
 

Chapter 

7 

Searching and Sorting 
 

 
There are basically two aspects of computer programming. One is data 
organization also commonly called as data structures. Till now we have seen 
about data structures and the techniques and algorithms used to access 
them. The other part of computer programming involves choosing the 
appropriate algorithm to solve the problem. Data structures and algorithms 
are linked each other. After developing programming techniques to represent 
information, it is logical to proceed to manipulate it. This chapter introduces 
this important aspect of problem solving. 

 

 

Searching is used to find the location where an element is available. There are two 
types of search techniques. They are: 

 

1. Linear or sequential search 
 

2. Binary search 

 

Sorting allows an efficient arrangement of elements within a given data structure. It is 
a way in which the elements are organized systematically for some purpose. For 
example, a dictionary in which words is arranged in alphabetical order and telephone 
director in which the subscriber names are listed in alphabetical order. There are many 
sorting techniques out of which we study the following. 

 

1. Bubble sort 
 

2. Quick sort 
 

3. Selection sort and 
 

4. Heap sort 

 

There are two types of sorting techniques: 
 

1. Internal sorting 
 

2. External sorting 

 

If all the elements to be sorted are present in the main memory then such sorting is 
called internal sorting on the other hand, if some of the elements to be sorted are 
kept on the secondary storage, it is called external sorting. Here we study only 
internal sorting techniques. 

 

 

7.1. Linear Search: 
 
This is the simplest of all searching techniques. In this technique, an ordered or 
unordered list will be searched one by one from the beginning until the desired element 
is found. If the desired element is found in the list then the search is successful 
otherwise unsuccessful. 

 
                



 elements organized sequentially on a List. The number of 
comparisons required to retrieve an element from the list, purely depends on where the 
element is stored in the list. If it is the first element, one comparison will do; if it is 
second element two comparisons are necessary and so on. On an average you need 

search an element. If search is not successful, you would 
 comparisons. 

 
The time complexity of linear search is O(n). 

 

 

Algorithm: 
 

 
 

linsrch(a[n], x) 
{ 

index = 0; 
flag = 0; 
while (index < n) do 
{ 

if (x == a[index]) 
{ 

flag = 1; 
break; 

} 
index ++; 

}  
if(flag == 1)  

 
else 

 
 

} 
 

 

Example 1: 
 
Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20 

 
If we are searching for: 

 
 

 
 

 
 at 4 elements before success 

 
 
 
 

 
 look at 10 elements before success 

 
 

  
fore failure. 

 
 
 
 

 

                



Example 2: 
 
Let us illustrate linear search on the following 9 elements: 

 

Index 0 1 2 3 4 5 6 7 8 
Elements -15 -6 0 7 9 23 54 82 101 

          

 

 

Searching different elements is as follows: 
 

1. Searching for x = 7Search successful, data found at 3rd position. 
 

2. Searching for x = 82Search successful, data found at 7th position. 
 

3. Searching for x = 42Search un-successful, data not found. 
 

 

7.1.1. A non-recursive program for Linear Search: 
 

# include <stdio.h> 
# include <conio.h> 

 
main()  
{ 

int number[25], n, data, i, flag = 0; 
clrscr(); 
printf("\n Enter the number of elements: "); 
scanf("%d", &n); 
printf("\n Enter the elements: "); 
for(i = 0; i < n; i++) 

scanf("%d", &number[i]); 
printf("\n Enter the element to be Searched: "); 
scanf("%d", &data); 
for( i = 0; i < n; i++) 
{ 

if(number[i] == data) 
{ 

flag = 1;  
break;  

} 
} 
if(flag == 1) 

printf("\n Data found at location: %d", i+1); 
else 

printf("\n Data not found "); 
} 

 

 

7.1.2. A Recursive program for linear search: 
 

# include <stdio.h> 
# include <conio.h> 

 

void linear_search(int a[], int data, int position, int n)  
{ 

if(position < n) 
 

                



