E-Content for Lie Algebras

Vivek Sahai

Lucknow University Lucknow.

March 25, 2020

Paper I (Unit III)

M.Sc. Semester IV

March 25, 2020 1 / 35

Basic Concepts

Go through the following definitions:

Definition

A subset *B* of an associative algebra *A* over a field *F* is said to be *weakly* closed if for all ordered pairs (a, b), $a, b \in B$, there exists $\gamma(a, b) \in F$ such that $a \times b = ab + \gamma(a, b)ba \in B$.

Definition

A subset S of a weakly closed set B is said to be a *subsystem* if $c \times d \in S$, for all $c, d \in S$.

Definition

A subsystem S of a weakly closed set B is said to be a *left ideal* (respectively, *ideal*) if $a \times c \in S$, (respectively, $a \times c$, $c \times a \in S$) for all $a \in B$, $c \in S$.

Now work out the following examples:

Example

Let B be a subalgebra of A_L . Then $ab - ba \in B$ for all $a, b \in B$. Take $\gamma(a, b) = -1$ for all $a, b \in B$ so that B is weakly closed set.

Example

If B is a subalgebra of A_L with basis $\{e, f, h\}$ such that [e, f] = h, [e, h] = 2e, [f, h] = -2f, then $S = Fe \cup Ff \cup Fh$ is a subsystem of B.

Example

Let $S_n(F)$ denote the set of all symmetric $n \times n$ matrices over F and let $a, b \in S_n(F)$. Then $(ab + ba)^t = ba + ab$ implies that $ab + ba \in S_n(F)$. Hence, with $\gamma(a, b) = 1$ for all $a, b \in S_n(F)$, we have that $S_n(F)$ is a weakly closed set in $M_n(F)$, the set of all $n \times n$ matrices over F.

Example

Let $B = SS_n(F) \cup S_n(F)$, where $SS_n(F)$ denotes the set of all $n \times n$ skew-symmetric matrices over F. Then we have the following: for $a, b \in S_n(F)$, $(ab + ba)^t = ba + ab$ implies $ab + ba \in S_n(F)$, for $a \in SS_n(F)$, $b \in S_n(F)$, $(ab - ba)^t = -ba + ab$ implies $ab - ba \in S_n(F)$, for $a \in S_n(F)$, $b \in SS_n(F)$, $(ab - ba)^t = -ba + ab$ implies $ab - ba \in S_n(F)$, for $a, b \in SS_n(F)$, $(ab - ba)^t = ba - ab$ implies $ab - ba \in SS_n(F)$.

Choose

$$\gamma(a,b) = egin{cases} 1 & ext{if } a,b\in S_n(F), \ -1 & ext{otherwise}. \end{cases}$$

Clearly, B is a weakly closed set in $M_n(F)$ and $S_n(F)$ is an ideal of B.

Example

If B is a weakly closed set in A such that $\gamma(a, b) = 0$ for all $a, b \in B$, then B is a multiplicative semigroup in A.

Notations: If A is an algebra over F, then we mean that A is an associative algebra with 1, otherwise we say that A is associative algebra. Let A be an algebra (associative algebra) over F and $C \subseteq A$ then the subalgebra C^{\dagger} (respectively, C^{*}) of A containing 1 generated by C (respectively, subalgebra of A generated by C) is called the *enveloping algebra* (respectively, the *enveloping associative algebra*) of C in A.

Definition

Let A be an associative algebra over a field F and let B_1 and B_2 be subspaces of A. Then

 B_1B_2 = subspace spanned by $\{b_1b_2 \mid b_1 \in B_1, b_2 \in B_2\}$. Thus $A^1 = A$ and $A^k = A^{k-1}A$ for all $k \ge 2$. We say that A is nilpotent if there exists a positive integer n such that $A^n = 0$, that is, every product of k elements in A is zero. Also A is said to be nil if every element of A is nilpotent, that is, for every $a \in A$, there exists $n_a \in \mathbb{N}$ such that $a^{n_a} = 0$. Clearly, every nilpotent algebra is nil but not conversely.

