RE 

iii) , a is RE. 
 

These are called primitive regular expression i.e. Primitive Constituents 

 

Recursive Step : 

 

If 

and are REs over, then so are 

 

i) 

 
ii) 



iii) 

iv) 

 

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) 

by a finite no of applications of the recursive step (given in 2). 

 
Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this 

expression by applying the above rules as given in the following step. 

Steps RE Constructed Rule Used 

1 1 Rule 1(iii) 

2                         Rule 1(i) 

3 1+ Rule 2(i) & Results of Step 1, 2 

4 (1+  ) Rule 2(iv) & Step 3 

5 2 1(iii) 

6 1 1(iii) 

7 21 2(ii), 5, 6 

8 0 1(iii) 

9 0+21 2(i), 7, 8 

10 (0+21) 2(iv), 9 

11 (0+21)* 2(iii), 10 

12 (0+21)* 2(ii), 4, 11 
Language described by REs : Each describes a language (or a language is associated 

with every RE). We will see later that REs are used to attribute regular languages. 

 

 
Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can 

define the language L(r) associated with (or described by) a REs as follows. 

 
1. is the RE describing the empty language i.e. L(  ) = . 

 
2. is a RE describing the language { } i.e. L( ) = { } . 

 

3. , a is a RE denoting the language {a} i.e . L(a) = {a} . 

 
4. If and are REs denoting language L( ) and L( ) respectively, then 

 
i) is a regular expression denoting the language L( ) = L( )  L( ) 



ii) is a regular expression denoting the language L( )=L( ) L( ) 

 

iii) is a regular expression denoting the language 

 
iv) ( ) is a regular expression denoting the language L(( )) = L( ) 

 
Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is 

 
L(0*(0+1)) = L(0*) L(0+1) ....................... by 4(ii) 

 

= L(0)*L(0)  L(1) 
 

= { , 0,00,000,. } {0} {1} 
 

= { , 0,00,000,........} {0,1} 
 

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............} 

 
Precedence Rule 
Consider the RE ab + c. The language described by the RE can be thought of either 
L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by REs) 
given already. But these two represents two different languages lending to ambiguity. 
To remove this ambiguity we can either 

 
1) Use fully parenthesized expression- (cumbersome) or 

 
2) Use a set of precedence rules to evaluate the options of REs in some order. Like 
other algebras mod in mathematics. 

 
For REs, the order of precedence for the operators is as follows: 

 
i) The star operator precedes concatenation and concatenation precedes union (+) 
operator. 

 
ii) It is also important to note that concatenation & union (+) operators are associative 
and union operation is commutative. 

 
Using these precedence rule, we find that the RE ab+c represents the language L(ab) 

L(c) i.e. it should be grouped as ((ab)+c). 

We can, of course change the order of precedence by using parentheses. For example, 
the language represented by the RE a(b+c) is L(a)L(b+c). 



Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language 
L(a)(L(b))* L(b) 

 

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b). 

 
Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all 
strings over {0,1} which are either ended with 0 or 11. 

 
Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an 

even number of 0's followed by an odd number of 1's i.e. 

Note : The notation is used to represent the RE rr*. Similarly, represents the RE 

rr, denotes r, and so on. 

 
An arbitrary string over = {0,1} is denoted as (0+1)*. 

 
Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of 
consecutive 1's} 

 
Solution : Every string in L(r) must contain 00 somewhere, but what comes before and 
what goes before is completely arbitrary. Considering these observations we can write 
the REs as (0+1)*11(0+1)*. 

 
Example : Considering the above example it becomes clean that the RE 
(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the 
substring 11 or 00. 

 
Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the 
set of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE 
and any no of 0's before, between and after the 1's ensure it. 

 
Example : Consider the language of strings over {0,1} containing two or more 1's. 