{  
if(a[position] == data) 

printf("\n Data Found at %d ", position); 
else 

linear_search(a, data, position + 1, n); 
} 
else 

printf("\n Data not found"); 
} 

 

void main() 
{ 

int a[25], i, n, data; 
clrscr(); 
printf("\n Enter the number of elements: "); 
scanf("%d", &n); 
printf("\n Enter the elements: "); 
for(i = 0; i < n; i++)  
{  

scanf("%d", &a[i]); 
}  
printf("\n Enter the element to be seached: "); 
scanf("%d", &data);  
linear_search(a, data, 0, n); 
getch(); 

} 
 

 

7.2. BINARY SEARCH 
 

1 < x2 n . When we 

 successful search). 
 
In Binary search we jump into the middle of the file, where we find key a[mid], and 

s a[mid]. Similarly, if 
a[mid] > x, then further search is only necessary in that part of the file which follows 
a[mid]. 

 
If we use recursive procedure of finding the middle key a[mid] of the un-searched 
portion of a file, then every un-successful comparis
roughly half the un-searched portion from consideration. 

 

2n times before reaching a 

trivial length, the worst case complexity of Binary search is about log2n. 
 

 

Algorithm: 
 
Let array a[n] of elements in increasing order, n  
and if so, set j such that x = a[j] else return 0. 

 
 
 

 
                



binsrch(a[], n, x)  
{ 

low = 1; high = n; 
while (low < high) do 
{  

mid = (low + high)/2  
if (x < a[mid])  

high = mid  1; 
else if (x > a[mid]) 

low = mid + 1; 
else return mid; 

} 
return 0; 

} 
 
low and high  
found or low is increased by at least one or high is decreased by at least one. Thus we 
have two sequences of integers approaching each other and eventually low will become 
greater than high  

 

 

Example 1: 
 
Let us illustrate binary search on the following 12 elements: 

 

Index 1 2 3 4 5 6 7 8 9 10 11 12 

Elements 4 7 8 9 16 20 24 38 39 45 54 77 
             

 

If we are searching for x = 4: (This needs 3 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 
low = 1, high = 2, mid = 3/2 = 1, check 4, found 

 
If we are searching for x = 7: (This needs 4 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 
low = 1, high = 2, mid = 3/2 = 1, check 4 
low = 2, high = 2, mid = 4/2 = 2, check 7, found 

 

If we are searching for x = 8: (This needs 2 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8, found 

 

If we are searching for x = 9: (This needs 3 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20  
low = 1, high = 5, mid = 6/2 = 3, check 8 
low = 4, high = 5, mid = 9/2 = 4, check 9, found 

 

If we are searching for x = 16: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 1, high = 5, mid = 6/2 = 3, check 8 
low = 4, high = 5, mid = 9/2 = 4, check 9 
low = 5, high = 5, mid = 10/2 = 5, check 16, found 

 

If we are searching for x = 20: (This needs 1 comparison) 
low = 1, high = 12, mid = 13/2 = 6, check 20, found 

 
                



If we are searching for x = 24: (This needs 3 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 7, high = 8, mid = 15/2 = 7, check 24, found 

 
If we are searching for x = 38: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 7, high = 8, mid = 15/2 = 7, check 24  
low = 8, high = 8, mid = 16/2 = 8, check 38, found 

 
If we are searching for x = 39: (This needs 2 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39, found 

 

If we are searching for x = 45: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20  
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 10, high = 12, mid = 22/2 = 11, check 54  
low = 10, high = 10, mid = 20/2 = 10, check 45, found 

 

If we are searching for x = 54: (This needs 3 comparisons) 
low = 1, high = 12, mid = 13/2 = 6, check 20 
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 10, high = 12, mid = 22/2 = 11, check 54, found 

 

If we are searching for x = 77: (This needs 4 comparisons)  
low = 1, high = 12, mid = 13/2 = 6, check 20  
low = 7, high = 12, mid = 19/2 = 9, check 39 
low = 10, high = 12, mid = 22/2 = 11, check 54  
low = 12, high = 12, mid = 24/2 = 12, check 77, found 

 

The number of comparisons necessary by search element: 
 

20  requires 1 comparison; 
8 and 39  requires 2 comparisons; 
4, 9, 24, 54  requires 3 comparisons and 
7, 16, 38, 45, 77  requires 4 comparisons 

 
Summing the comparisons, needed to find all twelve items and dividing by 12, yielding 
37/12 or approximately 3.08 comparisons per successful search on the average. 

