

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

GRAPHS

Graphs are mathematical structures that represent pairwise relationships between

objects. A graph is a flow structure that represents the relationship between various

objects. It can be visualized by using the following two basic components:

• Nodes: These are the most important components in any graph. Nodes are

entities whose relationships are expressed using edges. If a graph comprises

2 nodes A and B and an undirected edge between them, then it expresses a

bi-directional relationship between the nodes and edge.

• Edges: Edges are the components that are used to represent the relationships

between various nodes in a graph. An edge between two nodes expresses a

one-way or two-way relationship between the nodes.

Types of nodes

• Root node: The root node is the ancestor of all other nodes in a graph. It

does not have any ancestor. Each graph consists of exactly one root node.

Generally, you must start traversing a graph from the root node.

• Leaf nodes: In a graph, leaf nodes represent the nodes that do not have any

successors. These nodes only have ancestor nodes. They can have any

number of incoming edges but they will not have any outgoing edges.

Types of graphs

• Undirected: An undirected graph is a graph in which all the edges are bi-

directional i.e. the edges do not point in any specific direction

.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

• Directed: A directed graph is a graph in which all the edges are uni-

directional i.e. the edges point in a single direction.

• Weighted: In a weighted graph, each edge is assigned a weight or cost.

Consider a graph of 4 nodes as in the diagram below. As you can see each

edge has a weight/cost assigned to it. If you want to go from vertex 1 to

vertex 3, you can take one of the following 3 paths:

o 1 -> 2 -> 3

o 1 -> 3

o 1 -> 4 -> 3

Therefore the total cost of each path will be as follows: - The total cost of 1 -

> 2 -> 3 will be (1 + 2) i.e. 3 units - The total cost of 1 -> 3 will be 1 unit -

The total cost of 1 -> 4 -> 3 will be (3 + 2) i.e. 5 units

• Cyclic: A graph is cyclic if the graph comprises a path that starts from a

vertex and ends at the same vertex. That path is called a cycle. An acyclic

graph is a graph that has no cycle.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

A tree is an undirected graph in which any two vertices are connected by

only one path. A tree is an acyclic graph and has N - 1 edges where N is the

number of vertices. Each node in a graph may have one or multiple parent

nodes. However, in a tree, each node (except the root node) comprises

exactly one parent node.

Note: A root node has no parent.

A tree cannot contain any cycles or self loops, however, the same does not

apply to graphs.

Graph representation

You can represent a graph in many ways. The two most common ways of

representing a graph is as follows:

Adjacency matrix

An adjacency matrix is a VxV binary matrix A. Element Ai,j is 1 if there is an edge

from vertex i to vertex j else Ai,j is 0.

Note: A binary matrix is a matrix in which the cells can have only one of two

possible values - either a 0 or 1.

The adjacency matrix can also be modified for the weighted graph in which instead

of storing 0 or 1 in Ai,j, the weight or cost of the edge will be stored.

In an undirected graph, if Ai,j = 1, then Aj,i = 1. In a directed graph, if Ai,j = 1,

then Aj,i may or may not be 1.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

Adjacency matrix provides constant time access (O(1)) to determine if there is an

edge between two nodes. Space complexity of the adjacency matrix is O(V2).

The adjacency matrix of the following graph is:

i/j : 1 2 3 4

1 : 0 1 0 1

2 : 1 0 1 0

3 : 0 1 0 1

4 : 1 0 1 0

The adjacency matrix of the following graph is:

i/j: 1 2 3 4

1 : 0 1 0 0

2 : 0 0 0 1

3 : 1 0 0 1

4 : 0 1 0 0

Consider the directed graph given above. Let's create this graph using an adjacency

matrix and then show all the edges that exist in the graph.

Input file

4 // nodes

5 //edges

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

1 2 //showing edge from node 1 to node 2

2 4 //showing edge from node 2 to node 4

3 1 //showing edge from node 3 to node 1

3 4 //showing edge from node 3 to node 4

4 2 //showing edge from node 4 to node 2

Adjacency Matrix:

include < stdio.h >

void main()

{

 int ch;

 while(1)

 { printf("\n A Program to represent a Graph by using an ");

 printf("Adjacency Matrix method \n ");

 printf("\n 1. Directed Graph ");

 printf("\n 2. Un-Directed Graph ");

 printf("\n 3. Exit ");

 printf("\n\n Select a proper option : ");

 scanf("%d", &ch);

 switch(ch)

 {

 case 1 : dir_graph();

 break;

 case 2 : undir_graph();

 break;

 case 3 : exit(0);

 } // switch

 }

 } // main

int dir_graph()

{

 int adj_mat[50][50];

 int n;

 int in_deg, out_deg, i, j;

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

 printf("\n How Many Vertices ? : ");

 scanf("%d", &n);

 read_graph (adj_mat, n);

 printf("\n Vertex \t In_Degree \t Out_Degree \t Total_Degree ");

 for (i = 1; i < = n ; i++)

 {

 in_deg = out_deg = 0;

 for (j = 1 ; j <= n ; j++)

 {

 if (adj_mat[j][i] == 1)

 in_deg++;

