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GRAPHS 

Graphs are mathematical structures that represent pairwise relationships between 

objects. A graph is a flow structure that represents the relationship between various 

objects. It can be visualized by using the following two basic components: 

• Nodes: These are the most important components in any graph. Nodes are 

entities whose relationships are expressed using edges. If a graph comprises 

2 nodes A and B and an undirected edge between them, then it expresses a 

bi-directional relationship between the nodes and edge. 

• Edges: Edges are the components that are used to represent the relationships 

between various nodes in a graph. An edge between two nodes expresses a 

one-way or two-way relationship between the nodes. 

Types of nodes 

• Root node: The root node is the ancestor of all other nodes in a graph. It 

does not have any ancestor. Each graph consists of exactly one root node. 

Generally, you must start traversing a graph from the root node. 

• Leaf nodes: In a graph, leaf nodes represent the nodes that do not have any 

successors. These nodes only have ancestor nodes. They can have any 

number of incoming edges but they will not have any outgoing edges. 

Types of graphs 

• Undirected: An undirected graph is a graph in which all the edges are bi-

directional i.e. the edges do not point in any specific direction 

.  
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• Directed: A directed graph is a graph in which all the edges are uni-

directional i.e. the edges point in a single direction. 

 

• Weighted: In a weighted graph, each edge is assigned a weight or cost. 

Consider a graph of 4 nodes as in the diagram below. As you can see each 

edge has a weight/cost assigned to it. If you want to go from vertex 1 to 

vertex 3, you can take one of the following 3 paths: 

o 1 -> 2 -> 3 

o 1 -> 3 

o 1 -> 4 -> 3 

Therefore the total cost of each path will be as follows: - The total cost of 1 -

> 2 -> 3 will be (1 + 2) i.e. 3 units - The total cost of 1 -> 3 will be 1 unit - 

The total cost of 1 -> 4 -> 3 will be (3 + 2) i.e. 5 units 

 

• Cyclic: A graph is cyclic if the graph comprises a path that starts from a 

vertex and ends at the same vertex. That path is called a cycle. An acyclic 

graph is a graph that has no cycle. 
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A tree is an undirected graph in which any two vertices are connected by 

only one path. A tree is an acyclic graph and has N - 1 edges where N is the 

number of vertices. Each node in a graph may have one or multiple parent 

nodes. However, in a tree, each node (except the root node) comprises 

exactly one parent node. 

Note: A root node has no parent. 

A tree cannot contain any cycles or self loops, however, the same does not 

apply to graphs. 

 

Graph representation 

You can represent a graph in many ways. The two most common ways of 

representing a graph is as follows: 

Adjacency matrix 

An adjacency matrix is a VxV binary matrix A. Element Ai,j is 1 if there is an edge 

from vertex i to vertex j else Ai,j is 0. 

Note: A binary matrix is a matrix in which the cells can have only one of two 

possible values - either a 0 or 1. 

The adjacency matrix can also be modified for the weighted graph in which instead 

of storing 0 or 1 in Ai,j, the weight or cost of the edge will be stored. 

In an undirected graph, if Ai,j = 1, then Aj,i = 1. In a directed graph, if Ai,j = 1, 

then Aj,i may or may not be 1. 
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Adjacency matrix provides constant time access (O(1) ) to determine if there is an 

edge between two nodes. Space complexity of the adjacency matrix is O(V2). 

The adjacency matrix of the following graph is: 

i/j : 1 2 3 4 

1 : 0 1 0 1 

2 : 1 0 1 0 

3 : 0 1 0 1 

4 : 1 0 1 0 

 

The adjacency matrix of the following graph is: 

i/j: 1 2 3 4 

1 : 0 1 0 0 

2 : 0 0 0 1 

3 : 1 0 0 1 

4 : 0 1 0 0 

 

Consider the directed graph given above. Let's create this graph using an adjacency 

matrix and then show all the edges that exist in the graph. 

