Introduction to Statistical Concepts & Tools For Factor Analysis

By Dr. Rajeev Pandey Professor & Head Department of Statistics University of Lucknow pandey_rajeev@lkouniv.ac.in prof.rajeevlu@gmail.com Web: http://dacg.in

Role of Normality

• Many statistical methods require that the numeric variables we are working with have an approximate **normal distribution**.

ts, and iretinlsoimenormal ables are empirical rule tributions.

Tools for Assessing Normality

- Histogram and Boxplot
- Normal Quantile Plot (also called Normal Probability Plot)
- Goodness of Fit Tests

Shapiro-Wilk Test (JMP) Kolmogorov-Smirnov Test (SPSS) Anderson-Darling Test (MINITAB)

Factor Analysis

- 1) **Overview**
- 2) Basic Concept
- 3) Factor Analysis Model
- 4) Statistics Associated with Factor Analysis
- 5) Conducting Factor Analysis
 - 1. **Problem Formulation**
 - 2. Construction of the Correlation Matrix
 - 3. Method of Factor Analysis
 - 4. Number of of Factors
 - 5. Rotation of Factors
 - 6. Interpretation of Factors
 - 7. Factor Scores
 - 8. Model Fit

- Factor analysis is a class of procedures used for data reduction and summarization.
- It is an interdependence technique: no distinction between dependent and independent variables.

- Factor analysis is used:
 - To identify underlying dimensions, or **factors**, that explain the correlations among a set of variables.
 - To identify a new, smaller, set of uncorrelated variables to replace the original set of correlated variables.

Factor Analysis - Example

Factors Underlying Selected Psychographics and Lifestyles

Fig. 19.1

Factor Analysis Model

Each variable is expressed as a linear combination of factors. The factors are some common factors plus a unique factor. The factor model is represented as:

 $X_{i} = A_{i1}F_{1} + A_{i2}F_{2} + A_{i3}F_{3} + \ldots + A_{im}F_{m} + V_{i}U_{i}$ where

 $X_i = i$ th standardized variable

 A_{ij} = standardized mult reg coeff of var *i* on common factor *j*

- $F_i = \text{common factor } j$
- V_i = standardized reg coeff of var *i* on unique factor *i*
- U_i = the unique factor for variable *i*
- m = number of common factors

Factor Analysis Model

- The first set of weights (factor score coefficients) are chosen so that the first factor explains the largest portion of the total variance.
- Then a second set of weights can be selected, so that the second factor explains most of the residual variance, subject to being uncorrelated with the first factor.
- This same principle applies for selecting additional weights for the additional factors.

Factor Analysis Model

The common factors themselves can be expressed as linear combinations of the observed variables.

$$F_{i} = W_{i1}X_{1} + W_{i2}X_{2} + W_{i3}X_{3} + \ldots + W_{ik}X_{k}$$

Where:

- F_i = estimate of *i* th factor
- W_i= weight or factor score coefficient
- k = number of variables

Statistics Associated with Factor Analysis
 Bartlett's test of sphericity. Bartlett's test of sphericity is used to test the hypothesis that the variables are uncorrelated in the population (i.e., the population corr matrix is an identity matrix)

Correlation matrix. A correlation matrix is a lower triangle matrix showing the simple correlations, *r*, between all possible pairs of variables included in the analysis. The diagonal elements are all 1.

Statistics Associated with Factor Analysis

- Communality. Amount of variance a variable shares with all the other variables. This is the proportion of variance explained by the common factors.
- **Eigenvalue**. Represents the total variance explained by each factor.
- Factor loadings. Correlations between the variables and the factors.
- Factor matrix. A factor matrix contains the factor loadings of all the variables on all the factors

Statistics Associated with Factor Analysis

- Factor scores. Factor scores are composite scores estimated for each respondent on the derived factors.
- Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. Used to examine the appropriateness of factor analysis. High values (between 0.5 and 1.0) indicate appropriateness. Values below 0.5 imply not.
- Percentage of variance. The percentage of the total variance attributed to each factor.
- Scree plot. A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction.

Example: Factor Analysis

- HATCO is a large industrial supplier
- A marketing research firm surveyed 100 HATCO customers, to investigate the customers' perceptions of HATCO
- The marketing research firm obtained data on 7 different variables from HATCO's customers
- Before doing further analysis, the mkt res firm ran a Factor Analysis to see if the data could be reduced

Example: Factor Analysis

- In a B2B situation, HATCO wanted to know the perceptions that its customers had about it
- The mktg res firm gathered data on 7 variables
 - 1. Delivery speed
 - 2. Price level
 - 3. Price flexibility
 - 4. Manufacturer's image
 - 5. Overall service
 - 6. Salesforce image
 - 7. Product quality

Poor

Each var was measured on a 10 cm graphic rating scale

Conducting Factor Analysis

Problem formulation

Formulate the Problem

- The objectives of factor analysis should be identified.
- The variables to be included in the factor analysis should be specified. The variables should be measured on an interval or ratio scale.
- An appropriate sample size should be used. As a rough guideline, there should be at least four or five times as many observations (sample size) as there are variables.

