

Chapter

7

Searching and Sorting

There are basically two aspects of computer programming. One is data
organization also commonly called as data structures. Till now we have seen
about data structures and the techniques and algorithms used to access
them. The other part of computer programming involves choosing the
appropriate algorithm to solve the problem. Data structures and algorithms
are linked each other. After developing programming techniques to represent
information, it is logical to proceed to manipulate it. This chapter introduces
this important aspect of problem solving.

Searching is used to find the location where an element is available. There are two
types of search techniques. They are:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is
a way in which the elements are organized systematically for some purpose. For
example, a dictionary in which words is arranged in alphabetical order and telephone
director in which the subscriber names are listed in alphabetical order. There are many
sorting techniques out of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and

4. Heap sort

There are two types of sorting techniques:

1. Internal sorting

2. External sorting

If all the elements to be sorted are present in the main memory then such sorting is
called internal sorting on the other hand, if some of the elements to be sorted are
kept on the secondary storage, it is called external sorting. Here we study only
internal sorting techniques.

7.1. Linear Search:

This is the simplest of all searching techniques. In this technique, an ordered or
unordered list will be searched one by one from the beginning until the desired element
is found. If the desired element is found in the list then the search is successful
otherwise unsuccessful.

 elements organized sequentially on a List. The number of
comparisons required to retrieve an element from the list, purely depends on where the
element is stored in the list. If it is the first element, one comparison will do; if it is
second element two comparisons are necessary and so on. On an average you need

search an element. If search is not successful, you would
 comparisons.

The time complexity of linear search is O(n).

Algorithm:

linsrch(a[n], x)
{

index = 0;
flag = 0;
while (index < n) do
{

if (x == a[index])
{

flag = 1;
break;

}
index ++;

}
if(flag == 1)

else

}

Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for:

 at 4 elements before success

 look at 10 elements before success

fore failure.

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8
Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

1. Searching for x = 7Search successful, data found at 3rd position.

2. Searching for x = 82Search successful, data found at 7th position.

3. Searching for x = 42Search un-successful, data not found.

7.1.1. A non-recursive program for Linear Search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be Searched: ");
scanf("%d", &data);
for(i = 0; i < n; i++)
{

if(number[i] == data)
{

flag = 1;
break;

}
}
if(flag == 1)

printf("\n Data found at location: %d", i+1);
else

printf("\n Data not found ");
}

7.1.2. A Recursive program for linear search:

include <stdio.h>
include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

if(position < n)

{
if(a[position] == data)

printf("\n Data Found at %d ", position);
else

linear_search(a, data, position + 1, n);
}
else

printf("\n Data not found");
}

void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
printf("\n Enter the element to be seached: ");
scanf("%d", &data);
linear_search(a, data, 0, n);
getch();

}

7.2. BINARY SEARCH

1 < x2 n . When we

 successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and

s a[mid]. Similarly, if
a[mid] > x, then further search is only necessary in that part of the file which follows
a[mid].

If we use recursive procedure of finding the middle key a[mid] of the un-searched
portion of a file, then every un-successful comparis
roughly half the un-searched portion from consideration.

2n times before reaching a

trivial length, the worst case complexity of Binary search is about log2n.

Algorithm:

Let array a[n] of elements in increasing order, n
and if so, set j such that x = a[j] else return 0.

binsrch(a[], n, x)
{

low = 1; high = n;
while (low < high) do
{

mid = (low + high)/2
if (x < a[mid])

high = mid 1;
else if (x > a[mid])

low = mid + 1;
else return mid;

}
return 0;

}

low and high
found or low is increased by at least one or high is decreased by at least one. Thus we
have two sequences of integers approaching each other and eventually low will become
greater than high

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12

Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, found

If we are searching for x = 24: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24, found

If we are searching for x = 38: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 8, mid = 15/2 = 7, check 24
low = 8, high = 8, mid = 16/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, found

The number of comparisons necessary by search element:

20 requires 1 comparison;
8 and 39 requires 2 comparisons;
4, 9, 24, 54 requires 3 comparisons and
7, 16, 38, 45, 77 requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding
37/12 or approximately 3.08 comparisons per successful search on the average.