 }

 for (j = 1 ; j <= n ; j++)

 if (adj_mat[i][j] == 1)

 out_deg++;

 printf("\n\n

%5d\t\t\t%d\t\t%d\t\t%d\n\n",i,in_deg,out_deg,in_deg+out_deg);

 } // for

 return;

} // dir_graph

int undir_graph()

{

 int adj_mat[50][50];

 int deg, i, j, n;

 printf("\n How Many Vertices ? : ");

 scanf("%d", &n);

 read_graph(adj_mat, n);

 printf("\n Vertex \t Degree ");

 for (i = 1 ; i <= n ; i++)

 {

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

 deg = 0;

 for (j = 1 ; j <= n ; j++)

 if (adj_mat[i][j] == 1)

 deg++;

 printf("\n\n %5d \t\t %d\n\n", i, deg);

 } // for

 return;

} // undir_graph

int read_graph (int adj_mat[50][50], int n)

{

 int i, j;

 int reply;

 for (i = 1 ; i <= n ; i++)

 {

 for (j = 1 ; j <= n ; j++)

 {

 if (i == j)

 {

 adj_mat[i][j] = 0;

 continue;

 } // if

printf("\n Vertices %d & %d are Adjacent ? (Y/N) :\n enter 1 for adjacent,2 for non

adjacent nodes",i,j);

 scanf("%d", &reply);

 if (reply == 1)

 adj_mat[i][j] = 1;

 else

 adj_mat[i][j] = 0;

 } // for

 } // for

 return;

}

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

Adjacency list

The other way to represent a graph is by using an adjacency list. An adjacency list

is an array A of separate lists. Each element of the array Ai is a list, which contains

all the vertices that are adjacent to vertex i.

For a weighted graph, the weight or cost of the edge is stored along with the vertex

in the list using pairs. In an undirected graph, if vertex j is in list Ai then vertex i

will be in list Aj.

The space complexity of adjacency list is O(V + E) because in an adjacency list

information is stored only for those edges that actually exist in the graph. In a lot of

cases, where a matrix is sparse using an adjacency matrix may not be very useful.

This is because using an adjacency matrix will take up a lot of space where most of

the elements will be 0, anyway. In such cases, using an adjacency list is better.

Note: A sparse matrix is a matrix in which most of the elements are zero, whereas

a dense matrix is a matrix in which most of the elements are non-zero.

Consider the same undirected graph from an adjacency matrix. The adjacency list

of the graph is as follows:

A1 → 2 → 4

A2 → 1 → 3

A3 → 2 → 4

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

A4 → 1 → 3

Consider the same directed graph from an adjacency matrix. The adjacency list of

the graph is as follows:

A1 → 2

A2 → 4

A3 → 1 → 4

A4 → 2

Adjacency List Representation:

#include <stdio.h>

#include <stdlib.h>

typedef struct node

{

 int vertex;

 struct node *next;

}N;

void main()

{

 int ch;

while(1)

 {

 printf("\n A Program to represent a Graph by using an Adjacency List \n ");

 printf("\n 1. Directed Graph ");

 printf("\n 2. Un-Directed Graph ");

 printf("\n 3. Exit ");

 printf("\n\n Select a proper option : ");

 scanf("%d", &ch);

 switch(ch)

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

 {

 case 1 : dir_graph();

 break;

 case 2 : undir_graph();

 break;

 case 3 : exit(0);

 }

 }

 }

int dir_graph()

{

 N *adj_list[10], *p;

 int n;

 int in_deg, out_deg, i, j;

 printf("\n How Many Vertices ? : ");

 scanf("%d", &n);

 for(i = 1 ; i <= n ; i++)

 adj_list[i] = NULL;

 read_graph (adj_list, n);

 printf("\n Vertex \t In_Degree \t Out_Degree \t Total_Degree ");

 for (i = 1; i <= n ; i++)

 {

 in_deg = out_deg = 0;

 p = adj_list[i];

 while(p != NULL)

 {

 out_deg++;

 p = p -> next;

 }

 for (j = 1 ; j <= n ; j++)

 {

 p = adj_list[j];

 while(p != NULL)

 {

 if (p -> vertex == i)

 in_deg++;

 p = p -> next;

 }

 }

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

 printf("\n\n %5d\t\t\t%d\t\t%d\t\t%d\n\n", i, in_deg, out_deg, in_deg +

out_deg);

 }

 return;

}

int undir_graph()

{

 N *adj_list[10], *p;

 int deg, i, j, n;

 printf("\n How Many Vertices ? : ");

 scanf("%d", &n);

 for (i = 1 ; i <= n ; i++)

 adj_list[i] = NULL;

 read_graph(adj_list, n);

 printf("\n Vertex \t Degree ");

 for (i = 1 ; i <= n ; i++)

 {

 deg = 0;

 p = adj_list[i];

 while(p != NULL)

 {

 deg++;

 p = p -> next;

 }

 printf("\n\n %5d \t\t %d\n\n", i, deg);

 }

 return;

}

int read_graph (N *adj_list[10], int n)

{

 int i, j;

 int reply;