Construct the Correlation Matrix

• The analytical process is based on a matrix of correlations between the variables.

 If the Bartlett's test of sphericity is not rejected, then factor analysis is not appropriate.

 If the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is small, then the correlations between pairs of variables cannot be explained by other variables and factor analysis may not be appropriate. **Determine the Method of Factor Analysis**

 In Principal components analysis, the total variance in the data is considered.

-Used to determine the min number of factors that will account for max variance in the data.

 In Common factor analysis, the factors are estimated based only on the common variance.

-Communalities are inserted in the diagonal of the correlation matrix.

-Used to identify the underlying dimensions and when the common variance is of interest.

Determine the Number of Factors

• A Priori Determination. Use prior knowledge.

• **Determination Based on Eigenvalues.** Only factors with Eigenvalues greater than 1.0 are retained.

 Determination Based on Scree Plot. A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction. The point at which the scree begins denotes the true number of factors.

Determination Based on Percentage of Variance.

Rotation of Factors

• Through rotation the factor matrix is transformed into a simpler one that is easier to interpret.

 After rotation each factor should have nonzero, or significant, loadings for only some of the variables. Each variable should have nonzero or significant loadings with only a few factors, if possible with only one.

 The rotation is called orthogonal rotation if the axes are maintained at right angles.

Rotation of Factors

- Varimax procedure. Axes maintained at right angles
 - -Most common method for rotation.

-An orthogonal method of rotation that minimizes the number of variables with high loadings on a factor.

- -Orthogonal rotation results in uncorrelated factors.
- Oblique rotation. Axes not maintained at right angles
 - -Factors are correlated.

-Oblique rotation should be used when factors in the population are likely to be strongly correlated.

Interpret Factors

- A factor can be interpreted in terms of the variables that load high on it.
- Another useful aid in interpretation is to plot the variables, using the factor loadings as coordinates. Variables at the end of an axis are those that have high loadings on only that factor, and hence describe the factor.

Calculate Factor Scores

The factor scores for the i th factor may be estimated as follows:

Fi = Wi1 X1 + Wi2 X2 + Wi3 X3 + . . . + Wik Xk

Determine the Model Fit

- The correlations between the variables can be deduced from the estimated correlations between the variables and the factors.
- The differences between the observed correlations (in the input correlation matrix) and the reproduced correlations (estimated from the factor matrix) can be examined to determine model fit. These differences are called *residuals*.

Another Example of Factor Analysis

- To determine benefits from toothpaste
- Responses were obtained on 6 variables:
 - V1: It is imp to buy toothpaste to prevent cavities
 - V2: I like a toothpaste that gives shiny teeth
 - V3: A toothpaste should strengthen your gums
 - V4: I prefer a toothpaste that freshens breath
 - V5: Prevention of tooth decay is not imp
 - V6: The most imp consideration is attractive teeth
- Responses on a 7-pt scale (1=strongly disagree; 7=strongly agree)

Another Example of Factor Analysis

RESPONDENT						
NUMBER	V1	V2	V3	V4	V5	V6
1	7.00	3.00	6.00	4.00	2.00	4.00
2	1.00	3.00	2.00	4.00	5.00	4.00
3	6.00	2.00	7.00	4.00	1.00	3.00
4	4.00	5.00	4.00	6.00	2.00	5.00
5	1.00	2.00	2.00	3.00	6.00	2.00
6	6.00	3.00	6.00	4.00	2.00	4.00
7	5.00	3.00	6.00	3.00	4.00	3.00
8	6.00	4.00	7.00	4.00	1.00	4.00
9	3.00	4.00	2.00	3.00	6.00	3.00
10	2.00	6.00	2.00	6.00	7.00	6.00
11	6.00	4.00	7.00	3.00	2.00	3.00
12	2.00	3.00	1.00	4.00	5.00	4.00
13	7.00	2.00	6.00	4.00	1.00	3.00
14	4.00	6.00	4.00	5.00	3.00	6.00
15	1.00	3.00	2.00	2.00	6.00	4.00
16	6.00	4.00	6.00	3.00	3.00	4.00
17	5.00	3.00	6.00	3.00	3.00	4.00
18	7.00	3.00	7.00	4.00	1.00	4.00
19	2.00	4.00	3.00	3.00	6.00	3.00
20	3.00	5.00	3.00	6.00	4.00	6.00
21	1.00	3.00	2.00	3.00	5.00	3.00
22	5.00	4.00	5.00	4.00	2.00	4.00
23	2.00	2.00	1.00	5.00	4.00	4.00
24	4.00	6.00	4.00	6.00	4.00	7.00
25	6.00	5.00	4.00	2.00	1.00	4.00
26	3.00	5.00	4.00	6.00	4.00	7.00
27	4.00	4.00	7.00	2.00	2.00	5.00
28	3.00	7.00	2.00	6.00	4.00	3.00
29	4.00	6.00	3.00	7.00	2.00	7.00
30	2.00	3.00	2.00	4.00	7.00	2.00