Input file 

4   // nodes 

5  //edges 
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1 2  //showing edge from node 1 to node 2 

2 4  //showing edge from node 2 to node 4 

3 1  //showing edge from node 3 to node 1 

3 4  //showing edge from node 3 to node 4 

4 2  //showing edge from node 4 to node 2 

Adjacency Matrix: 

# include < stdio.h > 

void main() 

{ 

   int ch; 

   while(1) 

   {  printf("\n A Program to represent a Graph by using an "); 

  printf("Adjacency Matrix method \n "); 

  printf("\n 1. Directed Graph "); 

  printf("\n 2. Un-Directed Graph "); 

  printf("\n 3. Exit "); 

  printf("\n\n Select a proper option : "); 

  scanf("%d", &ch); 

  switch(ch) 

  { 

   case 1 : dir_graph(); 

     break; 

   case 2 : undir_graph(); 

     break; 

   case 3 : exit(0); 

  } // switch 

 } 

 } // main 

 

int dir_graph() 

{ 

 int adj_mat[50][50]; 

 int n; 

 int in_deg, out_deg, i, j; 
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 printf("\n How Many Vertices ? : "); 

 scanf("%d", &n); 

 

 read_graph (adj_mat, n); 

 printf("\n Vertex \t In_Degree \t Out_Degree \t Total_Degree "); 

 for (i = 1; i < = n ; i++ ) 

 { 

  in_deg = out_deg = 0; 

  for ( j = 1 ; j <= n ; j++ ) 

  { 

   if ( adj_mat[j][i] == 1 ) 

    in_deg++; 

  }  

  for ( j = 1 ; j <= n ; j++ ) 

   if (adj_mat[i][j] == 1 ) 

    out_deg++; 

  printf("\n\n 

%5d\t\t\t%d\t\t%d\t\t%d\n\n",i,in_deg,out_deg,in_deg+out_deg); 

 } // for 

 return; 

} // dir_graph 

 

int undir_graph() 

{ 

 int adj_mat[50][50]; 

 int deg, i, j, n; 

 

 printf("\n How Many Vertices ? : "); 

 scanf("%d", &n); 

 

 read_graph(adj_mat, n); 

 printf("\n Vertex \t Degree "); 

 

 for ( i = 1 ; i <= n ; i++ ) 

 { 
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  deg = 0; 

  for ( j = 1 ; j <= n ; j++ ) 

   if ( adj_mat[i][j] == 1) 

    deg++; 

  printf("\n\n %5d \t\t %d\n\n", i, deg); 

 } // for 

 return; 

} // undir_graph 

 

int read_graph ( int adj_mat[50][50], int n ) 

{ 

 int i, j; 

 int reply; 

 

 for ( i = 1 ; i <= n ; i++ ) 

 { 

  for ( j = 1 ; j <= n ; j++ ) 

  { 

   if ( i == j ) 

   { 

    adj_mat[i][j] = 0; 

    continue; 

   } // if 

printf("\n Vertices %d & %d are Adjacent ? (Y/N) :\n enter 1 for adjacent,2 for non 

adjacent nodes",i,j); 

   scanf("%d", &reply); 

   if ( reply == 1 ) 

    adj_mat[i][j] = 1; 

   else 

    adj_mat[i][j] = 0; 

  } // for 

 } // for 

 return; 

}  
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Adjacency list 

The other way to represent a graph is by using an adjacency list. An adjacency list 

is an array A of separate lists. Each element of the array Ai is a list, which contains 

all the vertices that are adjacent to vertex i. 

For a weighted graph, the weight or cost of the edge is stored along with the vertex 

in the list using pairs. In an undirected graph, if vertex j is in list Ai then vertex i 

will be in list Aj. 

The space complexity of adjacency list is O(V + E) because in an adjacency list 

information is stored only for those edges that actually exist in the graph. In a lot of 

cases, where a matrix is sparse using an adjacency matrix may not be very useful. 

This is because using an adjacency matrix will take up a lot of space where most of 

the elements will be 0, anyway. In such cases, using an adjacency list is better. 

Note: A sparse matrix is a matrix in which most of the elements are zero, whereas 

a dense matrix is a matrix in which most of the elements are non-zero. 