 N *p, *c;

 for (i = 1 ; i <= n ; i++)

 {

 for (j = 1 ; j <= n ; j++)

 {

 if (i == j)

 continue;

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

 printf("\n Vertices %d & %d are Adjacent ? (Y/N) : \nenter 1 for adjacent

nodes, 2 for non adjacent nodes", i, j);

 scanf("%d", &reply);

 if (reply == 1)

 {

 c = (N*)malloc(sizeof(N));

 c -> vertex = j;

 c -> next = NULL;

 if (adj_list[i] == NULL)

 adj_list[i] = c;

 else

 {

 p = adj_list[i];

 while (p -> next != NULL)

 p = p -> next;

 p -> next = c;

 }

 }

 }

 }

 return;

}

DFS:

Depth First Search algorithm(DFS) traverses a graph in a depthward motion and

uses a stack to remember to get the next vertex to start a search when a dead end

occurs in any iteration.

Step Traversal Description

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

1.

Initialize the stack

2.

Mark S as visited and put it

onto the stack. Explore any

unvisited adjacent node

from S. We have three

nodes and we can pick any

of them. For this example,

we shall take the node in

alphabetical order.

3.

Mark A as visited and put it

onto the stack. Explore any

unvisited adjacent node

from A. Both Sand D are

adjacent to A but we are

concerned for unvisited

nodes only.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

4.

Visit D and mark it visited

and put onto the stack. Here

we have B and C nodes

which are adjacent to D and

both are unvisited. But we

shall again choose in

alphabetical order.

5.

We choose B, mark it

visited and put onto stack.

Here B does not have any

unvisited adjacent node. So

we pop B from the stack.

6.

We check stack top for

return to previous node and

check if it has any unvisited

nodes. Here, we find D to

be on the top of stack.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

7.

Only unvisited adjacent

node is from D is C now.

So we visit C, mark it

visited and put it onto the

stack.

As C does not have any unvisited adjacent node so we keep popping the stack

until we find a node which has unvisited adjacent node. In this case, there's none

and we keep popping until stack is empty.

DFS ALGORITHM:

n ← number of nodes

Initialize visited[] to false (0)

for(i=0;i<n;i++)

 visited[i] = 0;

void DFS(vertex i) [DFS starting from i]

{

 visited[i]=1;

 for each w adjacent to i

 if(!visited[w])

 DFS(w);

}

BFS:

Breadth First Search algorithm(BFS) traverses a graph in a breadthwards motion

and uses a queue to remember to get the next vertex to start a search when a dead

end occurs in any iteration.

Step Traversal Description

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

1.

Initialize the queue.

2.

We start from

visiting S(starting node),

and mark it visited.

3.

We then see unvisited

adjacent node from S. In this

example, we have three

nodes but alphabetically we

choose A mark it visited and

enqueue it.

4.

Next unvisited adjacent

node from S is B. We mark

it visited and enqueue it.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

5.

Next unvisited adjacent

node from S is C. We mark

it visited and enqueue it.

6.

Now S is left with no

unvisited adjacent nodes. So

we dequeue and find A.

7.

From A we have D as

unvisited adjacent node. We

mark it visited and enqueue

it.

At this stage we are left with no unmarked (unvisited) nodes. But as per algorithm

we keep on dequeuing in order to get all unvisited nodes. When the queue gets

emptied the program is over.

DIFFERENCE BETWEEN DFS AND BFS:

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

BFS DFS

BFS Stands for “Breadth First Search”. DFS stands for “Depth First

Search”.

 BFS starts traversal from the root node and then explore

the search in the level by level manner i.e. as close as

possible from the root node.

 DFS starts the traversal from the

root node and explore the search as

far as possible from the root node

i.e. depth wise.

Breadth First Search can be done with the help

of queue i.e. FIFOimplementation.

Depth First Search can be done with

the help

of Stack i.e. LIFOimplementations.

This algorithm works in single stage. The visited vertices

are removed from the queue and then displayed at once.

This algorithm works in two stages

– in the first stage the visited

vertices are pushed onto the stack

and later on when there is no vertex

further to visit those are popped-off.

BFS is slower than DFS. DFS is more faster than BFS.

BFS requires more memory compare to DFS. DFS require less memory compare

to BFS.

Applications of BFS

> To find Shortest path

> Single Source & All pairs shortest paths

> In Spanning tree

> In Connectivity

Applications of DFS

> Useful in Cycle detection

> In Connectivity testing

> Finding a path between V and W

in the graph.

> useful in finding spanning trees &

forest.

FACULTY NAME: SHRUTI SAXENA DAS, CSE DEPT, FOET

BFS is useful in finding shortest path.BFS can be used to

find the shortest distance between some starting node and

the remaining nodes of the graph.

DFS in not so useful in finding

shortest path. It is used to perform a

traversal of a general graph and the

idea of DFS is to make a path as

long as possible, and then go back

(backtrack) to add branches also as

long as possible.

Example :

Example :

http://freefeast.info/wp-content/uploads/2014/04/BFS-traversal.jpg
http://freefeast.info/wp-content/uploads/2014/04/DFS-Traversal.jpg