Correlation Matrix

Variables	V1	V2	V3	V4	V5	V6
V1	1.000					
V2	-0.530	1.000				
V3	0.873	-0.155	1.000			
V4	-0.086	0.572	-0.248	1.000		
V5	-0.858	0.020	-0.778	-0.007	1.000	
V6	0.004	0.640	-0.018	0.640	-0.136	1.000

Bartlett's Test

Apprx. chi-square=111.3, df=15, significance=0.00 Kaiser-Meyer-Olkin msa=0.660

Communalities

Variables	Initial	Extraction
V1	1.000	0.926
V2	1.000	0.723
V3	1.000	0.894
V4	1.000	0.739
V5	1.000	0.878
V6	1.000	0.790

Initial Eigen values

Factor	Eigen value	% of variance	Cumulat. %
1	2.731	45.520	45.520
2	2.218	36.969	82.488
3	0.442	7.360	89.848
4	0.341	5.688	95.536
5	0.183	3.044	98.580
6	0.085	1.420	100.000

Extraction Sums of Squared Loadings

Factor	Eigen value	% 0	f variance	Cumulat. %
1	2.731		45.520	45.520
2	2.218		36.969	82.488
Factor M	latrix			
Variables	Facto	or 1	Factor 2	
V1	0.9	28	0.253	
V2	-0.3	601	0.795	
V3	0.9	36	0.131	
V4	-0.3	342	0.789	
V5	-0.8	69	-0.351	
V6	-0.1	.77	0.871	

Rotation Sums of Squared Loadings

Factor	Eigenvalue	% of variance	Cumulat. %
1	2.688	44.802	44.802
2	2.261	37.687	82.488

Rotated Factor Matrix

Variables	Factor 1	Factor 2
V1	0.962	-0.027
V2	-0.057	0.848
V3	0.934	-0.146
V4	-0.098	0.845
V5	-0.933	-0.084
V6	0.083	0.885

Factor Score Coefficient Matrix

Variables	Factor 1	Factor 2
V1	0.358	0.011
V2	-0.001	0.375
V3	0.345	-0.043
V4	-0.017	0.377
V5	-0.350	-0.059
V6	0.052	0.395

- -The lower-left triangle is correlation matrix;
- -The diagonal has the communalities;
- -The upper-right triangle has the residuals between the observed correlations and the reproduced correlations.

Factor Score Coefficient Matrix

Variables	V1	V2	V3	V4	V5	V6
V1	0.926	0.024	-0.029	0.031	0.038	-0.053
V2	-0.078	0.723	0.022	-0.158	0.038	-0.105
V3	0.902	-0.177	0.894	-0.031	0.081	0.033
V4	-0.117	0.730	-0.217	0.739	-0.027	-0.107
V5	-0.895	-0.018	-0.859	0.020	0.878	0.016
V6	0.057	0.746	-0.051	0.748	-0.152	0.790

