Faculty of Engineering, University of Lucknow

Important Questions Unit 3

Engineering Physics – II

B. Tech. First year Branch: CSE, EE, EC, ME, CE Questions

- Before starting the assignment first remove all confusion about the concept used in questions of assignment.
- Each Assignment carries equal marks in the internal marks of the subject.

UNIT III: Electromagnetic Theory

SECTION-A: Short Answer Questions

- 1. What are electromagnetic waves? Define propagation constant.
- 2. Explain equation of continuity and its physical significance
- 3. Discuss the physical significance of poynting theorem.
- 4. What is skin depth? Explain its physical significance.

SECTION-B: Numericals

- 1. The sunlight strikes the upper atmosphere of earth with energy flux 1.38 kW/m². What will be the peak values of electric and magnetic fields at the points?
- 2. The maximum electric field in a plane electromagnetic wave is 10² N/C. The wave is going in the X direction and the electric field is in the Y -direction. Find the maximum magnetic field in the wave and its direction.
- 3. Find the skin depth at frequency 3 MHz in aluminum where σ = 3.8 X 10 7 S/m and μ_{r} = 1. Also find the propagation constant and velocity.
- 4. A plane electromagnetic wave propagating in the X -direction has a wavelength 7mm. The electric field is in Y -direction and its maximum magnitude is 42 v/m. Write suitable equations for E, B and H as a function of x and t.

SECTION-C: Long answer questions:

- 1. Explain the concept of displacement current and show how it led to the modification of Ampere's law.
- 2. a) Write down Maxwell's equations in free space and in conducting media. Using these equations derive wave equations for both electric and magnetic fields.
 - b) Show that electromagnetic waves are transverse in nature.