 
Solution : There must be at least two 1's in the RE somewhere and what comes before, 
between, and after is completely arbitrary. Hence we can write the RE as 
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each 
ensuring presence of least two 1's somewhere in the string 

 
i) 0*10*1(0+1)* 

 
ii) (0+1)*10*10* 

 
Example : Consider a RE r over {0,1} such that 



L(r) = { has no pair of consecutive 1's} 

 
Solution : Though it looks similar to ex ……., it is harder to construct to construct. We 
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This 
substring may be preceded & followed by any no of 0's. So the final RE must be a 
repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the RE is 
(0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not 
accounted for. Taking these observations into consideration, the final RE is r = 
(0*100*)(1+ )+0*(1+ ). 

 
Alternative Solution : 

 
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as 
r = (0+10)*(1+ ).This is a shorter expression but represents the same language. 

 
Regular Expression and Regular Language : 

 
Equivalence(of REs) with FA : 

 
Recall that, language that is accepted by some FAs are known as Regular language. 
The two concepts : REs and Regular language are essentially same i.e. (for) every 
regular language can be developed by (there is) a RE, and for every RE there is a 
Regular Langauge. This fact is rather suprising, because RE approach to describing 
language is fundamentally differnet from the FA approach. But REs and FA are 
equivalent in their descriptive power. We can put this fact in the focus of the following 
Theorem. 

 
Theorem : A language is regular iff some RE describes it. 

 
This Theorem has two directions, and are stated & proved below as a separate lemma 

 

RE to FA : 
 

REs denote regular languages : 
 

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA 
such that L(M) L(r). 

 

Proof : To prove the lemma, we apply structured index on the expression r. First, we 

show how to construct FA for the basis elements: , and for any . Then we show 
how to combine these Finite Automata into Complex Automata that accept the Union, 
Concatenation, Kleen Closure of the languages accepted by the original smaller 
automata. 



Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are 
represented by transition diagram only. 

 
Basis : 

 

 Case (i) : . Then . Then and the following NFA N

recognizes L(r). Formally where Q = {q} and 

. 
 
 
 

 
 
 

 Case (ii) : . , and the following NFA N accepts L(r). Formally 

where . 
 
 
 

 
 
 

Since the start state is also the accept step, and there is no any transition defined, it will 
accept the only string and nothing else. 

 
 Case (iii) : r = a for some . Then L(r) = {a}, and the following NFA N

accepts L(r). 
 

 
 

 

 
 

Formally, where for or 
 
 

 

Induction : 



Assume that the start of the theorem is true for REs and . Hence we can assume 

that we have automata and that accepts languages denoted by REs and , 

respectively i.e. and . The FAs are represented 
schematically as shown below. 

 
 
 

 

 
 

 

Each has an initial state and a final state. There are four cases to consider. 

 
 Case (i) : Consider the RE denoting the language . We

construct FA , from and to accept the language denoted by RE as 
follows : 

 
 
 

 
 

Create a new (initial) start state and give - transition to the initial state of and 

.This is the initial state of . 

 
 Create a final state and give -transition from the two final state of and

. is the only final state of and final state of and will be ordinary 

states in . 

 All the state of and are also state of .



 All the moves of and are also moves of . [ Formal Construction] 

It is easy to prove that

Proof: To show that we must show that 

 
= 

 
= by following transition of 

 
Starts at initial state and enters the start state of either or follwoing the 
transition i.e. without consuming any input. WLOG, assume that, it enters the start state 

of . From this point onward it has to follow only the transition of to enter the final 

state of , because this is the only way to enter the final state of M by following the e- 
transition.(Which is the last transition & no input is taken at hte transition). Hence the 

whole input w is considered while traversing from the start state of to the final state 

of . Therefore must accept . 

Say,  or  . 

WLOG, say 

 
Therefore when process the string w , it starts at the initial state and enters the final 

state when w consumed totally, by following its transition. Then also accepts w, by 

starting at state and taking -transition enters the start state of  -follows the moves 

of to enter the final state of consuming input w thus takes -transition to . 