Eigenvalue

Factor Matrix Before and After Rotation

Factors

Variables	1	2
1	Х	
2	Х	Х
3	Х	
4	Х	Х
5	Х	Х
6		Х

(a) High Loadings Before Rotation

Factors

(b) High Loadings After Rotation

Factor Loading Plot

Rotated Component Matrix

: q01	2		D <u>e</u> scrip	tive Statistics							Visibl	e: 12 of 12 Vari	iables
	q01	q02	Ta <u>b</u> les			q05	q06	q07	q08	q09	q10	q11	
1	2		RFM Ar	nalysįs		0	3	0	3	2	3	1	
2	2		Compar	e Means		2	2	1	2	2	2	2	
3	3		<u>G</u> enera	I Linear Model		3	0	2	1	1	2	3	33
4	2		Genera	li <u>z</u> ed Linear Models		0	1	2	3	2	2	1	
5	0		Mi <u>x</u> ed N	lodels		0	2	0	3	2	3	0	
6	2		<u>C</u> orrela	te		3	0	0	3	2	1	2	
7	0		<u>R</u> egres	sion		0	2	2	3	1	2	2	
8	2		Logline	ar	1	3	0	2	2	2	1	3	
9	0		Neural	Net <u>w</u> orks		3	2	1	0	0	0	3	
10	0		Classi <u>f</u> y	(•	3	n	3	0	0	1	3	
11	2		Dimens	ion Reduction	•	K Eactor		2	0	1	2	1	
12	0		Sc <u>a</u> le			Correspondence .	Analysis	3	1	0	1	3	
13	1		<u>N</u> onpar	ametric Tests	P	D Optimal Scaling		0	1	2	2	1	
14	2		Foreca	sting		1	2	0	0	3	3	3	
15	3		<u>S</u> urviva	ı		1	2	1	2	2	0	1	
16	1	578	M <u>u</u> ltiple	Response	•	3	0	3	1	0	0	2	
17	1		Missing	Value Anal <u>y</u> sis		1	2	1	0	2	0	3	
18	0		Multiple	Imputation	•	3	0	1	0	0	1	3	
19	0		Comple	x Samples	•	1	0	3	0	0	1	2	
20	2		<u>Q</u> uality	Control	•	1	3	3	2	0	1	0	
21	3	e	ROC CL	ır <u>∨</u> e	_	0	2	1	3	1	3	0	
22	2		1	2		1 1	1	2	1	0	2	1	
23	3		2	0		1 1	3	0	2	2	3	0	
24	2		2	3		3 3	0	3	0	0	0	3	
25	3		3	1	(0 0	3	0	3	2	2	0	-
	4												•
ata View	Variable View												
actor									PASW S	atistics Process	oris ready		

LOI DACULC

Click:

- Analyze and select
 - × Dimension Reduction
 - **Factor**
 - A factor Analysis Box will appear

🚼 marriage & carrer values scale.sav [DataSet2] - PASW Statistics Data Editor

<u>File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help</u>

😕 🗏 📴 <table-cell-rows> 📌 🔚 📭 🎥 👭 📲 🏥 🕮 🔜 🐼 🧐 🤝

1 : q01	2									Vis	ible: 12 of 12 Variable	es
	q01	q02	q03	q04	q05	q06	q07	q08	q09	q10	q11	1
1	2	3	1	0	0	3	C) 3	2	3	1	•
2	2	1	1	0	2	2	1	2	2	2	2	
3	3	1	3	3	3	0	2	2 1	1	2	3	3
4	2	1	1	0	0	1	2	2 3	2	2	1	2
5	0	2	1	0	0	2	() 3	2	3	0	
6	2	3	🔛 Factor /	Analysis					⊻ 2	1	2	1
7	0	3			⊻	ariables:		Deseriations	ן 1	2	2	
8	2	0	🔗 I cons	ider marriage				Descriptives	2	1	3	
9	0	0	🔗 Tome	, marriage a⊓d				Extraction	0	0	3	
10	0	0	V I prete	er to pursue m Id rather have				Rotation	0	1	3	
11	2	1	V I ofter	think about w				Scores	1	2	1	
12	0	2	🖉 l could	be happy wit	38 			Options	0	1	3	
13	1	2	🧳 I woul	d feel unfulfille					2	2	1	
14	2	2	🧳 I don't	need to have	S S	ele <u>c</u> tion Variable:			3	3	3	
15	3	3	A Havin	d a career wo					2	0	1	
16	1	1	🔗 Planni	ng for and suc	-	Value			0	0	2	
17	1	1			Paste	Reset C:	ancel He	In	2	0	3	
18	0	0						4	0	1	3	
19	0	1	3	3	1	0	3	3 0	0	1	2	
20	2	1	0	0	1	3	3	3 2	0	1	0	
21	3	3	0	0	0	2	1	3	1	3	0	
22	2	1	2	1	1	1	2	2 1	0	2	1	
23	3	2	0	1	1	3	0) 2	2	3	0	
24	2	2	3	3	3	0	3	3 0	0	0	3	
25	3	3	1	0	0	3	0) 3	2	2	0	-
	4 🔅										•	
Data View	Variable View											