 

 

Example 2: 
 

Let us illustrate binary search on the following 9 elements: 
 

Index 0 1 2 3 4 5 6 7 8 

Elements -15 -6 0 7 9 23 54 82 101 
          

 

 

Solution: 
 
The number of comparisons required for searching different elements is as follows: 

 
 

 

                



1. If we are searching for x = 101: (Number of comparisons = 4)  
low high mid 
1 9  
6 9  
8 9  
9 9 9 
  found 

 

2. Searching for x = 82: (Number of comparisons = 3)  
 high mid 

1 9  
6 9  
8 9  

  found 
 

3. Searching for x = 42: (Number of comparisons = 4)  
 high  

1 9  
6 9  
6 6  

7 6  not found 
 

4. Searching for x = -14: (Number of comparisons = 3)  
 high mid 

1 9  5 
1 4  2 
1 1  1 
2 1 not found 

 
Continuing in this manner the number of element comparisons needed to find each of 
nine elements is: 

 

 1  3 4 5 6   9 

  -6 0 7 9 23 54   
          

Comparisons 3  3 4 1 3   4 
          

 
No element requires more than 4 comparisons to be found. Summing the comparisons 
needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77 
comparisons per successful search on the average. 

 
There are ten possible ways that an un-successful search may terminate depending 
upon the value of x. 

 

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7)  
< x < a(8) the algorithm requires 3 element comparisons 
present. For all of the remaining possibilities BINSRCH requires 4 element comparisons. 

 
Thus the average number of element comparisons for an unsuccessful search is: 

 
(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4 

 

 

Time Complexity: 
 
The time complexity of binary search in a successful search is O(log n) and for an 
unsuccessful search is O(log n). 

 
                



7.2.1. A non-recursive program for binary search: 
 

# include <stdio.h> 
# include <conio.h> 

 
main() 
{  

int number[25], n, data, i, flag = 0, low, high, mid; 
clrscr();  
printf("\n Enter the number of elements: ");  
scanf("%d", &n);  
printf("\n Enter the elements in ascending order: "); 
for(i = 0; i < n; i++) 

scanf("%d", &number[i]);  
printf("\n Enter the element to be searched: "); 
scanf("%d", &data); 
low = 0; high = n-1; 
while(low <= high) 
{ 

mid = (low + high)/2; 
if(number[mid] == data) 
{ 

flag = 1; 
break; 

} 
else 
{  

if(data < number[mid])  
high = mid - 1; 

else 
low = mid + 1; 

} 
} 
if(flag == 1) 

printf("\n Data found at location: %d", mid + 1); 
else  

printf("\n Data Not Found ");  
} 

 
7.2.2. A recursive program for binary search: 

 

# include <stdio.h> 
# include <conio.h> 

 

void bin_search(int a[], int data, int low, int high)  
{  

int mid ; 
if( low <= high) 
{ 

mid = (low + high)/2; 
if(a[mid] == data) 

printf("\n Element found at location: %d ", mid + 1); 
else 
{  

if(data < a[mid])  
bin_search(a, data, low, mid-1); 

else 
 

                



bin_search(a, data, mid+1, high);  
} 

} 
else 

printf("\n Element not found"); 
} 
void main() 
{ 

int a[25], i, n, data;  
clrscr();  
printf("\n Enter the number of elements: "); 
scanf("%d", &n);  
printf("\n Enter the elements in ascending order: "); 
for(i = 0; i < n; i++)  

scanf("%d", &a[i]);  
printf("\n Enter the element to be searched: "); 
scanf("%d", &data); 
bin_search(a, data, 0, n-1);  
getch();  

} 
 

7.3. Bubble Sort: 
 
The bubble sort is easy to understand and program. The basic idea of bubble sort is to 
pass through the file sequentially several times. In each pass, we compare each 
element in the file with its successor i.e., X[i] with X[i+1] and interchange two element 
when they are not in proper order. We will illustrate this sorting technique by taking a 
specific example. Bubble sort is also called as exchange sort. 