Hence proved 

 
 Case(ii) : Consider the RE denoting the language . We construct 

FA from & to accept  as follows :



 
 
 
 

Create a new start state and a new final state 

 
1. Add - transition from 

o to the start state of 

o to 

o final state of to the start state of 

2. All the states of are also the states of . has 2 more states than that of 

namely and  . 

3. All the moves of are also included in . 

 
By the transition of type (b), can accept . 

By the transition of type (a), can enters the initial state of w/o any input and then 

follow all kinds moves of to enter the final state of and then following -transition 

can enter . Hence if any  is accepted by then w is also accepted by . By 

the transition of type (b), strings accepted by can be repeated by any no of times & 

thus accepted by . Hence accepts and any string accepted by repeated (i.e. 

concatenated) any no of times. Hence  

Case(iv) : Let =(   ). Then the FA is also the FA for ( ), since the use of 
parentheses does not change the language denoted by the expression 

 
Non-Deterministic Finite Automata 
Nondeterminism is an important abstraction in computer science. Importance of 
nondeterminism is found in the design of algorithms. For examples, there are many 
problems with efficient nondeterministic solutions but no known efficient deterministic 
solutions. ( Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process 
is in a distributed system is also a good example of nondeterministic situation. Because 



the behaviour of a process might depend on some messages from other processes that 
might arrive at arbitrary times with arbitrary contents. 
It is easy to construct and comprehend an NFA than DFA for a given regular language. 
The concept of NFA can also be used in proving many theorems and results. Hence, it 
plays an important role in this subject. 
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is 
defined in the same way as the DFA but with the following two exceptions: 

 multiple next state.
 

 - transitions.
 

Multiple Next State : 
 

 In contrast to a DFA, the next state is not necessarily uniquely determined by the 

current state and input symbol in case of an NFA. (Recall that, in a DFA there is 

exactly one start state and exactly one transition out of every state for each 

symbol in ).
 This means that - in a state q and with input symbol a - there could be one, more

than one or zero next state to go, i.e. the value of is a subset of Q. Thus 

 = which means that any one of could be the next 

state. 

 The zero next state case is a special one giving   = , which means that 
there is no next state on input symbol when the automata is in state q. In such a 
case, we may think that the automata "hangs" and the input will be rejected.

 
- transitions : 

 
In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot 
move. However, the state of the automata can be changed - that is can go to zero, one 

or more states. This is written formally as implying that the next 

state could by any one of w/o consuming the next input symbol. 

 

 
Acceptance : 

 
Informally, an NFA is said to accept its input if it is possible to start in some start state 

and process , moving according to the transition rules and making choices along the 

way whenever the next state is not uniquely defined, such that when is completely 

processed (i.e. end of is reached), the automata is in an accept state. There may be 

several possible paths through the automation in response to an input  since the start 

state is not determined and there are choices along the way because of multiple next 

states. Some of these paths may lead to accpet states while others may not. The 



automation is said to accept if at least one computation path on input starting from 
at least one start state leads to an accept state- otherwise, the automation rejects input 

. Alternatively, we can say that, is accepted iff there exists a path with label  from 
some start state to some accept state. Since there is no mechanism for determining 
which state to start in or which of the possible next moves to take (including the - 
transitions) in response to an input symbol we can think that the automation is having 
some "guessing" power to chose the correct one in case the input is accepted 

 
Example 1 : Consider the language L = { {0, 1}* | The 3rd symbol from the right is 
1}. The following four-state automation accepts L. 

 
The m/c is not deterministic since there are two transitions from state on input 1 and 

no transition (zero transition) from on both 0 & 1. 

For any string whose 3rd symbol from the right is a 1, there exists a sequence of legal 

transitions leading from the start state q, to the accept state . But for any string 

where 3rd symbol from the right is 0, there is no possible sequence of legal 

tranisitons leading from and . Hence m/c accepts L. How does it accept any string 

L? 