Move variables/scale items to Variable box

_ B ×

PASW Statistics Processor is ready

© Dr. Rajeev Pandey

Factor extraction When variables are in variable box, select: o Extraction

🛃 marriage (& carrer values	scale.sav [Dat	taSet2] - PAS	W Statistics D	ata Editor								_ 8
<u>File E</u> dit <u>\</u>	<u>∕</u> iew <u>D</u> ata <u>T</u> i	ransform <u>A</u> na	lyze <u>G</u> raphs	<u>U</u> tilities Ad	d- <u>o</u> ns <u>W</u> ind	łow <u>H</u>	elp						
≽ 📕 🚔	📴 👆 🔿	} 14	#4 🔸 📩	🗄 🦺 📑	💊 💊 🍬	yda (
1 : q01	2										V	isible: 12 of 12	Variable
	a01	d02	a03	a04	a05		a06	a07	a08	d09	a10	a11	
1	2	3	}	1	0	0	3	0	1	3 2	2 3	}	1 -
2	2	1		1	0	2	2	1		2 2	2 2	2	2
3	3	1		3	3	3	0	2		1 1	1 2	2	3 👷
4	2	1	D	Eactor Analy	sis: Extractio	n			X	3 2	2 2	!	1
5	0	2	2		SIS. EXClucio		2			3 2	2 3	1	0
6	2	3) 🖬 F	Method: Princi	pal component	s 🔻	·			× 2	2 1		2
7	0	3	}	Analyze		r'	Display ——				1 2	2	2
8	2	0		Ocrelation	matrix		🗹 Unrotated	factor solution		2	2 1		3
9	0	0)	Co <u>v</u> ariance	e matrix		✓ Scree plot			_ () (I	3
10	0	0						·) 1		3
11	2	1		Extract 1									1
12	0	2	2	Based on I	Eigenvalue) () 1		3
13	1	2	2	Eigenv <u>a</u> i	lues greater th	an: 1				2	2 2	2	1
14	2	2	2	O Fixed <u>n</u> uml	ber of factors					3	3 3	l	3
15	3	3	}	Factor	rs to extract:					2	2 0	J	1
16	1	1								0) (J	2
17	1	1		Massimum Havatis	nn far Canuar		25			2	2 0	J	3
18	0	0		wa <u>x</u> imum iteratio	uns für Conver	gence.				0) 1		3
19	0	1			Continue	Ca	incel I	Help		0 0) 1		2
20	2	1		•	-					2 () 1		0
21	3	3	}	0	0	0	2	1	:	3 1	1 3	J	0
22	2	1		2	1	1	1	2		1 0) 2	!	1
23	3	2	2	0	1	1	3	0	1	2 2	2 3	J	0
24	2	2	2	3	3	3	0	3	(0 0) (J	3
25	3	3	}	1	0	0	3	0		3 2	2 2	!	0 🗣
	4 8												
Data View	Variable View												
									PAS	W Statistics Proc	essor is ready		
🛃 Start 🛛 🔾	oogle 🛛 🐚 🏻	🥖 💽 📓 🙆	💽 🛃 🕁	9 🖸 🕑	📎 N. 🛛	🗀 F. 🛛	🗄 *. 📴 m	🙆 м. 🕂	EN 😰 1	0% 🕯 🛍 🔞	0 🕼 😢 💖 🛒 🦉	A 😤 🗞 🐻	11:15 AN

© Dr. Rajeev Pandey

- When the factor extraction Box appears, select:
- Scree Plot
- keep all default selections including:
 - Principle component Analysis
 - Based on Eigen Value of 1, and
 - Un-rotated factor solution

			** **	🔲 🏧 🛄	V V	V						
1	2			,							Visik	le: 12 of 12 Va
	q01	q02	q03	q04	q05	q06	q	107	q08	q09	q10	q11
1	2	3	1		0	0	3	0	3	2	3	1
2	2	1	1		0	2	2	1	2	2	2	2
3	3	1	3	3	3	3	0	2	! 1	1	2	3
4	2	1	1		0	0	1	2	: 3	2	2	1
5	0	2	1		0	0	2		I 3	2	3	0
6	2	3	Facto	r Analysis 🔛	Factor Analysi	is: Rotation		×	x	2	1	2
7	0	3			Method				Descriptives	1	2	2
8	2	0			None	◯ <u>Q</u> uartin	iax		Extraction	2	1	3
9	0	0	_		O⊻arimax	 	ax		Bototion	0	0	3
10	0	0	_		O Direct Oblimi	in OPromax			Rotation	0	1	3
11	2	1	_		Detta: 0	<u>K</u> appa	4		Scores	1	2	1
12	0	2	_	l					Options	0	1	3
13	1	2	_	ſ	Display					2	2	1
14	2	2	_		Rotated solu	tion 📃 <u>L</u> oac	ing plot(s)			3	3	3
15	3	3	_	L						2	0	1
16	1	1			Ma <u>x</u> imum Iteration	is for Conver <u>c</u>	ence: 25			0	0	2
17	1	1		01	Continue	Cancel	Help	le	ql	2	0	3
18	0	0								0	1	3
19	0	1	3	3	3	1	0	3	0	0	1	2
20	2	1	()	0	1	3	3	2	0	1	0
21	3	3	()	0	0	2	1	3	1	3	0
22	2	1	2	2	1	1	1	2	! 1	0	2	1
23	3	2	()	1	1	3	0	2	2	3	0
24	2	2	3	3	3	3	0	3	0	0	0	3
25	3	3	1		0	0	3	0	3	2	2	0
	4											
View	Variable View											
									PASWS	tatistics Process	or is ready	

