
Software Engineering ?

Importance of Software Processes ?

1

The Software Process

• A structured set of activities required to develop a
software system.

• Many different software processes but all involve:
• Specification – defining what the system should do;
• Design and implementation – defining the organization of the system

and implementing the system;
• Validation – checking that it does what the customer wants;
• Evolution – changing the system in response to changing customer

needs.
• A software process model is an abstract representation

of a process. It presents a description of a process from
some particular perspective.

3

Software Process Descriptions

• When we describe and discuss processes, we usually
talk about the activities in these processes such as
specifying a data model, designing a user interface, etc.
and the ordering of these activities.

• Process descriptions may also include:
• Products, which are the outcomes of a process activity;
• Roles, which reflect the responsibilities of the people involved in

the process;
• Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a product
produced.

4

Plan-driven and Agile Processes

• Plan-driven processes are processes where all of the
process activities are planned in advance and progress is
measured against this plan.
• Plan drives everything!

• In Agile Processes planning is incremental and it is easier to
change the process to reflect changing customer
requirements.

• In practice, most practical processes include elements of
both plan-driven and agile.

• There are no right or wrong software processes.

5

The Waterfall Model

8

Notice the feedback loops

Waterfall Model Phases

• There are separate identified phases in the waterfall model:
• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

• The main drawback of the waterfall model is the difficulty
of accommodating change after the process is underway.
In principle, a phase has to be complete before moving
onto the next phase.

• But many issues are true too, such as risk addressing.
• War Stories but true.

9

Waterfall Model Problems

• Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
• Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during
the design process.

• Few business systems have stable requirements.
• The waterfall model is mostly used for large systems

engineering projects where a system is developed at
several sites.
• In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

10

Boehm’s Spiral Model - heavyweight model

• Process is represented as a spiral rather than as a
sequence of activities with backtracking.

• Each loop in the spiral represents a phase in the process.

• No fixed phases such as specification or design - loops in
the spiral are chosen depending on what is required.

• Risks are explicitly assessed and resolved throughout the
process.
• This was the motivation behind developing the Spiral Model - Risk

11

Boehm’s Spiral Model of the Software Process

12

Spiral Model Sectors

• Objective setting
• Specific objectives for the phase are identified.

• Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key

risks.
• Development and validation

• A development model for the system is chosen which can be any
of the generic models. Development takes place.

• Planning
• The project is reviewed and the next phase of the spiral is

planned.

13

Spiral Model Usage

• Spiral model has been very influential in helping people
think about iteration in software processes and
introducing the risk-driven approach to development.

• In practice, however, the model is rarely used as
published for practical software development.

14

Process Activities

• Real software processes are inter-leaved sequences of
technical, collaborative and managerial activities with the
overall goal of specifying, designing, implementing and testing
a software system.

• The four basic process activities (specified in your book) of
specification, development, validation and evolution are
organized differently in different development processes.

• In the waterfall model, they are organized in sequence,
whereas in incremental development they are inter-leaved.

16

Software Specification

• Is: The process of establishing what services are required and
the constraints on the system’s operation and development.

• Requirements Engineering Process
• Feasibility study

• Is it technically and financially feasible to build the system?
• ROI, product Vision, what market share are we after? Urgency of development?

• Requirements elicitation and analysis
• What do the system stakeholders require or expect from the system?
• Recognition that the client must be satisfied. Have checkbook.

• Requirements Specification
• Defining the requirements in detail. These are the ‘whats’ of a system!!!

• Requirements Validation
• Checking the validity of the requirements
• Are they feasible, testable, sufficient, necessary, ...

17

The Requirements Engineering Process

18

Software Design and Implementation

• The process of converting the system specification into
an executable system.

• Software Design (inputs: specifications)
• Design a software structure that realizes the specification;

• Implementation
• Translate this model / structure into an executable app;
• Programming is the implementation of the design.

• The activities of design and implementation are closely
related and may be inter-leaved and definitely are using
many modern development processes. (more to come)

19

A General Model of the Design Process

20

Design Activities

• Architectural design, where one identifies the overall structure of the
system, the principal components (sometimes called sub-systems or
modules or layers, etc…), their relationships and how they are
distributed.

 Example: Such as Model View Controller (MVC)pattern; others.
• Interface design, where one defines the interfaces between system

components. (interface to controller; controller to database; external
device (sensor) to analyzer…)

• Recognize that to the end user, the UI is the application.
• Component design, where one takes each system component and

design how it will operate.
• This is what we are often used to
• Database design, where one designs the system data structures and

how these are to be represented in a database.

21

Software Validation

• Verification and validation (V & V) is intended to show that
a system conforms to its specification and meets the
requirements of the system customer.
• Look up the difference between verification and

validation. Be able to explain clearly.
• Involves checking and review processes and system testing.

• System testing involves executing the system with test
cases that are derived from the specification of the real
data to be processed by the system.

• Testing is the most commonly used V & V activity.

22

Stages of Testing

23

What does this mean??

Testing Stages

• Development or component testing. (Unit testing)
• Individual components are tested independently;
• Components may be functions or objects or coherent groupings of

these entities.
• System testing

• Testing of the system as a whole. Testing of emergent properties
is particularly important.

• Acceptance testing
• Testing with customer data to check that the system meets the

customer’s needs

• Some models have various other kinds of testing; subsystem testing,
integrated system testing, and much more.

24

Testing Phases in a Plan-driven Software Process

25

Software Evolution

• Software is inherently flexible and can change.

• As requirements change through changing business
circumstances, the software that supports the business
must also evolve and change.

• Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer systems are
completely new (greenfield).

26

Key points

• Understand the principles of software engineering

• Understand what we mean by a software process

• Note the two major classifications of processes and note also
that there are numerous hybrid classifications within these.

• Software processes are the activities involved in producing a
software system.

• Software process models are abstract representations of these
processes.

33

Key points

• Requirements engineering is the process of developing a
software specification.

• Design and implementation processes are concerned
with transforming a requirements specification into an
executable software system.

• Software validation is the process of checking that the
system conforms to its specification and that it meets the
real needs of the users of the system.

• Software evolution takes place when you change existing
software systems to meet new requirements. The
software must evolve to remain useful.

34

