Hyperfine Structure

spectral resolution Increasing

	Energy (eV)	Effects
Gross structure of spectral lines	1-10	electron-nuclear attraction Electron kinetic energy Electron-electron repulsion
Fine structure of spectral lines	0.001 - 0.01	Spin-orbit interaction Relativistic corrections
Hyperfine structure	10 ⁻⁶ - 10 ⁻⁵	Nuclear interactions

Hyperfine structure (hfs)

(1) Due to different isotopes (Isotope effect)

atoms of a chemical element with the same atomic number and nearly identical chemical behaviour but with different atomic masses and physical properties.

$$R = \frac{2 \pi^2 e^4 (mM)}{ch^3 (M+m)}$$
$$\overline{\upsilon} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

different isotopes of same element have slightly different spectral lines

Hfs => discovered for atoms with only one isotope

=> hypothesis abandoned

(2) Due to interaction of nuclear magnetic moment with total angular momentum

Later => Pauli and Russell => hfs due to interaction between I and J

Finally => hfs due to both (1) and (2)

Nucleus has magnetic moment μ_I

 \Rightarrow The interaction between μ_I and the magnetic field B_J generated by the electrons at the site of the nucleus.

$$\Rightarrow$$
 U_{hfs} = - μ_{I} . **B**_J

=> Atoms with one isotope can produce hfs.

Spin – orbit interaction

Hf interaction

Nucleus has intrinsic spin I

$$|I| = \sqrt{I(I+1)}\hbar$$

$$I_z = m_I\hbar; \qquad m_{I=}-I - \dots + I$$

Nuclear magnetic moment $\mu_I = g_I \, \frac{\mu_N}{\hbar} \, I$

$$\mu_{\rm N} = \frac{e\hbar}{2m_p}$$
$$\mu_{\rm N} = \frac{\mu_{\rm B}}{1836} <<<\mu_{\rm B}$$

 $=> U_{hfs} <<< U_{ls}$

 $\mu_{\rm N} = 5.050783699(31) \times 10^{-27} \text{ J/T}$

μ_B = 9.274009994(57)×10⁻²⁴ J/T

=> There is small effect on energy levels because of hyperfine splitting

Isotope structure => hfs due to different isotopes of the same element.

Eg. Tungsten (3 isotopes)

Explanation

Transition n=4 -> n=2

$$\overline{\upsilon} = \frac{1}{\lambda} = \mathsf{R} \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$

 λ = 4861.33 Å If it is seen through h.r.p. instrument it shows hfs.

Why????

$$R = \frac{2\pi^2 e^4(mM)}{ch^3(M+m)}$$

=> Different isotopes have different values of R.

In the case of hydrogen

$$\overline{\upsilon_{H}} = \frac{1}{\lambda_{H}} = R_{H} \left[\frac{1}{2^{2}} - \frac{1}{4^{2}} \right]$$

$$\overline{\upsilon_{D}} = \frac{1}{\lambda_{D}} = R_{D} \left[\frac{1}{2^{2}} - \frac{1}{4^{2}} \right]$$

$$\overline{\upsilon_{T}} = \frac{1}{\lambda_{T}} = R_{T} \left[\frac{1}{2^{2}} - \frac{1}{4^{2}} \right]$$

$$\Delta \lambda = -1.32 \text{ Å}$$

$$\lambda_{D} = 4860.01 \text{ Å}$$

= 4860.01 Å

Hyperfine structure due to a nuclear magnetic and mechanical moment

Example – Tantalum (eight components)

Experimental observation by Back
and
Interpretation by GoudsmitRevealed for the first time that a new quantum vector should be added to
the atom model and the Lande interval rule for the fine structure also
applies to hfs.

The total mechanical moment of all extranuclear electrons J^* (j^* for one electron) is coupled with the quantum vector I^* representing the total mechanical moment of the nucleus ($I^*\hbar$) to form a resultant F^*

=> Total mechanical momentum of the atom is $F^*\hbar$.

Goudsmit and Back has shown that just as the interaction energy between L^{*} and S^{*} Is proportional to the cosine of the angle between them, so the interaction energy between the nuclear moment I^{*} and the electron moment J^{*} is given by

 $\Gamma_F = A'I^*J^*\cos\left(I^*J^*\right)$

Where $A'I^*J^*$ is constant for each given fine structure level J, and A' is a measure of the strength of coupling between I^* and J^* .