Definition

Let A be a finite dimensional algebra over a field F. A nilpotent ideal R of A of maximal dimension is called the radical of A. Further, A is called semisimple if R = 0. Note that $\frac{A}{R}$ is always semisimple. If R is radical of A and I is a nilpotent ideal of A then R + I is nilpotent, and so R + I = R. Hence, $I \subseteq R$. Therefore R contains every nilpotent ideal of A. March 25, 2020 6/35

Lemma

Let B be a weakly closed set in an associative algebra A. If $w \in B$ then $w_B = \{w\}^* \cap B$ is a subsystem of B such that $w_B^* = \{w\}^*$.

Proof.

Clearly, $\{w\}^* = \{a_1w + a_2w^2 + \dots + a_nw^n \mid n \in N, a_i \in F\}$. Then for $f_1, f_2 \in \{w\}^* \cap B, f_1 \times f_2 \in \{w\}^* \cap B$. Therefore w_B is a subsystem of B. Also, $\{w\}^* \subseteq w_B^*$, as $w \in w_B$. Further, $w_B \subseteq \{w\}^*$ implies $w_B^* \subseteq \{w\}^*$. Hence, $w_B^* = \{w\}^*$.

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma

If S is a subsystem of B and $w \in B$ be such that $s \times w \in S^*$ for all $s \in S$, then $S^*w \subseteq wS^* + S^*$.

Proof.

Let $\alpha \in S^*$. Then α is a linear combination of monomials $s_1 s_2 \cdots s_r$, $s_i \in S$. We prove, by induction on r, that $\alpha w \in wS^* + S^*$. If $s \in S$, then $sw = -\gamma(s, w)ws + s \times w \in wS^* + S^*$. Therefore, the result is true for r = 1. Let the result be true for r - 1. Now

$$egin{aligned} s_1s_2\cdots s_rw &= s_1s_2\cdots s_{r-1}(-\gamma(s_r,w)ws_r+s_r imes w)\ &= -\gamma(s_r,w)(s_1s_2\cdots s_{r-1}w)s_r+s_1s_2\cdots s_{r-1}(s_r imes w)\ &\in (wS^*+S^*)s_r+S^*\subseteq wS^*+S^*. \end{aligned}$$

Lemma

If S is a subsystem of B such that S^* is nilpotent and $S^* \neq B^*$. Then there exists $w \in B$ such that $w \notin S^*$ but $s \times w \in S^*$ for all $s \in S$.

Proof.

If $B \subseteq S^*$, then $B^* \subseteq S^* \subseteq B^*$ or $S^* = B^*$. So $B \nsubseteq S^*$ and there exists $w_1 \in B$ such that $w_1 \notin S^*$. If $s \times w_1 \in S^*$ for all $s \in S$, then take $w = w_1$. Otherwise, there exists $s_1 \in S$ such that $w_2 = s_1 \times w_1 \notin S^*$. So, $w_2 \in B \setminus S^*$. If $s \times w_2 \in S^*$ for all $s \in S$, take $w = w_2$, otherwise there exists $s_2 \in S$ such that $w_3 = s_2 \times w_2 \in B \setminus S^*$. Continuing like this, either we get the required element w in a finite number of steps; or we get an infinite sequence $w_{i+1} = s_i \times w_i \in B \setminus S^*$, $s_i \in S, w_i \in B$.