Example 2:

Let us illustrate binary search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8

Elements -15 -6 0 7 9 23 54 82 101

Solution:

The number of comparisons required for searching different elements is as follows:

1. If we are searching for x = 101: (Number of comparisons = 4)
low high mid
1 9
6 9
8 9
9 9 9
 found

2. Searching for x = 82: (Number of comparisons = 3)
 high mid

1 9
6 9
8 9

 found

3. Searching for x = 42: (Number of comparisons = 4)
 high

1 9
6 9
6 6

7 6 not found

4. Searching for x = -14: (Number of comparisons = 3)
 high mid

1 9 5
1 4 2
1 1 1
2 1 not found

Continuing in this manner the number of element comparisons needed to find each of
nine elements is:

 1 3 4 5 6 9

 -6 0 7 9 23 54

Comparisons 3 3 4 1 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons
needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77
comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending
upon the value of x.

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7)
< x < a(8) the algorithm requires 3 element comparisons
present. For all of the remaining possibilities BINSRCH requires 4 element comparisons.

Thus the average number of element comparisons for an unsuccessful search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an
unsuccessful search is O(log n).

7.2.1. A non-recursive program for binary search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
low = 0; high = n-1;
while(low <= high)
{

mid = (low + high)/2;
if(number[mid] == data)
{

flag = 1;
break;

}
else
{

if(data < number[mid])
high = mid - 1;

else
low = mid + 1;

}
}
if(flag == 1)

printf("\n Data found at location: %d", mid + 1);
else

printf("\n Data Not Found ");
}

7.2.2. A recursive program for binary search:

include <stdio.h>
include <conio.h>

void bin_search(int a[], int data, int low, int high)
{

int mid ;
if(low <= high)
{

mid = (low + high)/2;
if(a[mid] == data)

printf("\n Element found at location: %d ", mid + 1);
else
{

if(data < a[mid])
bin_search(a, data, low, mid-1);

else

bin_search(a, data, mid+1, high);
}

}
else

printf("\n Element not found");
}
void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &a[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
bin_search(a, data, 0, n-1);
getch();

}

7.3. Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to
pass through the file sequentially several times. In each pass, we compare each
element in the file with its successor i.e., X[i] with X[i+1] and interchange two element
when they are not in proper order. We will illustrate this sorting technique by taking a
specific example. Bubble sort is also called as exchange sort.

Example:

Consider the array x[n] which is stored in memory as shown below:

X[0] X[2] X[4]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the
array 5 times as described below:

Pass 1: (first element is compared with all other elements).

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1]
if X[i] > X[i+1]. The process is shown below:

 X[1] X[3] Remarks

 44 11 66 55

 22

 44

 44 66

 55 66

 22 44 55 66

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared).

i.e., we compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1]
if X[i] > X[i+1]. The process is shown below:

 X[4] Remarks

33 22 11 55

22 33

 11 33

 33

 55

22 11 33 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared).

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this,
we move the third biggest number 44 to X[3].

X[0] X[3] Remarks

22 11 33 44

11 22

 22 33

 33 44

11 22 33 44

Pass 4: (fourth element is compared).

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth
biggest number 33 to X[2].

 Remarks

11 22

11 22

 22

Pass 5: (fifth element is compared).

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the
fifth biggest number 22 to X[1]. At this time, we will have the smallest number 11 in
X[0]. Thus, we see that we can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

7.3.1. Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>
void bubblesort(int x[], int n)
{

int i, j, temp;
for (i = 0; i < n; i++)
{

for (j = 0; j < n i-1 ; j++)
{

if (x[j] > x[j+1])
{

temp = x[j];
x[j] = x[j+1];
x[j+1] = temp;

}
}

}
}

main()
{

int i, n, x[25];
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter Data:");
for(i = 0; i < n ; i++)

scanf("%d", &x[i]);
bubblesort(x, n);
printf ("\n Array Elements after sorting: ");
for (i = 0; i < n; i++)

printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1)
comparisons on each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2
 2n + 1, which is O(n2). Therefore bubble sort is very inefficient when there are more

elements to sorting.