 

Example: 
 
Consider the array x[n] which is stored in memory as shown below: 

 

X[0]  X[2]  X[4]  
      

33 44 22 11 66 55 
      

 
Suppose we want our array to be stored in ascending order. Then we pass through the 
array 5 times as described below: 

 

Pass 1: (first element is compared with all other elements). 
 
We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] 
if X[i] > X[i+1]. The process is shown below: 

 

 X[1]  X[3]   Remarks 
       

 44  11 66 55  

 22      

   44    

   44 66   

    55 66  

 22  44 55 66  
       

 

The biggest number 66 is moved to (bubbled up) the right most position in the array. 
 

                



Pass 2: (second element is compared). 
 

i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] 
if X[i] > X[i+1]. The process is shown below: 

 

    X[4] Remarks 
      

33 22 11  55  

22 33     

 11 33    

  33    

    55  

22 11 33  55  
      

 
The second biggest number 55 is moved now to X[4]. 

 

 

Pass 3: (third element is compared). 
 
We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, 
we move the third biggest number 44 to X[3]. 

 

X[0]   X[3] Remarks 
     

22 11 33 44  

11 22    

 22 33   

  33 44  

11 22 33 44  
     

 

Pass 4: (fourth element is compared). 
 
We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth 
biggest number 33 to X[2]. 

 

   Remarks 
    

11 22   

11 22   

 22   
    

 

 

Pass 5: (fifth element is compared). 
 
We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the 
fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11 in 
X[0]. Thus, we see that we can sort the array of size 6 in 5 passes. 

 

For an array of size n, we required (n-1) passes. 

 
                



7.3.1. Program for Bubble Sort: 
 
#include <stdio.h>  
#include <conio.h> 
void bubblesort(int x[], int n) 
{ 

int i, j, temp; 
for (i = 0; i < n; i++) 
{ 

for (j = 0; j < n i-1 ; j++) 
{ 

if (x[j] > x[j+1]) 
{ 

temp = x[j]; 
x[j] = x[j+1]; 
x[j+1] = temp; 

} 
}  

}  
} 

 

main() 
{ 

int i, n, x[25]; 
clrscr(); 
printf("\n Enter the number of elements: "); 
scanf("%d", &n); 
printf("\n Enter Data:"); 
for(i = 0; i < n ; i++) 

scanf("%d", &x[i]); 
bubblesort(x, n); 
printf ("\n Array Elements after sorting: "); 
for (i = 0; i < n; i++) 

printf ("%5d", x[i]); 
} 

 

 

Time Complexity: 
 
The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) 
comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2  
 2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more 

elements to sorting. 
 

 

7.4. Selection Sort: 
 
Selection sort will not require no more than n-1 interchanges. Suppose x is an array of 
size n stored in memory. The selection sort algorithm first selects the smallest element 
in the array x and place it at array position 0; then it selects the next smallest element 
in the array x and place it at array position 1. It simply continues this procedure until it 
places the biggest element in the last position of the array. 

 
The array is passed through (n-1) times and the smallest element is placed in its 
respective position in the array as detailed below: 

 
 

 
                



Pass 1: Find the location j of the smallest element in the array x [0], x[1], . . . . x[n-1], 
and then interchange x[j] with x[0]. Then x[0] is sorted. 

 

Pass 2: Leave the first element and find the location j of the smallest element in the 
sub-array x[1], x[2], . . . . x[n-1], and then interchange x[1] with x[j]. Then 
x[0], x[1] are sorted. 