In the second case $w_k = s_{k-1} \times (s_{k-2} \times (s_{k-3} \times (\cdots (s_1 \times w_1))) \cdots)$. Since S^* is nilpotent, so there exist $n \in \mathbb{N}$ such that any product of n elements of S^* is 0. Now

$$\begin{split} w_2 &= s_1 \times w_1 = s_1 w_1 + \gamma(s_1, w_1) w_1 s_1 \\ w_3 &= s_2 \times w_2 = s_2 w_2 + \gamma(s_2, w_2) w_2 s_2 \\ &= s_2 s_1 w_1 + \gamma(s_1, w_1) s_2 w_1 s_1 + \gamma(s_2, w_2) s_1 w_1 s_2 + \gamma(s_2, w_2) \gamma(s_1, w_1) w_1 s_1 s_2 \\ w_4 &= s_3 \times w_3 = s_3 w_3 + \gamma(s_3, w_3) w_3 s_3 \\ &= s_3 s_2 s_1 w_1 + \gamma(s_1, w_1) s_3 s_2 w_1 s_1 + \gamma(s_2, w_2) s_3 s_1 w_1 s_2 \\ &+ \gamma(s_2, w_2) \gamma(s_1, w_1) s_3 w_1 s_1 s_2 + \gamma(s_3, w_3) \{s_2 s_1 w_1 s_3 + \gamma(s_1, w_1) s_2 w_1 s_1 + \gamma(s_2, w_2) \gamma(s_1, w_1) w_1 s_1 s_2 s_3 \}. \end{split}$$

In general, w_{2n} is a linear combination of terms $c_1c_2\cdots c_jw_1d_1d_2\cdots d_k$ where $c_i, d_i \in S$, j + k = 2n - 1. So, either $j \ge n$ or $k \ge n$. Hence, either $c_1c_2\cdots c_j = 0$ or $d_1d_2\cdots d_k = 0$. So, $w_{2n} = 0 \in S^*$, a contradiction.

Paper I (Unit III)

Theorem

Let V be a vector space over a field F, dim_F(V) < ∞ . Let B be a weakly closed set in L(V) such that every element of B is nilpotent, that is, for every $W \in B$ there exists $n \in N$ such that $W^n = 0$. Then B^{*} is nilpotent.

Proof.

The proof is by induction on $\dim_F(V)$. If $\dim_F(V) = 0$ or $B = \{0\}$, then the theorem is obvious. Therefore let $\dim_F(V) > 0$ and let $B \neq \{0\}$. Let $\Omega = \{S \mid S \text{ is a subsystem of } B \text{ and } S^* \text{ is nilpotent}\}$. Let $\tilde{S} \in \Omega$ be such that $\dim_F(\tilde{S}^*)$ is maximal. If $0 \neq W \in B$, then by Lemma 11, $W_B = \{W\}^* \cap B$ is a subsystem and $W_B^* = \{W\}^* = \{a_1w + a_2w^2 + \dots + a_nw^n \mid n \in \mathbb{N}, a_i \in F\}$. This implies $\{W\}^*$ is nilpotent, and so $W_B^* \in \Omega$. As $W \neq 0$, we have $W_B^* = \{W\}^* \neq \{0\}$. Therefore $\tilde{S}^* \neq \{0\}$.

Let $\tilde{S}^*(V)$ denote the space spanned by $\{T(x) | T \in \tilde{S}^*, x \in V\}$. If $\tilde{S}^*(V) = V$, then for any $x \in V$, $x = \sum_i T_i(x_i)$, $x_i \in V$, $T_i \in \tilde{S}^*$. Also $x_i = \sum_i U_i(y_i)$, for some $y_i \in V$, $U_i \in \tilde{S}^*$ implies $x = \sum_{i} \sum_{j} T_{i}(U_{j}(y_{j}))$. On repeating this, we get $x = \sum T_{i_1} T_{i_2} T_{i_3} \dots T_{i_r}(z_i), \ z_i \in V, \ T_{i_i} \in \tilde{S}^*.$ Since \tilde{S}^* is nilpotent, we have x = 0 which gives $V = \{0\}$, a contradiction. Therefore $\{0\} \subseteq \tilde{S}^*(V) \subseteq V$, which implies $0 < \dim_F(\tilde{S}^*(V)) < \dim_F(V)$. Let $\overline{S} = \{T \in B | T(\widetilde{S}^*(V)) \subset \widetilde{S}^*(V)\}$. If $T, U \in \overline{S}$, then $T \times U = TU + \gamma(T, U)UT$ and $(T \times U)(x) = U(T(x)) + \gamma(T, U)T(U(x)) \in \tilde{S}^*(V)$ for all $x \in \tilde{S}^*(V)$. This gives $T \times U \in \overline{S}$. Thus \overline{S} is subsystem of B and $\widetilde{S} \subseteq \overline{S}$.