 During factor
 extraction
 keep factor
 rotation
 default of:

- None
- Press continue

Pic Fit Mark Carton Andread Mark	marriage	& carrer value	es scale.sav [Da	ataSet2] - P	ASW Sta	tistics Dat	a Editor							<u> </u>
Image:	<u>File E</u> dit <u>)</u>	<u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> r	alyze <u>G</u> rap	hs <u>U</u> tili	ties Add-	ons <u>W</u> indov	N	<u>H</u> elp					
1: eq01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 1 2 3 1 0 0 3 0 2 2 3 1 3 3 1 0 0 3 0 2 1 1 2 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 3 3 1 1 2 3 3 1 2 3 3 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	궏 📕 🚑	📴 👆 🏓	🏪 📑 🔐	🐴 + 🖥 🕯		4 📷 🛛	🗞 📀 🕷	aby						
q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 1 2 3 1 0 0 3 0 3 2 3 1 2 2 1 1 0 2 2 1 2 2 2 2 2 3 1 2 2 2 3 1 2 2 3 1 2 2 3 1 1 2 3 0 2 1 1 2 1 0 0 1 2 3 0	1 : q01	2											Vis	ible: 12 of 12 Variabl
1 2 3 1 0 0 3 0 3 2 2 1 2 2 1 1 0 2 2 1 2 1 0 0 1 0 0 1 0 0 0 1 1 2 1 1 2 1 1 2 1 1 2 1		d01	d02	d03		d04	d05		a06	d07	806	e0a	<u>σ</u> 10	α11
2 2 1 1 0 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 0 2 1 1 2 3 2 2 1 1 2 3 3 0 1 2 3 2 2 1 1 2 1 0	1		2	3	1	<u>404</u> ()	0	3	401	0 3	2	3	1
3 3 1 3 3 3 0 2 1 1 2 3 4 2 1 1 0 0 2 3 2 2 1 5 0 2 1 0 0 2 0 3 2 2 1 1 5 0 2 0 3 2 3 0 0 7 0 3 1 1 2 1 2 1 2 1 2 1 3 3 0 0 0 3 3 0 0 1 3 3 1 2 1 3 3 3 3 1 2 1 3 3 3 3 1 1 3	2		2	1	1	()	2	2		1 2	2	2	2
4 2 1 1 0 0 1 2 3 2 2 1 5 0 2 3 2 3 0 0 2 3 2 3 0 6 2 3 2 1 0 0 2 0 3 2 3 0 7 0 0 0 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 0 0 0 3 3 0 0 1 3 3 1 </td <td>3</td> <td>1</td> <td>3</td> <td>1</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>0</td> <td></td> <td>2 1</td> <td>1</td> <td>2</td> <td>3</td>	3	1	3	1	3	3	3	3	0		2 1	1	2	3
5 0 2 1 0 2 3 2 3 0 6 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 2 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 2 1 3 3 3 1 3 3 1 3 3 1 3 3 3 3 3 1 3 3 1 3 3 3 1 3 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1	4	1	2	1	1	()	0	1		2 3	2	2	1
6 2 3 intervent inte	5	1	0	2	1	()	0	2		0 3	2	3	0
7 0 3 1 2 2 8 2 0 0 0 0 3 9 0 0 0 0 3 0 0 3 10 0 0 0 1 3 0 1 3 1 11 2 0 2 1 3 3 0 1 3 3 12 0 2 1 3 3 1 2 2 1 3 3 3 1 2 2 1 3	6	1	2	3 🔛 Fa	ctor Ana	alysis 🔛	actor Analys	sis: R	lotation	×	2	≤ 2	1	2
8 2 0	7		0	3		-1	lethod —					1	2	2
9 0 0 0 3 10 0 0 1 3 11 2 1 2 1 12 0 2 1 3 1 2 1 13 1 2 2 1 3 3 1 2 1 3 16 1 1 1 0 1 3 3 2 0 1 3 18 0 0 1 3 3 1 0 3 0 0 1 2 0 3 1 0 2 0 3 1 0 0 1 3 3 1 0 0 1 3 3 1 0 0 1 2 0 1 3 3 0 0 1 2 0 1 3 1 0 1 3 1 0 1 1 3 0 1 1 1 0 1 1 1 1	8		2	0				,	Quatinau		Descriptives	2	1	3
10 0 0 1 3 11 2 1 2 1 2 1 12 0 2 1 2 1 3 3 13 1 2 2 1 3 <td< td=""><td>9</td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td><u>G</u>uarumax</td><td></td><td>Extraction</td><td>0</td><td>0</td><td>3</td></td<>	9		0	0					<u>G</u> uarumax		Extraction	0	0	3
11 2 1 2 1 2 1 12 0 2 0 1 3 2 2 1 13 1 2 2 1 3 3 3 2 2 1 3<	10		0	0			O Dive et Obliv		O ⊑quamax		Rotation	0	1	3
12 0 2 13 1 2 2 1 14 2 2 1 3 3 3 15 3 3 1 1 3 3 2 0 1 16 1 1 1 1 0 0 1 3 3 18 0 0 1 3 3 0 0 1 3 19 0 1 3 3 1 0 3 0 0 1 2 0 3 0 0 1 2 0 3 0 0 1 3 3 0 0 1 3 0 0 1 3 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	11		2	1			Delta:	nin (Kappa 4		Scores	1	2	1
13 1 2 2 1 14 2 2 3 <td>12</td> <td></td> <td>0</td> <td>2</td> <td></td> <td></td> <td>- 0</td> <td></td> <td></td> <td> [</td> <td>Options</td> <td>0</td> <td>1</td> <td>3</td>	12		0	2			- 0			[Options	0	1	3