I takes 0 (even N even Z) half (even Z odd N or odd Z even N) or whole integral values (odd Z odd N)

F => I - J to I + J when $I \ge J$ and from J - I to J + I if $J \ge I$

$$\Gamma_{F} = A'I^{*}J^{*}\cos(I^{*}J^{*})$$

$$\Gamma_{F} = A'I^{*}J^{*}\cos(I^{*}J^{*})$$

$$\Gamma_{F} = \frac{A'}{J^{*}} \begin{bmatrix} F^{*}J^{*} - I^{*}J^{*} \\ F^{*}J^{*} & F^{*}J^{*} \end{bmatrix} = -\frac{Go}{J^{*}J^{*}}$$

$$\Gamma^{*}J^{*} & Go(I^{*}J^{*}) = \frac{I^{*}J^{*}}{2I^{*}J^{*}}$$

$$\Gamma^{*}J^{*} & Go(I^{*}J^{*}) = \frac{F^{*}J^{*}}{2I^{*}J^{*}}$$

$$\Gamma_{F} = \frac{A'}{2} \begin{bmatrix} F^{*}J^{*} - I^{*}J^{*} \\ F^{*}J^{*} - I^{*}J^{*} \end{bmatrix}$$

$$= \frac{A'}{2} \begin{bmatrix} F(F_{+}i) - I/(I_{+}i) - J(J_{+}i) \end{bmatrix}$$

Spacing – Lande Interval rule

The spacing between consecutive levels of a hfs multiplet is proportional to (F+1) ie. Larger F value involved.

$$\Gamma_{F+1} - \Gamma_F = \mathsf{A'} (\mathsf{F+1})$$
$$\Delta \Gamma = \mathsf{A'} (\mathsf{F+1})$$

Hyperfine Structure of 3 ²P_{3/2}

Observed value of I = 3/2

First calculate value of F

Value of Γ_F

$$I = \frac{9}{2}, 7 = \frac{5}{2} \quad L = 2 \quad s = \frac{1}{2}$$

$$F = \frac{9}{2} + \frac{5}{2} \quad t_{0} \quad \frac{9}{2} - \frac{5}{2} \quad \Rightarrow 7 + 02$$

$$F = 7, 6, 5, 4, 3, 2$$

$$\Gamma_{f} \quad for \quad F = 7$$

$$\Gamma_{f} \quad for \quad F = 7$$

$$\Gamma_{F} = \frac{A'}{2} \left[\frac{7 \times 8 - \frac{9}{2} \times \frac{11}{2} - \frac{5}{2} \times \frac{7}{2} \right]$$

$$= + \frac{45A'}{24}$$

FF + 45/4 A1 + 17/4 A1 7 6 -ZA' 5 -27 A1 - 45/4 A1 - 55/4 A1 43 2

The difference between levels are 3A', 4A', 5A', 6A' & 7A' values propartional to the larger F Values.

Since the value of I for a given storm is the Same for all terms is all states of tonization, Fi usually witten by a small subscript to the left of the term. '0' → oddness of the electron configuration and terms. All spectrum terms arising from an electron configuration

for which the sum of l'values = even -> (even terms)

$$\overline{I} \cdot \overline{J} = \text{IJ cos (IJ)}$$

Normal and Inverted terms

A <u>normal term</u> is defined as one in which hfs level with the <u>smallest F(J)</u> <u>lies deepest</u> on the energy level diagram And an inverted term is one in which the largest F(J) lies deepest on the energy level diagram

For normal terms A['] = +ve

For inverted terms A['] = - ve

The selection rule for F in hfs are just the same as those for J in the fine structure