 
Formal definition of NFA : 

 
 

Formally, an NFA is a quituple  where Q, , , and F bear 

the same meaning as for a DFA, but , the transition function is redefined as follows: 

 

 
where P(Q) is the power set of Q i.e. . 

 
The Langauge of an NFA : 

 
From the discussion of the acceptance by an NFA, we can give the formal definition of a 
language accepted by an NFA as follows : 

 
If is an NFA, then the langauge accepted by N is writtten as L(N) is 

given by  . 

That is, L(N) is the set of all strings w in such that contains at least one 

accepting state. 



Removing ϵ-transition: 

- transitions do not increase the power of an NFA . That is, any - NFA ( NFA with 
transition), we can always construct an equivalent NFA without -transitions. The 

equivalent NFA must keep track where the NFA goes at every step during 
computation. This can be done by adding extra transitions for removal of every - 
transitions from the - NFA as follows. 

 
If we removed the - transition from the - NFA , then we need to moves 

from state p to all the state on input symbol which are reachable from state q (in 
the - NFA ) on same input symbol q. This will allow the modified NFA to move from 
state p to all states on some input symbols which were possible in case of -NFA on 
the same input symbol. This process is stated formally in the following theories. 

 
Theorem if L is accepted by an - NFA N , then there is some equivalent 

without transitions accepting the same language L 

Proof:  
 
Let be the given with 

 

We construct 
 

 

Where, for all and and 

 

 
Other elements of N' and N 

 
We can show that i.e. N' and N are equivalent. 

 
We need to prove that 

 
i.e. 

 

 
We will show something more, that is, 

 



We will show something more, that is, 

Basis : , then 

But by definition of . 

 
Induction hypothesis Let the statement hold for all with . 

 
 

By definition of extension of 

By inductions hypothesis. 

Assuming that 

 

 
By definition of 

Since 

To complete the proof we consider the case 

When i.e. then 



 

and by the construction of wherever constrains a state in F. 
 

If (and thus is not in F ), then with leads to an accepting state in N' iff it lead 
to an accepting state in N ( by the construction of N' and N ). 

 

Also, if ( , thus w is accepted by N' iff w is accepted by N (iff ) 

 
If (and, thus in M we load in F ), thus is accepted by both N' and N . 

 
Let . If w cannot lead to in N , then . (Since can add transitions to get an accept 

state). So there is no harm in making an accept state in N'. 

Ex: Consider the following NFA with - transition. 
 
 

 

Transition Diagram 

 
 0 1 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 

 

 

Transition diagram for ' for the equivalent NFA without - moves 



 
 
 
 

 0 1 
 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

Since the start state q0 must be final state in the equivalent NFA . 

 
Since  and and we add moves and 

in the equivalent NFA . Other moves are also constructed accordingly. 

-closures: 
 

The concept used in the above construction can be made more formal by defining the 
-closure for a state (or a set of states). The idea of -closure is that, when moving 

from a state p to a state q (or from a set of states Si to a set of states Sj ) an input , 
we need to take account of all -moves that could be made after the transition. 
Formally, for a given state q, 

 

-closures: 

 
Similarly, for a given set 

 

-closures: 

 

So, in the construction of equivalent NFA N' without -transition from any NFA with 

moves. the first rule can now be written as 



Equivalence of NFA and DFA 

 
It is worth noting that a DFA is a special type of NFA and hence the class of languages 
accepted by DFA s is a subset of the class of languages accepted by NFA s. 
Surprisingly, these two classes are in fact equal. NFA s appeared to have more power 
than DFA s because of generality enjoyed in terms of -transition and multiple next 
states. But they are no more powerful than DFA s in terms of the languages they 
accept. 

 
Converting DFA to NFA 

 
 

Theorem: Every DFA has as equivalent NFA 
 

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is 

defined from whereas in case of an NFA it is defined from and 

be a DFA . We construct an equivalent NFA as 
follows. 