If $T \in \overline{S}$, then consider $T^* = T|_{\widetilde{S}^*(V)} \in L(\widetilde{S}^*(V))$ and $\overline{T} \in L(\frac{V}{\widetilde{S}^*(V)})$ defined by $\overline{T}(v + \widetilde{S}^*(V)) = T(v) + \widetilde{S}^*(V)$ for all $v \in V$. Then $B_1 = \{T^* | T^* = T|_{\tilde{S}^*(V)} \text{ for some } T \in \bar{S}\}, B_2 = \{\bar{T} | \text{ for some } T \in \bar{S}\}$ are weakly closed systems of nilpotent linear transformations on $\tilde{S}^*(V)$ and $\frac{V}{\tilde{S}^*(V)}$. Since dim_F($\tilde{S}^*(V)$), dim_F $\left(\frac{V}{\tilde{S}^*(V)}\right) < \dim_F(V)$, so by induction B_1^*, B_2^* are nilpotent. Therefore there exists $p, q \in \mathbb{N}$ such that $\bar{\mathcal{T}}_1 \bar{\mathcal{T}}_2 \cdots \bar{\mathcal{T}}_p = 0 \text{ on } \frac{V}{\tilde{S}^*(V)} \text{ for } \mathcal{T}_i \in \bar{S}; \text{ and } U_1^* U_2^* \cdots U_q^* = 0 \text{ on } \tilde{S}^*(V) \text{ for }$ $U_i \in \overline{S}$. This gives $T_1 T_2 \dots T_p(v) \in \widetilde{S}^*(V)$ and $U_1 U_2 \cdots U_q T_1 T_2 \cdots T_p(v) = 0$. Therefore \bar{S} is nilpotent. Hence $\bar{S} \in \Omega$. By maximality of dim_{*F*}(\tilde{S}), we have $\tilde{S}^* = \bar{S}^*$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\tilde{S}^* \neq B^*$, then by Lemma 13, there exists $W \in B$ such that $W \notin \tilde{S}^*$ but $T \times W \in \tilde{S}^*$ for all $T \in \tilde{S}$. By Lemma 12, $\tilde{S}^*W \subseteq W\tilde{S}^* + \tilde{S}^*$ implies that for all $v \in V$ and $T \in \tilde{S}^*$, we have $TW(v) = (WT_1 + T_2)(v)$, $T_i \in \tilde{S}^*$. This gives $W(T(v)) = T_1(W(v)) + T_2(v)$ and therefore $W(\tilde{S}^*(V)) \subseteq \tilde{S}^*(V)$. So, $W \in \bar{S}$. Now since $W \notin \tilde{S}^*$, we get $\dim_F(\bar{S}^*) > \dim_F(\tilde{S}^*)$, a contradiction. Hence, $\tilde{S}^* = B^*$ and B^* is nilpotent.

This completes the proof.

Example

Let $T_n(F)$ be the set of all $n \times n$ upper triangular matrices over a field F. Verify that $T_n(F)$ is a subalgebra of $M_n(F)$ and $\dim(T_n(F)) = \frac{1}{2}n(n+1)$. A basis of $T_n(F)$ is $\mathcal{B} = \{E_{ij} | i \leq j\}$, where $E_{ij} = (e_{ij})_{n \times n}$ such that $e_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$ Clearly, $T_n(F)_L$ is Lie subalgebra of $M_n(F)_L$. Let $A, B \in T_n(F)$. Then we can write $A = \sum_{i=1}^n \sum_{j=i}^n a_{ij} E_{ij}$ and $B = \sum_{i=1}^n \sum_{j=i}^n b_{ij} E_{ij}$. Now

$$[A, B] = AB - BA$$

= $\sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} E_{ij} \sum_{r=1}^{n} \sum_{s=r}^{n} b_{rs} E_{rs} - \sum_{i=1}^{n} \sum_{j=i}^{n} b_{ij} E_{ij} \sum_{r=1}^{n} \sum_{s=r}^{n} a_{rs} E_{rs}.$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Example . . .