 $\Delta F = 0, \pm 1$

If $I \le J$; the level will split into 2I + 1 hfs levels

If $J \le I$; the level will split into 2J + 1 hfs levels

Interaction of a single valence e^- with the nucleus may be divided site 2 ports (1) Just of L^* with I^* W_{II} (2) Just of A^+ with I^* W_{IS} $\frac{W_{IS}}{Arc.}$ & Classical electromagnetic theory. He electric field at the nucleur due to the electron at a destance ris quier by $\overline{E} = \frac{e}{r^2} \hat{r}$ $= \frac{c \bar{r}}{r^3}$

the map field at the nucleus due to the orbital motion
of the electron is

$$\begin{aligned}
H &= \frac{E \times U}{C} \\
&= \frac{e}{c \tau^{2}} \overline{\tau} \times \overline{U} \\
&\stackrel{?}{\longrightarrow} \frac{U^{*}h}{2\pi} = m \overline{\tau} \times \overline{U} \\
&\stackrel{\Rightarrow}{\Rightarrow} \overline{\tau} \times \overline{U} = \frac{U^{*}h}{2\pi} \\
&\stackrel{H}{=} \frac{e}{c\tau^{2}} \frac{U^{*}h}{2\pi} \\
&\stackrel{H}{=} \frac{e}{mc} \frac{U^{*}h}{2\pi} \left(\frac{1}{\tau^{2}}\right) \\
&\stackrel{?}{\longrightarrow} \tau \rightarrow ndc const in any orbit \\
&\stackrel{\Rightarrow}{\Rightarrow} \left(\frac{1}{\tau^{2}}\right) must be averaged.
\end{aligned}$$

nucleus with a mechanical moment I_{att}^{*h} and a magnetic moment lit tends to carry out a Larmor procession around the field with an angular velocity ω_{L} given by the product of the field strength H and the ratio between the magnetic and mechanical moment

$$\frac{dt_{I}}{I + \frac{1}{2\pi}} = g_{I} \frac{e}{2mc} \quad g_{I} \Rightarrow \text{nuclear } g \text{ factor}$$

$$\frac{I + \frac{1}{2\pi}}{I} = g_{I} \frac{e}{2mc} \quad g_{I} \Rightarrow \text{nuclear } g \text{ factor}$$

$$\frac{L = H \cdot \frac{U_{I}}{I}}{I} = \frac{e}{mc} \frac{J^{*}h}{2\pi} \left(\frac{1}{r^{3}}\right) g_{I} \frac{e}{2mc}$$

$$\omega_{L} = g_{I} \frac{e^{2}}{2mc} \frac{J^{*}h}{2\pi} \left(\frac{1}{r^{3}}\right)$$

The interaction energy is given by the product ω_{L} and the projection of the nuclear matchenical moment $I_{\perp TT}^{4}$ on L^{4} . $W_{IE} = \omega_{L} \times \text{projection of } I_{\perp TT}^{4}$ on L^{4} $= g_{I} \frac{e^{2}}{2m^{2}c^{2}} \frac{L^{4}h}{2\pi c} \left(\frac{1}{\pi^{3}}\right) \frac{T^{4}h}{2\pi c} \cos(T^{4}L^{4})$.

Since 1* precess around y* and y* and I* in turn precess around their resultant F*, the above cosme is Cos(I*Q*) must be averaged.

 $los(I^{*}l^{*}) = cos(I^{*}q^{*}) cos(l^{*}q^{*})$

$$\frac{W_{ZS}}{Atc. bs} classical electromagnetic theory I he mutualenergy of two magnetic depiles with moments $M_{II} + M_{S}$
and at a distance r about is equal to
$$W_{IS} = \frac{M_{II}M_{S}}{r^{2}} \int cos(M_{II}M_{S}) - 3\cos(M_{II}r) cos(M_{II}r) \\$$

below $M_{SI} = -2 \frac{e}{2\pi c} \frac{\delta^{*}h}{2\pi c}$
mean value by the use of direction
cosinio$$

$$-\frac{1}{2} \cos \left(I^{*} d^{*} \right) \begin{cases} \cos \left(j^{*} \delta^{*} \right) - 3 \cos \left(j^{*} l^{*} \right) \cos \left(\delta^{*} l^{*} \right) \end{cases}$$
Inserting the value
$$W_{IS} = + \frac{e}{2\pi} \frac{e}{2\pi\pi} \frac{I^{*} h}{2\pi\pi} \frac{e}{2\pi\pi} \left(\frac{I}{2\pi} \right) \frac{1}{2} \cos \left(I^{*} d^{*} \right)$$