14 2 2 Image: Continue Cancel Help 3 <td< td=""><td>13</td><td></td><td>1</td><td>2</td><td></td><td>L L</td><td>)isplay——</td><td></td><td></td><td> [</td><td></td><td>2</td><td>2</td><td>1</td></td<>	13		1	2		L L)isplay——			[2	2	1
15 3 3 1 1 1 1 0 0 1 16 1 1 1 0 0 1 2 0 1 17 1 1 0 0 1 3 0 0 1 3 18 0 0 1 3 3 0 0 1 2 20 2 1 0 0 1 3 3 0 0 1 2 20 2 1 0 0 1 3 3 0 0 1 2 21 3 3 0 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0	14		2	2			✓ <u>R</u> otated so	lution	Loading plot(s			3	3	3
16 1 1 Imaginum terations for Convergence: 25 0 0 2 3 17 1 1 Imaginum terations for Convergence: 25 2 0 3 0 0 1 3 3 0 1 3 0 0 1 3 3 0 0 1 3 0 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1<	15		3	3								2	0	1
17 1 1 Continue Cancel Help Help Help Help Help 0 1 3 18 0 0 1 3 3 1 0 3 0 1 3 19 0 1 3 3 1 0 3 0 1 2 20 2 1 0 0 1 3 3 2 0 1 2 21 3 3 0 0 0 2 1 3 1 3 0 0 2 1 1 0 2 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0<	16		1	1		N	la <u>x</u> imum Iteratio	ons fo	or Convergence: 2	5		0	0	2
18 0 0 1 3 19 0 1 3 3 0 0 1 2 20 2 1 0 0 1 3 3 2 0 1 0 21 3 3 0 0 0 2 1 3 1 3 0 22 2 1 2 1 1 1 2 1 0 2 1 3 0 0 2 1 0 2 1 0 2 1 0 0 2 1 0 0 2 1 0 0 3 0 0 0 3 0 0 3 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	17		1	1	ſ	01	Continue	0	ancel Hel	p	ala	2	0	3
19 0 1 3 3 1 0 3 0 0 1 2 20 2 1 0 0 1 3 3 2 0 1 0 21 3 3 0 0 0 2 1 3 1 3 0 22 2 1 2 1 1 1 2 1 0 0 2 1 1 3 0 0 2 1 1 1 2 1 0 0 2 1 1 1 3 0 <t< td=""><td>18</td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>1</td><td>3</td></t<>	18		0	0								0	1	3
20 2 1 0 0 1 3 3 2 0 1 0 21 3 3 0 0 0 2 1 3 1 3 0 22 2 1 2 1 1 1 2 1 0 2 1 23 3 2 0 1 1 3 0 2 2 3 0 24 2 2 3 3 3 0 3 0 0 3 0 3 2 0 3 25 3 3 1 0 0 3 0 3 2 2 0 3 Data View Variable	19		0	1	3	3	3	1	0		3 0	0	1	2
21 3 3 0 0 0 2 1 3 1 3 0 22 2 1 2 1 1 1 2 1 0 2 1 23 3 2 0 1 1 3 0 2 2 3 0 24 2 2 3 3 3 0 3 0 0 0 3 0 25 3 3 1 0 0 3 0 3 2 2 0 4 2 2 3 3 3 0 3 0 3 2 2 0 4 2 3 3 1 0 0 3 0 3 2 2 0 A triate of the work PASW Statistics Processor is ready Image: Statistic Processor is re	20		2	1	0	()	1	3		3 2	0	1	0
22 2 1 2 1 1 1 2 1 0 2 1 23 3 2 0 1 1 3 0 2 2 3 0 24 2 2 3 3 3 0 3 0 0 0 3 25 3 3 1 0 0 3 0 3 2 2 0 4 PASW Statistics Processor is ready <td>21</td> <td>_</td> <td>3</td> <td>3</td> <td>0</td> <td>(</td> <td>)</td> <td>0</td> <td>2</td> <td></td> <td>1 3</td> <td>1</td> <td>3</td> <td>0</td>	21	_	3	3	0	()	0	2		1 3	1	3	0
23 3 2 0 1 1 3 0 2 2 3 0 24 2 2 3 3 3 0 3 0 0 0 3 25 3 3 1 0 0 3 0 3 2 2 0 • Mathematical Processor is ready PASW Statistics Processor is ready PASW Statistics Processor is ready • Mathematical Processor is ready * Start Coogle 100% •	22		2	1	2			1	1		2 1	0	2	1
24 2 2 3 3 3 0 3 0 0 0 3 25 3 3 1 0 0 3 0 3 2 2 0 4 2 2 3 3 1 0 0 3 0 3 2 2 0 • Mathematical Stresson Data View PASW Statistics Processor is ready • • PASW Statistics Processor is ready • Start Coogle •	23		3	2	0	,		1	3		0 2	2	3	0
25 3 3 1 0 0 3 0 3 2 2 0 Image: Complex Statistics Processor is ready	24		2	2	3	3	3	3	0		30	0	0	3
Image: Comparison of the second se	25		3	3	1	(J	0	3		U 3	2	2	0
Data View PASW Statistics Processor is ready PASW Statistics Proc								_						
PASW Statistics Processor is ready PASW Statistics Processor is ready Start Coogle Image: Start Image: Sta	Data View	Variable View												
🐮 Start 🖸 Coogle 🗞 🏈 🚾 📓 📴 🖻 🏜 📣 🏈 🔟 🧭 🕵 N. 🗀 F. 🗮 *. 🔛 m 🚾 M. 🕂 🔤 😰 100%) 🌒 🕼 🛇 🕼 🛠 🖏 🖓 💥 🏭 🐇 🖏 11:25 4								4			PASW	Statistics Proces	sor is ready	
	🐮 Start 🛛 🤇	oogle 🛛 📎	🏉 💽 📓 🕼	i 🖾 付	u 🥝	Σ 🕑	📎 N. 🗀) F.	🔁 *. 🔛 m 🧕	<u>э</u> м. 🛨	EN ? 100	<u>»</u> 🗲 🞯 🛛	ù 😫 💙 🛒 🔗	💂 🇞 🐻 11:25 A