 
 
 

i. e 
 
 

If and 
 

All other elements of N are as in D. 

 
If then there is a sequence of states such that 

 
Then it is clear from the above construction of N that there is a sequence of states (in N) 

such that and and hence 

Similarly we can show the converse. 

 
Hence , 

 
Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate 
the behaviour of the NFA . For this, the DFA have to keep track of all the states where 
the NFA could be in at every step during processing a given input string. 



There are possible subsets of states for any NFA with n states. Every subset 
corresponds to one of the possibilities that the equivalent DFA must keep track of. Thus, 

the equivalent DFA will have states. 
 

The formal constructions of an equivalent DFA for any NFA is given below. We first 
consider an NFA without transitions and then we incorporate the affects of 

transitions later. 
 

Formal construction of an equivalent DFA for a given NFA without transitions. 

 
Given an without - moves, we construct an equivalent DFA 

 

as follows 

 

i.e. 
 

 
 

(i.e. every subset of Q which as an element in F is considered as a final stat 
in DFA D ) 

 

 

for all and 

 

where 
 

 

That is, 
 

To show that this construction works we need to show that L(D)=L(N) i.e. 
 
 
 

 

Or, 
 

We will prove the following which is a stranger statement thus required. 



 
 
 

Proof : We will show by inductions on 

Basis If =0, then w = 

So, by definition. 

 
Inductions hypothesis : Assume inductively that the statement holds of length 
less than or equal to n. 

 
Inductive step 

 
Let , then with 

 

Now, 

 

 
Now, given any NFA with -transition, we can first construct an equivalent NFA without 

-transition and then use the above construction process to construct an equivalent 
DFA , thus, proving the equivalence of NFA s and DFA s.. 

 
It is also possible to construct an equivalent DFA directly from any given NFA with - 
transition by integrating the concept of -closure in the above construction. 

 
Recall that, for any 

 
- closure : 



In the equivalent DFA , at every step, we need to modify the transition functions to 
keep track of all the states where the NFA can go on -transitions. This is done by 

replacing by -closure , i.e. we now compute at every step as 
follows: 

Besides this the initial state of the DFA D has to be modified to keep track of all the 
states that can be reached from the initial state of NFA on zero or more -transitions. 

This can be done by changing the initial state to -closure ( ) . 
It is clear that, at every step in the processing of an input string by the DFA D , it enters 
a state that corresponds to the subset of states that the NFA N could be in at that 
particular point. This has been proved in the constructions of an equivalent NFA for any 

-NFA 

If the number of states in the NFA is n , then there are states in the DFA . That is, 
each state in the DFA is a subset of state of the NFA . 

But, it is important to note that most of these states are inaccessible from the start 
state and hence can be removed from the DFA without changing the accepted 
language. Thus, in fact, the number of states in the equivalent DFA would be much less 

than . 
Example : Consider the NFA given below. 

 
 
 
 

 

 0 1 
 

 

 

 

 

 

 

 
 

 

 

 { } 
 

 
 

 

 
 

 

 
 

 
 

 

 

Since there are 3 states in the NFA 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

There will be states (representing all possible subset of states) in the equivalent 
DFA . The transition table of the DFA constructed by using the subset constructions 
process is produced here. 

 

The start state of the DFA is - closures 

 

               The final states are all those subsets that contains (since 

in the NFA). 

Let us compute one entry, 

 

 

Similarly, all other transitions can be computed 
 
 

 

 

Corresponding Transition fig. for DFA.Note that states 

are not accessible and hence can be removed. This 

gives us the following simplified DFA with only 3 states. 
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It is interesting to note that we can avoid encountering all those inaccessible or 
unnecessary states in the equivalent DFA by performing the following two steps 
inductively. 

 
1. If is the start state of the NFA, then make - closure ( ) the start state of the 

equivalent DFA . This is definitely the only accessible state. 

2. If we have already computed a set of states which are accessible. Then 

. compute because these set of states will also be accessible.



 