 
Pass 3: Leave the first two elements and find the location j of the smallest element in 

the sub-array x[2], x[3], . . . . x[n-1], and then interchange x[2] with x[j]. 
Then x[0], x[1], x[2] are sorted. 

 
Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and 

then interchange x[j] and x[n-2]. Then x[0], x[1], . . . . x[n-2] are sorted. Of 
course, during this pass x[n-1] will be the biggest element and so the entire 
array is sorted. 

 

 

Time Complexity: 
 
In general we prefer selection sort in case where the insertion sort or the bubble sort 
requires exclusive swapping. In spite of superiority of the selection sort over bubble 

sort and the insertion sort (there is significant decrease in run time), its efficiency is 

also O(n2) for n data items. 

 

Example: 
 
Let us consider the following example with 9 elements to analyze selection Sort: 

 

1  3   6  8   
          

 70  80     45 find the first smallest element 
          

i        j swap a[i] & a[j] 
          

45 70  80     65  
          

 i   j      
          

45 50       65  
          

  i        
          

45 50 55    75  65  
          

   i  j     
          

45 50 55 60   75  65  
          

    i    j  
          

45 50 55 60 65  75  70 Find the sixth smallest element 
          

     i   j  
          

45 50 55 60 65 70 75  80 Find the seventh smallest element 
          

      i  j    
          

45 50 55 60 65 70 75  80  
          

       i J  
          

45 50 55 60 65 70 75 80  The outer loop ends. 
          

 
 

                



7.4.1. Non-recursive Program for selection sort: 
 

# include<stdio.h> 
# include<conio.h> 

 
void selectionSort( int low, int high ); 

 
int a[25]; 

 

int main()  
{ 

int num, i= 0; 
clrscr(); 
printf( "Enter the number of elements: " ); 
scanf("%d", &num); 
printf( "\nEnter the elements:\n" ); 
for(i=0; i < num; i++) 

scanf( "%d", &a[i] );  
selectionSort( 0, num - 1 );  
printf( "\nThe elements after sorting are: " ); 
for( i=0; i< num; i++ )  

printf( "%d ", a[i] ); 
return 0; 

} 
 

void selectionSort( int low, int high ) 
{ 

int i=0, j=0, temp=0, minindex; 
for( i=low; i <= high; i++ ) 
{ 

minindex = i; 
for( j=i+1; j <= high; j++ ) 
{ 

if( a[j] < a[minindex] ) 
minindex = j; 

}  
temp = a[i];  
a[i] = a[minindex]; 
a[minindex] = temp; 

} 
} 

 

 

7.4.2. Recursive Program for selection sort: 
 

#include <stdio.h>  
#include<conio.h> 

 
int x[6] = {77, 33, 44, 11, 66}; 
selectionSort(int); 

 

main()  
{ 

int i, n = 0; 
clrscr(); 
printf (" Array Elements before sorting: "); 
for (i=0; i<5; i++) 

 
                



printf ("%d ", x[i]);  
selectionSort(n); /* call selection sort */ 
printf ("\n Array Elements after sorting: "); 
for (i=0; i<5; i++) 

printf ("%d ", x[i]); 
} 

 

selectionSort( int n) 
{ 

int k, p, temp, min; 
if (n== 4) 

return (-1); 
min = x[n]; 
p = n; 
for (k = n+1; k<5; k++) 
{ 

if (x[k] <min) 
{  

min = x[k];  
p = k; 

} 
} 
temp = x[n]; /* interchange x[n] and x[p] */ 
x[n] = x[p]; 
x[p] = temp; 
n++ ; 
selectionSort(n);  

} 
 

 

7.5. Quick Sort: 
 

the first most efficient sorting algorithms. It is an example of a class of algorithms that 
 

 
The quick sort algorithm partitions the original array by rearranging it into two groups. 
The first group contains those elements less than some arbitrary chosen value taken 
from the set, and the second group contains those elements greater than or equal to 
the chosen value. The chosen value is known as the pivot element. Once the array has 
been rearranged in this way with respect to the pivot, the same partitioning procedure 
is recursively applied to each of the two subsets. When all the subsets have been 
partitioned and rearranged, the original array is sorted. 