© Dr. Rajeev Pandey

During Factor Rotation:

•

- Decide on the number of factors
 based on actor
 extraction phase
 and enter the
 desired number of
 factors by choosing:
- Fixed number of factors and entering the desired number of factors to extract.
- Under Rotation Choose Varimax
- Press continue
- Then OK

Bibliographical References

- SPSS Base 7.0 Application Guide (1996). Chicago, IL: SPSS Inc.
- SPSS Base 7.5 For Windows User's Guide (1996). Chicago, IL: SPSS Inc.
- SPSS Base 8.0 Application Guide (1998). Chicago, IL: SPSS Inc.
- SPSS Base 8.0 Syntax Reference Guide (1998). Chicago, IL: SPSS Inc.
- SPSS Base 9.0 User's Guide (1999). Chicago, IL: SPSS Inc.
- SPSS Base 10.0 Application Guide (1999). Chicago, IL: SPSS Inc.
- SPSS Base 10.0 Application Guide (1999). Chicago, IL: SPSS Inc.
- SPSS Interactive graphics (1999). Chicago, IL: SPSS Inc.
- SPSS Regression Models 11.0 (2001). Chicago, IL: SPSS Inc.
- SPSS Advanced Models 11.5 (2002) Chicago, IL: SPSS Inc.
- SPSS Base 11.5 User's Guide (2002). Chicago, IL: SPSS Inc.
- SPSS Base 12.0 User's Guide (2003). Chicago, IL: SPSS Inc.
- SPSS 13.0 Base User's Guide (2004). Chicago, IL: SPSS Inc.
- SPSS Base 14.0 User's Guide (2005). Chicago, IL: SPSS Inc..
- SPSS Base 15.0 User's Guide (2007). Chicago, IL: SPSS Inc.
- SPSS Base 16.0 User's Guide (2007). Chicago, IL: SPSS Inc.
- SPSS Statistics Base 17.0 User's Guide (2007). Chicago, IL: SPSS Inc.
- Tabachnik, B.G., & Fidell, L.S. (2001). Using multivariate statistics (4th Ed). Boston, MA: Allyn and Bacon.

Regression Analysis and Factor Analysis

QUESTIONS OR **COMMENTS**

Thank You