 

Consider the same undirected graph from an adjacency matrix. The adjacency list 

of the graph is as follows: 

A1 → 2 → 4 

A2 → 1 → 3 

A3 → 2 → 4 
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A4 → 1 → 3 

 

Consider the same directed graph from an adjacency matrix. The adjacency list of 

the graph is as follows: 

A1 → 2 

A2 → 4 

A3 → 1 → 4 

A4 → 2 

 

Adjacency List Representation: 

#include <stdio.h> 

#include <stdlib.h> 

typedef struct node 

{ 

    int vertex; 

    struct node *next; 

}N; 

  

void main() 

{ 

    int ch; 

while(1) 

    { 

        printf("\n A Program to represent a Graph by using an Adjacency List \n "); 

        printf("\n 1. Directed Graph "); 

        printf("\n 2. Un-Directed Graph "); 

        printf("\n 3. Exit "); 

        printf("\n\n Select a proper option : "); 

        scanf("%d", &ch); 

        switch(ch) 
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        { 

            case 1 : dir_graph(); 

                     break; 

            case 2 : undir_graph(); 

                     break; 

            case 3 : exit(0); 

        } 

    } 

 } 

int dir_graph() 

{ 

    N *adj_list[10], *p; 

    int n; 

    int in_deg, out_deg, i, j; 

    printf("\n How Many Vertices ? : "); 

    scanf("%d", &n); 

    for( i = 1 ; i <= n ; i++ ) 

        adj_list[i] = NULL; 

    read_graph (adj_list, n); 

    printf("\n Vertex \t In_Degree \t Out_Degree \t Total_Degree "); 

    for (i = 1; i <= n ; i++ ) 

    { 

        in_deg = out_deg = 0; 

        p = adj_list[i]; 

        while( p != NULL ) 

        { 

            out_deg++; 

            p = p -> next; 

        } 

        for ( j = 1 ; j <= n ; j++ ) 

        { 

            p = adj_list[j]; 

            while( p != NULL )  

            { 

                if ( p -> vertex == i ) 

                   in_deg++; 

                p = p -> next; 

                } 

             } 
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             printf("\n\n %5d\t\t\t%d\t\t%d\t\t%d\n\n", i, in_deg, out_deg, in_deg + 

out_deg); 

        }  

    return; 

} 

int undir_graph() 

{ 

    N *adj_list[10], *p; 

    int deg, i, j, n; 

    printf("\n How Many Vertices ? : "); 

    scanf("%d", &n); 

    for ( i = 1 ; i <= n ; i++ ) 

        adj_list[i] = NULL; 

    read_graph(adj_list, n); 

    printf("\n Vertex \t Degree "); 

    for ( i = 1 ; i <= n ; i++ ) 

    { 

        deg = 0; 

        p = adj_list[i]; 

        while( p != NULL ) 

 { 

            deg++; 

            p = p -> next; 

        } 

        printf("\n\n %5d \t\t %d\n\n", i, deg); 

    } 

    return; 

}  

int read_graph ( N *adj_list[10], int n ) 

{ 

    int i, j; 

    int reply; 

    N *p, *c; 

    for ( i = 1 ; i <= n ; i++ ) 

    { 

        for ( j = 1 ; j <= n ; j++ ) 

        { 

            if ( i == j ) 

                continue; 
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            printf("\n Vertices %d & %d are Adjacent ? (Y/N) : \nenter 1 for adjacent 

nodes, 2 for non adjacent nodes", i, j); 

            scanf("%d", &reply); 

            if ( reply == 1  ) 

            { 

                c = (N*)malloc(sizeof(N)); 

                c -> vertex = j; 

                c -> next = NULL; 

                if ( adj_list[i] == NULL ) 

                    adj_list[i] = c; 

                else 

                { 

                    p = adj_list[i]; 

                    while ( p -> next != NULL ) 

                        p = p -> next; 

                    p -> next = c; 

  }  

            } 

        }  

    } 

    return; 

} 

 

 

DFS: 

Depth First Search algorithm(DFS) traverses a graph in a depthward motion and 

uses a stack to remember to get the next vertex to start a search when a dead end 

occurs in any iteration. 

 

Step Traversal Description 
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1. 

 

Initialize the stack 

2. 

 

Mark S as visited and put it 

onto the stack. Explore any 

unvisited adjacent node 

from S. We have three 

nodes and we can pick any 

of them. For this example, 

we shall take the node in 

alphabetical order. 