 
The function partition() makes use of two pointers up and down which are moved 
toward each other in the following fashion: 

 

1.  >= pivot. 
 

2.  
 

3. If down > up, interchange a[down] with a[up] 
 

4. 
 pivot is found and place 

 
 
 

 

                



The program uses a recursive function quicksort(). The algorithm of quick sort function 
 

 

1. It terminates when the condition low >= high is satisfied. This condition will 
be satisfied only when the array is completely sorted. 

 
2. Here we 

calls the partition function to find the proper position j of the element x[low] 
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . . . x[j-1] 
and x[j+1], x[j+2], . . . x[high]. 

 
3. It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . . .  

x[j-1] between positions low and j-1 (where j is returned by the partition 
function). 

 

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high] 
between positions j+1 and high. 

 
The time complexity of quick sort algorithm is of O(n log n). 

 

 

Algorithm 
 
Sorts the elements a[p], . . . . . ,a[q] which reside in the global array a[n] into 
ascending order. The a[n + 1] is considered to be defined and must be greater than all 
elements in a[n]; a[n + 1] = + 

 

quicksort (p, q)  
{ 

if ( p < q ) then 
{ 

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element 
call quicksort(p, j  1); 
call quicksort(j + 1 , q); 

} 
} 

 

partition(a, m, p) 
{ 

v = a[m]; up = m; down = p;  
do  
{    

repeat  
up = up + 1;  

until (a[up] > v);  
    

 

repeat 
down = down  1; 

until (a[down] < v);  
if (up < down) then call interchange(a, up, 

down); } while (up > down); 
 

a[m] = a[down]; 
a[down] = v; 
return (down); 

} 

 

                



interchange(a, up, down)  
{ 

p = a[up]; 
a[up] = a[down]; 
a[down] = p; 

} 
 

 

Example: 
 

an element smaller than pivot. If such elements are found, the elements are swapped. 
 

 
 

Let us consider the following example with 13 elements to analyze quick sort: 
 

 2 3 4 5 6 7  9 10 11 12 13 Remarks 
 

              
 

 08     24  02 58 04 70 45  
 

               

pivot 
   

 
     

 
   

 

            

             
 

pivot    04      79    
 

              
 

pivot 
    

up 
  

down 
     

 

            

             
 

pivot        57      
 

              
 

pivot 
     

 up 
      

 

          
& down  

             
 

 08     38  57 58 79 70 45)  
 

pivot 
    

down up 
       

 

          
& down  

             
 

 08    24         
 

 
 

            
 

            
& down  

            
 

02 (08   04)          
 

 
  

 
 
         

 

            

             
 

    16          
 

               

              
 

               

 
(06  08  

         
 

         
& down  

             
 

              
 

              
 

 
(04) 06 

           
 

           
& down  

             
 

 04             
 

 pivot,             
 

 down,             
 

              
 

    16          
 

    pivot,          
 

              
 

              
 

 04 06 08 16  38        
 

              
 

  
                



       (56 57  79     
 

                 
 

       pivot up       
 

                down 
 

       pivot 45     57   
 

                 
 

       
pivot   

       
 

             
& down  

                
 

          79   57)  
 

       45          
 

                 
 

                & down 
 

                 
 

          79 
 
 57)  

 

         
pivot up     

           
 

          57   79   
 

                 
 

                
 

                  

          58  79)  
 

                & down 
 

         57        
 

                 
 

                 
 

                 
 

            79)  
 

                 
 

           pivot,    
 

               & down 
 

           70      
 

              79   
 

             pivot,  
 

             down,  
 

                
 

         57 58 70  79)  
 

              
 

02 04 06 08 16 24 38 45  57  70 79  
 

                 
 

 
 

 