7.4. Selection Sort:

Selection sort will not require no more than n-1 interchanges. Suppose x is an array of
size n stored in memory. The selection sort algorithm first selects the smallest element
in the array x and place it at array position 0; then it selects the next smallest element
in the array x and place it at array position 1. It simply continues this procedure until it
places the biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed in its
respective position in the array as detailed below:

Pass 1: Find the location j of the smallest element in the array x [0], x[1], x[n-1],
and then interchange x[j] with x[0]. Then x[0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest element in the
sub-array x[1], x[2], x[n-1], and then interchange x[1] with x[j]. Then
x[0], x[1] are sorted.

Pass 3: Leave the first two elements and find the location j of the smallest element in

the sub-array x[2], x[3], x[n-1], and then interchange x[2] with x[j].
Then x[0], x[1], x[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements x[n-2] and x[n-1], and

then interchange x[j] and x[n-2]. Then x[0], x[1], x[n-2] are sorted. Of
course, during this pass x[n-1] will be the biggest element and so the entire
array is sorted.

Time Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort
requires exclusive swapping. In spite of superiority of the selection sort over bubble

sort and the insertion sort (there is significant decrease in run time), its efficiency is

also O(n2) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort:

1 3 6 8

 70 80 45 find the first smallest element

i j swap a[i] & a[j]

45 70 80 65

 i j

45 50 65

 i

45 50 55 75 65

 i j

45 50 55 60 75 65

 i j

45 50 55 60 65 75 70 Find the sixth smallest element

 i j

45 50 55 60 65 70 75 80 Find the seventh smallest element

 i j

45 50 55 60 65 70 75 80

 i J

45 50 55 60 65 70 75 80 The outer loop ends.

7.4.1. Non-recursive Program for selection sort:

include<stdio.h>
include<conio.h>

void selectionSort(int low, int high);

int a[25];

int main()
{

int num, i= 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("\nEnter the elements:\n");
for(i=0; i < num; i++)

scanf("%d", &a[i]);
selectionSort(0, num - 1);
printf("\nThe elements after sorting are: ");
for(i=0; i< num; i++)

printf("%d ", a[i]);
return 0;

}

void selectionSort(int low, int high)
{

int i=0, j=0, temp=0, minindex;
for(i=low; i <= high; i++)
{

minindex = i;
for(j=i+1; j <= high; j++)
{

if(a[j] < a[minindex])
minindex = j;

}
temp = a[i];
a[i] = a[minindex];
a[minindex] = temp;

}
}

7.4.2. Recursive Program for selection sort:

#include <stdio.h>
#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};
selectionSort(int);

main()
{

int i, n = 0;
clrscr();
printf (" Array Elements before sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
selectionSort(n); /* call selection sort */
printf ("\n Array Elements after sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
}

selectionSort(int n)
{

int k, p, temp, min;
if (n== 4)

return (-1);
min = x[n];
p = n;
for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];
p = k;

}
}
temp = x[n]; /* interchange x[n] and x[p] */
x[n] = x[p];
x[p] = temp;
n++ ;
selectionSort(n);

}

7.5. Quick Sort:

the first most efficient sorting algorithms. It is an example of a class of algorithms that

The quick sort algorithm partitions the original array by rearranging it into two groups.
The first group contains those elements less than some arbitrary chosen value taken
from the set, and the second group contains those elements greater than or equal to
the chosen value. The chosen value is known as the pivot element. Once the array has
been rearranged in this way with respect to the pivot, the same partitioning procedure
is recursively applied to each of the two subsets. When all the subsets have been
partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers up and down which are moved
toward each other in the following fashion:

1. >= pivot.

2.

3. If down > up, interchange a[down] with a[up]

4.
 pivot is found and place

The program uses a recursive function quicksort(). The algorithm of quick sort function

1. It terminates when the condition low >= high is satisfied. This condition will
be satisfied only when the array is completely sorted.