$$\int \cos \left(j^{*} s^{*} \right) - 3 \cos \left(j^{*} l^{*} \right) \cos \left(\delta^{*} l^{*} \right)$$

$$= 9 z \frac{e^{2} h^{2}}{2m^{2} c^{2}} \frac{I^{*} h}{2\pi} s^{*} \frac{h}{2\pi} \left(\frac{I}{2\pi} \right) \frac{1}{2} \cos \left(I^{*} d^{*} \right) \left(\cos \left(j^{*} s^{*} \right) - 3 \cos \left(j^{*} l^{*} \right) \cos \left(\delta^{*} l^{*} \right) \right)$$
Adding two interation energies
$$F_{F} = W_{IS} + W_{IS}$$

$$\begin{split} & \forall s = \frac{1}{2} \frac{e^{2}}{2m^{2}c^{4}} \frac{4^{2}h}{2\pi} \left(\frac{1}{y^{2}} \right) \frac{\pi^{2}h}{2\pi} \cos \left(T_{q}^{4} \right) \cos \left(T_{q}^{4} \right) }{1} \cos \left(T_{q}^{4} \right) \\ & \forall x = \frac{1}{2} \frac{e^{2}h^{2}}{2m^{2}c^{4}} \frac{T_{q}^{4}h}{2\pi} \frac{\pi^{4}h}{2\pi} \frac{1}{2\pi} \left(\frac{1}{y^{2}} \right) \frac{1}{2} \cos \left(T_{q}^{4} \right) \left[\cos \left(\frac{1}{q}^{4} \right) - 3 \cos \left(\frac{1}{q} \right) \right] \\ & f_{x} = \frac{1}{2} \frac{e^{2}h^{2}}{2m^{2}c^{4}} \frac{T_{q}^{4}h}{4\pi^{2}} \cos \left(T_{q}^{4} \right) \left(\frac{1}{y^{2}} \right) \left[1^{4} \cos \left(T_{q}^{4} \right) + \frac{4}{2} \int \frac{1}{c} \cos \left(\frac{1}{q}^{4} \right) - 3 \cos \left(\frac{1}{q}^{4} \right) \right] \\ & f_{x} = \frac{1}{2} \frac{e^{2}h^{2}}{2m^{2}c^{4}} \frac{T_{q}^{4}}{4\pi^{2}} \cos \left(T_{q}^{4} \right) \left(\frac{1}{y^{2}} \right) \left[1^{4} \cos \left(T_{q}^{4} \right) + \frac{4}{2} \int \frac{1}{c} \cos \left(\frac{1}{q}^{4} \right) - 3 \cos \left(\frac{1}{q}^{4} \right) \right] \\ & = \frac{1}{q} \frac{e^{2}h^{2}}{8\pi^{2}m^{2}c^{2}} T^{4} \cos \left(T_{q}^{4} \right) \left(\frac{1}{y^{2}} \right) \left[t^{4} \cos \left(t^{4} \frac{1}{q} \right) + \frac{4}{2} \int \frac{1}{c} \cos \left(\frac{1}{q}^{4} \right) - 3 \cos \left(\frac{1}{q}^{4} \right) \right] \\ & = \frac{1}{q} \frac{e^{2}h^{2}}{8\pi^{2}m^{2}c^{2}} T^{4} \cos \left(T_{q}^{4} \right) \left(\frac{1}{y^{2}} \right) \left[t^{4} \cos \left(t^{4} \frac{1}{q} \right) + \frac{4}{2} \int \frac{1}{c} \cos \left(\frac{1}{q}^{4} \right) - 3 \cos \left(\frac{1}{q}^{4} \right) \right] \\ & = \frac{1}{q} \frac{e^{2}h^{2}}{8\pi^{2}m^{2}c^{2}} T^{4} \cos \left(T_{q}^{4} \right) \left(\frac{1}{y^{2}} \right) \left[\frac{1}{q^{2}} \left(\cos \left(t^{4} \frac{1}{q} \right) - \frac{3}{2} \left(\cos \left(\frac{1}{q}^{4} \frac{1}{q} \right) - \frac{3}{2} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q^{2}} \right) \left[\frac{1}{q^{2}} \left(\frac{1}{q} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q^{2}} \right) \left(\frac{1}{q^{2}} \right) \left(\frac{1}{q^{2}} \left(\frac{1}{q} \right) - \frac{3}{2} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \right) \left(\frac{1}{q^{4}} \right) \left(\frac{1}{q^{4}} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \right) \left(\frac{1}{q^{4}} \left(\frac{1}{q} \right) \left(\frac{1$$