3. 

 

Mark A as visited and put it 

onto the stack. Explore any 

unvisited adjacent node 

from A. Both Sand D are 

adjacent to A but we are 

concerned for unvisited 

nodes only. 
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4. 

 

Visit D and mark it visited 

and put onto the stack. Here 

we have B and C nodes 

which are adjacent to D and 

both are unvisited. But we 

shall again choose in 

alphabetical order. 

5. 

 

We choose B, mark it 

visited and put onto stack. 

Here B does not have any 

unvisited adjacent node. So 

we pop B from the stack. 

6. 

 

We check stack top for 

return to previous node and 

check if it has any unvisited 

nodes. Here, we find D to 

be on the top of stack. 
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7. 

 

Only unvisited adjacent 

node is from D is C now. 

So we visit C, mark it 

visited and put it onto the 

stack. 

As C does not have any unvisited adjacent node so we keep popping the stack 

until we find a node which has unvisited adjacent node. In this case, there's none 

and we keep popping until stack is empty. 

 

 

DFS ALGORITHM: 

n ← number of nodes 

Initialize visited[ ] to false (0) 

for(i=0;i<n;i++) 

    visited[i] = 0; 

  

void DFS(vertex i) [DFS starting from i] 

{ 

    visited[i]=1; 

    for each w adjacent to i 

        if(!visited[w]) 

            DFS(w); 

} 

 

BFS: 

Breadth First Search algorithm(BFS) traverses a graph in a breadthwards motion 

and uses a queue to remember to get the next vertex to start a search when a dead 

end occurs in any iteration. 

Step Traversal Description 
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1. 

 

Initialize the queue. 

2. 

 

We start from 

visiting S(starting node), 

and mark it visited. 

3. 

 

We then see unvisited 

adjacent node from S. In this 

example, we have three 

nodes but alphabetically we 

choose A mark it visited and 

enqueue it. 

4. 

 

Next unvisited adjacent 

node from S is B. We mark 

it visited and enqueue it. 



 

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET 
 

5. 

 

Next unvisited adjacent 

node from S is C. We mark 

it visited and enqueue it. 

6. 

 

Now S is left with no 

unvisited adjacent nodes. So 

we dequeue and find A. 

7. 

 

From A we have D as 

unvisited adjacent node. We 

mark it visited and enqueue 

it. 

At this stage we are left with no unmarked (unvisited) nodes. But as per algorithm 

we keep on dequeuing in order to get all unvisited nodes. When the queue gets 

emptied the program is over. 

 

DIFFERENCE BETWEEN DFS AND BFS: 
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BFS DFS 

BFS Stands for “Breadth First Search”. DFS stands for “Depth First 

Search”. 

 BFS starts traversal from the root node and then explore 

the search in the level by level manner i.e. as close as 

possible from the root node. 

 DFS starts the traversal from the 

root node and explore the search as 

far as possible from the root node 

i.e. depth wise. 

Breadth First Search can be done with the help 

of queue i.e. FIFOimplementation. 

Depth First Search can be done with 

the help 

of Stack i.e. LIFOimplementations. 

This algorithm works in single stage. The visited vertices 

are removed from the queue and then displayed at once. 

This algorithm works in two stages 

– in the first stage the visited 

vertices are pushed onto the stack 

and later on when there is no vertex 

further to visit those are popped-off. 

BFS is slower than DFS. DFS is more faster than BFS. 

BFS requires more memory compare to DFS. DFS require less memory compare 

to BFS. 

Applications of BFS 

> To find Shortest path 

> Single Source & All pairs shortest paths 

> In Spanning tree 

> In Connectivity 

Applications of DFS 

> Useful in Cycle detection 

> In Connectivity testing 

> Finding a path between V and W 

in the graph. 

> useful in finding spanning trees & 

forest. 
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BFS is useful in finding shortest path.BFS can be used to 

find the shortest distance between some starting node and 

the remaining nodes of the graph. 

DFS in not so useful in finding 

shortest path. It is used to perform a 

traversal of a general graph and the 

idea of DFS is to make a path as 

long as possible, and then go back 

(backtrack) to add branches also as 

long as possible. 

Example :  

Example : 
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