7.5.1. Recursive program for Quick Sort: 
 

# include<stdio.h> 
# include<conio.h> 

 

void quicksort(int, int); 
int partition(int, int); 
void interchange(int, int); 
int array[25]; 

 

int main() 
{ 

int num, i = 0; 
clrscr(); 
printf( "Enter the number of elements: " ); 
scanf( "%d", &num); 
printf( "Enter the elements: " ); 
for(i=0; i < num; i++) 

scanf( "%d", &array[i] ); 
quicksort(0, num -1); 
printf( "\nThe elements after sorting are: " ); 

 
                



for(i=0; i < num; i++)  
printf("%d ", array[i]); 

return 0; 
} 

 
void quicksort(int low, int high) 
{ 

int pivotpos; 
if( low < high ) 
{ 

pivotpos = partition(low, high + 1); 
quicksort(low, pivotpos - 1); 
quicksort(pivotpos + 1, high); 

} 
} 

 
int partition(int low, int high) 
{ 

int pivot = array[low]; 
int up = low, down = high; 

 

do 
{ 

do 
up = up + 1; 

while(array[up] < pivot ); 
 

do  
down = down - 1; 

while(array[down] > pivot); 
 

if(up < down)  
interchange(up, down); 

 
} while(up < down); 
array[low] = array[down]; 
array[down] = pivot; 
return down;  

} 
 

void interchange(int i, int j)  
{ 

int temp; 
temp = array[i]; 
array[i] = array[j]; 
array[j] = temp; 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 

               



 

Exercises 
 

1. 
time complexity. 

 
2. Find the expected number of passes, comparisons and exchanges for 

bubble 
results with the actual number of operations when the given sequence is as 
follows: 7, 1, 3, 4, 10, 9, 8, 6, 5, 2. 

 
3. 

arr

position of the first such element in the array. 
 

4. -wise and column-wise. Assume 
that the matrix is represented by a two dimensional array. 

 
5. A very large array of elements is to be sorted. The program is to be run on 

a personal computer with limited memory. Which sort would be a better 
choice: Heap sort or Quick sort? Why? 

 

6. Here is an array of ten integers: 5 3 8 9 1 7 0 2 6 4  
Suppose we partition this array using quicksort's partition function and 
using 5 for the pivot. Draw the resulting array after the partition finishes. 

 
7. Here is an array which has just been partitioned by the first step of 

quicksort: 3, 0, 2, 4, 5, 8, 7, 6, 9. Which of these elements could be the 
pivot? (There may be more than one possibility!) 

 
8. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, 

and 2, one at a time, into an initially empty binary heap. 
 

9. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              



 

 
 Multiple Choice Questions    

 What is the worst-case time for serial search finding a single item in an [  ]
 array?     
 A. Constant time C. Logarithmic time    
 B. Quadratic time D. Linear time    

 What is the worst-case time for binary search finding a single item in an [  ]
 array?     
 A. Constant time C. Logarithmic time    
 B. Quadratic time D. Linear time    

 What additional requirement is placed on an array, so that binary search [  ]
 may be used to locate an entry?     
 A. The array elements must form a heap.    
 B. The array must have at least 2 entries    
 C. The array must be sorted.     
 D. The array's size must be a power of two.    

 Which searching can be performed recursively ? [  ]
 A. linear search C. Binary search    
 B. both D. none    

 Which searching can be performed iteratively ? [  ]
 A. linear search C. Binary search    
 B. both D. none    

 In a selection sort of n elements, how many times is the swap function [  ]
 called in the complete execution of the algorithm?    
 A. 1 C. n  1    

 B. n2 D. n log n    

 Selection sort and quick sort both fall into the same category of sorting [  ]
 algorithms. What is this category?     
 A. O(n log n) sorts C. Divide-and-conquer sorts    
 B. Interchange sorts D. Average time is quadratic    

 Suppose that a selection sort of 100 items has completed 42 iterations of [  ]
 the main loop. How many items are now guaranteed to be in their final spot    
 (never to be moved again)?     
 A. 21 C. 42    
 B. 41 D. 43    