2. Here we

calls the partition function to find the proper position j of the element x[low]
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], x[j-1]
and x[j+1], x[j+2], . . . x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1],

x[j-1] between positions low and j-1 (where j is returned by the partition
function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high]
between positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Algorithm

Sorts the elements a[p], ,a[q] which reside in the global array a[n] into
ascending order. The a[n + 1] is considered to be defined and must be greater than all
elements in a[n]; a[n + 1] = +

quicksort (p, q)
{

if (p < q) then
{

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element
call quicksort(p, j 1);
call quicksort(j + 1 , q);

}
}

partition(a, m, p)
{

v = a[m]; up = m; down = p;
do
{

repeat
up = up + 1;

until (a[up] > v);

repeat
down = down 1;

until (a[down] < v);
if (up < down) then call interchange(a, up,

down); } while (up > down);

a[m] = a[down];
a[down] = v;
return (down);

}

interchange(a, up, down)
{

p = a[up];
a[up] = a[down];
a[down] = p;

}

Example:

an element smaller than pivot. If such elements are found, the elements are swapped.

Let us consider the following example with 13 elements to analyze quick sort:

 2 3 4 5 6 7 9 10 11 12 13 Remarks

 08 24 02 58 04 70 45

pivot

pivot 04 79

pivot

up

down

pivot 57

pivot

 up

& down

 08 38 57 58 79 70 45)

pivot

down up

& down

 08 24

& down

02 (08 04)

 16

(06 08

& down

(04) 06

& down

 04

 pivot,

 down,

 16

 pivot,

 04 06 08 16 38

 (56 57 79

 pivot up

 down

 pivot 45 57

pivot

& down

 79 57)

 45

 & down

 79

 57)

pivot up

 57 79

 58 79)

 & down

 57

 79)

 pivot,

 & down

 70

 79

 pivot,

 down,

 57 58 70 79)

02 04 06 08 16 24 38 45 57 70 79

7.5.1. Recursive program for Quick Sort:

include<stdio.h>
include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);
int array[25];

int main()
{

int num, i = 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("Enter the elements: ");
for(i=0; i < num; i++)

scanf("%d", &array[i]);
quicksort(0, num -1);
printf("\nThe elements after sorting are: ");

for(i=0; i < num; i++)
printf("%d ", array[i]);

return 0;
}

void quicksort(int low, int high)
{

int pivotpos;
if(low < high)
{

pivotpos = partition(low, high + 1);
quicksort(low, pivotpos - 1);
quicksort(pivotpos + 1, high);

}
}

int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do
{

do
up = up + 1;

while(array[up] < pivot);

do
down = down - 1;

while(array[down] > pivot);

if(up < down)
interchange(up, down);

} while(up < down);
array[low] = array[down];
array[down] = pivot;
return down;

}

void interchange(int i, int j)
{

int temp;
temp = array[i];
array[i] = array[j];
array[j] = temp;

}

Exercises

1.
time complexity.

2. Find the expected number of passes, comparisons and exchanges for

bubble
results with the actual number of operations when the given sequence is as
follows: 7, 1, 3, 4, 10, 9, 8, 6, 5, 2.

3.

arr

position of the first such element in the array.

4. -wise and column-wise. Assume
that the matrix is represented by a two dimensional array.

5. A very large array of elements is to be sorted. The program is to be run on

a personal computer with limited memory. Which sort would be a better
choice: Heap sort or Quick sort? Why?

6. Here is an array of ten integers: 5 3 8 9 1 7 0 2 6 4
Suppose we partition this array using quicksort's partition function and
using 5 for the pivot. Draw the resulting array after the partition finishes.

7. Here is an array which has just been partitioned by the first step of

quicksort: 3, 0, 2, 4, 5, 8, 7, 6, 9. Which of these elements could be the
pivot? (There may be more than one possibility!)

8. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13,

and 2, one at a time, into an initially empty binary heap.

9. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort.

 Multiple Choice Questions

 What is the worst-case time for serial search finding a single item in an []
 array?
 A. Constant time C. Logarithmic time
 B. Quadratic time D. Linear time

 What is the worst-case time for binary search finding a single item in an []
 array?
 A. Constant time C. Logarithmic time
 B. Quadratic time D. Linear time

 What additional requirement is placed on an array, so that binary search []
 may be used to locate an entry?
 A. The array elements must form a heap.
 B. The array must have at least 2 entries
 C. The array must be sorted.
 D. The array's size must be a power of two.