$$\begin{aligned} \Gamma_{F} &= \alpha' I^{*} J^{*} \cos(I^{*} J^{*}) \\ &= \frac{\alpha'}{2} \left[F^{*2} - I^{*2} - J^{*2} \right] \quad (more then mee^{-}) \\ &\left(\frac{1}{\tau^{2}} \right) = \frac{z^{2}}{\alpha_{1}^{2} n^{2} I (l + \frac{1}{2}) (l + l)} \\ &\left(\frac{1}{\tau^{2}} \right) = \frac{z^{2}}{\alpha_{1}^{2} n^{2} I (l + \frac{1}{2}) (l + l)} \\ &\left(\frac{1}{\tau^{2}} \right) = \frac{\lambda^{-}}{\alpha_{1}^{2} n^{2} m e^{-}} \\ &\alpha' \cos also be unttensor q' = g_{I} \frac{Rch x^{2} z^{2}}{n^{2} l (l + \frac{1}{2}) (l + l)} \right] \end{aligned}$$
For a given specified term is given s, leg as is constant

Fermi et.al. had shown for a quartum mechanised
treatment and hindomit had shown for deviced
theny 4 energy score

$$\begin{bmatrix} J & \downarrow & \downarrow \\ \hline Canke & J^{\mu\nu} \\ \hline repland & J^{\mu\nu}$$

$$\Rightarrow a' = g_{I} \frac{RcL \times^{2}Z^{2}}{n^{3}\ell(\ell+\frac{1}{2})(\ell+1)} \times \frac{\ell(\ell+1)}{\vartheta(j+1)}$$

$$= g_{I} \frac{RcL \times^{2}Z^{2}}{n^{3}(\ell+\frac{1}{2})\vartheta(j+1)}$$
durdely by $kc = a' \text{ in } cn^{-1}$
 $a'(cn^{-1}) = g_{I} \frac{Rd^{2}Z^{2}}{n^{3}\ell(\ell+\frac{1}{2})\vartheta(j+1)}$

$$\Rightarrow g_{I} = +ve = a' \Rightarrow +ve = hfe \Rightarrow Normal$$

$$g_{I} = -ve = a' \Rightarrow -ve = hfe \Rightarrow avecks$$

Applications of hts * Poovides a strenght test of QED and hf splitting of hydrogen and muonium have been used to measure the value of X. * The hf Transition can be used to make a minswave noter filler with very ligh stability + In astrophysic of As 4 splittings are v. smill the transmitted forg usually are not optical but in the sample of sadino and minoware 21 cm transition in hydrogen - used for mapping 129 :

For atomic hydrogen in the ground state $I = \frac{1}{2}$; $j = \frac{1}{2} = F = 0,1$

The intensity of the 21-cm emission line depends on the density of the neutral atomic hydrogen along your line of sight.

The hydrogen in our galaxy has been mapped by the observation of the 21-cm wavelength line of hydrogen gas. At 1420 MHz, this radiation from hydrogen penetrates the dust clouds and gives us a more complete map of the hydrogen than that of the stars themselves since their visible light won't penetrate the dust clouds.

Problems

1.Consider an atom whose nuclear spin is I= 2. Draw an energy level diagram and the involved hyperfine components of the transition ${}^{2}D_{3/2} \rightarrow {}^{2}P_{1/2}$

2. Nuclear spin of bismuth atom is 9/2. Find the number of levels into which a ${}^{2}D_{5/2}$ term of bismuth splits due to I-J interaction. If the separation of ${}^{2}_{7}D_{5/2}$ term from ${}^{2}_{6}D_{5/2}$ is 70 cm⁻¹, calculate the separation between Other adjacent levels.