 When is insertion sort a good choice for sorting an array? [  ]
 A. Each component of the array requires a large amount of memory    
 B. The array has only a few items out of place     

C. Each component of the array requires a small amount of memory 
D. The processor speed is fast 

 
 

 
 
 
 
 
 
 
                



 What is the worst-case time for quick sort to sort an array of n elements? [  ]
 A. O(log n) C. O(n log n)    
 B. O(n) D. O(n²)    

 Suppose we are sorting an array of eight integers using quick sort, and we [  ]
 have just finished the first partitioning with the array looking like this:    
 2 5 1 7 9 12 11 10   Which statement is correct?    
 A. The pivot could be either the 7 or the 9.    
 B. The pivot is not the 7, but it could be the 9.    
 C. The pivot could be the 7, but it is not the 9.    
 D. Neither the 7 nor the 9 is the pivot    

 What is the worst-case time for heap sort to sort an array of n elements? [  ]
 A. O(log n) C. O(n log n)    
 B. O(n) D. O(n²)    

 Suppose we are sorting an array of eight integers using heap sort, and we [  ]
 have just finished one of the reheapifications downward. The array now    
 looks like this: 6 4 5 1 2 7 8     
 How many reheapifications downward have been performed so far?    
 A. 1 C. 2    
 B. 3 or 4 D. 5 or 6    

 Time complexity of inserting an element to a heap of n elements is of the [  ]
 order of     
 A. log2 n C. n log2n    

 B. n2 D. n    

 A min heap is the tree structure where smallest element is available at the [  ]
 A. leaf C. intermediate parent    
 B. root D. any where    

 In the quick sort method , a desirable choice for the portioning element will [  ]
 be     
 A. first element of list C. median of list    
 B. last element of list D. any element of list    

 Quick sort is also known as  [  ]
 A. merge sort C. heap sort    
 B. bubble sort D. none    

 Which design algorithm technique is used for quick sort . [  ]
 A. Divide and conqueror C. backtrack    
 B. greedy D. dynamic programming    

 Which among the following is fastest sorting technique (for unordered data) [  ]
 A. Heap sort C. Quick Sort    
 B. Selection Sort D. Bubble sort    

 In which searching technique elements are eliminated by half in each pass . [  ]
 A. Linear search C. Binary search    
 B. both D. none    

 Running time of Heap sort algorithm is -----. [  ]
 A. O( log2 n) C. O(n)    

 B. A. O( n log2 n) D. O(n2)    
 
 

 
                



 Running time of Bubble sort algorithm is -----. [  ]
 A. O( log2 n) C. O(n)    

 B. A. O( n log2 n) D. O(n2)    

 Running time of Selection sort algorithm is -----. [  ]
 A. O( log2 n) C. O(n)    

 B. A. O( n log2 n) D. O(n2)    

 The Max heap constructed from the list of numbers 30,10,80,60,15,55 is [  ]
 A. 60,80,55,30,10,15 C. 80,55,60,15,10,30    
 B. 80,60,55,30,10,15 D. none    

 The number of swappings needed to sort the numbers 8,22,7,9,31,19,5,13 [  ]
 in ascending order using bubble sort is    
 A. 11 C. 13    
 B. 12 D. 14    

 Time complexity of insertion sort algorithm in best case is [  ]
 A. O( log2 n) C. O(n)    

 B. A. O( n log2 n) D. O(n2)    

 Binary search algorithm performs efficiently on a [  ]
 A. linked list C. array    
 B. both D. none    

 Which is a stable sort ?  [  ]
 A. Bubble sort C. Quick sort    
 B. Selection Sort D. none    

 Heap is a good data structure to implement [  ]
 A. priority Queue C. linear queue    
 B. Deque D. none    

 Always Heap is a  [  ]
 A. complete Binary tree C. Full Binary tree    
 B. Binary Search Tree D. none    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                