 Which searching can be performed recursively ? []
 A. linear search C. Binary search
 B. both D. none

 Which searching can be performed iteratively ? []
 A. linear search C. Binary search
 B. both D. none

 In a selection sort of n elements, how many times is the swap function []
 called in the complete execution of the algorithm?
 A. 1 C. n 1

 B. n2 D. n log n

 Selection sort and quick sort both fall into the same category of sorting []
 algorithms. What is this category?
 A. O(n log n) sorts C. Divide-and-conquer sorts
 B. Interchange sorts D. Average time is quadratic

 Suppose that a selection sort of 100 items has completed 42 iterations of []
 the main loop. How many items are now guaranteed to be in their final spot
 (never to be moved again)?
 A. 21 C. 42
 B. 41 D. 43

 When is insertion sort a good choice for sorting an array? []
 A. Each component of the array requires a large amount of memory
 B. The array has only a few items out of place

C. Each component of the array requires a small amount of memory
D. The processor speed is fast

 What is the worst-case time for quick sort to sort an array of n elements? []
 A. O(log n) C. O(n log n)
 B. O(n) D. O(n²)

 Suppose we are sorting an array of eight integers using quick sort, and we []
 have just finished the first partitioning with the array looking like this:
 2 5 1 7 9 12 11 10 Which statement is correct?
 A. The pivot could be either the 7 or the 9.
 B. The pivot is not the 7, but it could be the 9.
 C. The pivot could be the 7, but it is not the 9.
 D. Neither the 7 nor the 9 is the pivot

 What is the worst-case time for heap sort to sort an array of n elements? []
 A. O(log n) C. O(n log n)
 B. O(n) D. O(n²)

 Suppose we are sorting an array of eight integers using heap sort, and we []
 have just finished one of the reheapifications downward. The array now
 looks like this: 6 4 5 1 2 7 8
 How many reheapifications downward have been performed so far?
 A. 1 C. 2
 B. 3 or 4 D. 5 or 6

 Time complexity of inserting an element to a heap of n elements is of the []
 order of
 A. log2 n C. n log2n

 B. n2 D. n

 A min heap is the tree structure where smallest element is available at the []
 A. leaf C. intermediate parent
 B. root D. any where

 In the quick sort method , a desirable choice for the portioning element will []
 be
 A. first element of list C. median of list
 B. last element of list D. any element of list

 Quick sort is also known as []
 A. merge sort C. heap sort
 B. bubble sort D. none

 Which design algorithm technique is used for quick sort . []
 A. Divide and conqueror C. backtrack
 B. greedy D. dynamic programming

 Which among the following is fastest sorting technique (for unordered data) []
 A. Heap sort C. Quick Sort
 B. Selection Sort D. Bubble sort

 In which searching technique elements are eliminated by half in each pass . []
 A. Linear search C. Binary search
 B. both D. none

 Running time of Heap sort algorithm is -----. []
 A. O(log2 n) C. O(n)

 B. A. O(n log2 n) D. O(n2)

 Running time of Bubble sort algorithm is -----. []
 A. O(log2 n) C. O(n)

 B. A. O(n log2 n) D. O(n2)

 Running time of Selection sort algorithm is -----. []
 A. O(log2 n) C. O(n)

 B. A. O(n log2 n) D. O(n2)

 The Max heap constructed from the list of numbers 30,10,80,60,15,55 is []
 A. 60,80,55,30,10,15 C. 80,55,60,15,10,30
 B. 80,60,55,30,10,15 D. none

 The number of swappings needed to sort the numbers 8,22,7,9,31,19,5,13 []
 in ascending order using bubble sort is
 A. 11 C. 13
 B. 12 D. 14

 Time complexity of insertion sort algorithm in best case is []
 A. O(log2 n) C. O(n)

 B. A. O(n log2 n) D. O(n2)

 Binary search algorithm performs efficiently on a []
 A. linked list C. array
 B. both D. none

 Which is a stable sort ? []
 A. Bubble sort C. Quick sort
 B. Selection Sort D. none

 Heap is a good data structure to implement []
 A. priority Queue C. linear queue
 B. Deque D. none

 Always Heap is a []
 A. complete Binary tree C. Full Binary tree
 B. Binary Search Tree D. none