As
$$E_{ij}E_{rs} = \begin{cases} E_{is} & \text{if } j = r, \\ 0 & \text{if } j \neq r, \end{cases}$$
 we have, therefore

$$[A,B] = \sum_{i=1}^{n} \sum_{s=i}^{n} \left(\sum_{r=1}^{n} a_{ir} b_{rs} E_{is} \right) - \sum_{i=1}^{n} \sum_{s=i}^{n} \left(\sum_{r=1}^{n} b_{ir} a_{rs} E_{is} \right).$$

Now if i = s, then

$$\sum_{r=1}^{n} (a_{ir}b_{rs} - b_{ir}a_{rs}) = \sum_{r=1}^{n} (a_{sr}b_{rs} - b_{sr}a_{rs}).$$

For r > s, $b_{rs} = 0 = a_{rs}$, for r < s, $a_{sr} = 0 = b_{sr}$, and for r = s, we have $a_{ss}b_{ss} - b_{ss}a_{ss} = 0$. Therefore, $\sum_{r=1}^{n} (a_{sr}b_{rs} - b_{sr}a_{rs}) = 0$, and hence $[A, B] = C = (c_{ij})$, where $c_{ij} = 0$ for $i \ge j$, that is, $C \in N_n(F)$, the set of all $n \times n$ strictly upper-triangular matrices over F.

Paper I (Unit III)

Example . . .

Now, if $A \in N_n(F)$ then $A = (a_{ij})$, $a_{ij} = 0$ for $i \ge j$, j = 1, 2, ..., n. This gives

$$egin{array}{rcl} A^2 &=& (b_{ij}) ext{ such that } b_{ij} = 0 ext{ for } i \geq j-1, & j=2,\ldots,n. \ A^3 &=& (c_{ij}) ext{ such that } c_{ij} = 0 ext{ for } i \geq j-2, & j=3,\ldots,n, \end{array}$$

and continuing we get $A^n = 0$ as $A^n = (d_{ij})$ such that $d_{ij} = 0$ for $i \ge j - (n-1) = j - n + 1$, j = n. That is, $d_{1n} = 0$. So $N_n(F)$ consists of nil-triangular matrices and $T_n(F)^{(1)} \subseteq N_n(F)$. Hence, $T_n(F)_L$ is a solvable Lie algebra but it is not a nilpotent Lie algebra. By Theorem 14, $N_n(F)^*$ is nilpotent associative algebra. (For, if $\dim_F(V) = n$ then $L(V) \simeq M_n(F)$ and $N_n(F)$ is a weakly closed set in $M_n(F)$ such that every element of $N_n(F)$ is nilpotent. Now use the previous theorem.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

Let V and B be as in Theorem 14. Then there exists a basis \mathcal{B} for V such that for all $T \in B$, $[T]_{\mathcal{B}} \in N_n(F)$.

Proof.

Assume $V \neq \{0\}$. Let $B^*(V)$ be the space spanned by $\{T(v)|v \in V, T \in B^*\}$. Then $B^*(V) \neq V$ as in the proof of Theorem 14. $(\tilde{S}(V) \neq V)$. Also, $B^{*2}(V) = B^*(B^*(V))$ and as above, if $B^*(V) \neq 0$, then $B^{*2}(V) \subsetneq B^*(V)$. Thus we get a chain

$$V \supsetneq B^*(V) \supsetneq B^{*2}(V) \supsetneq \cdots \supsetneq B^{*(N-1)}(V) \supsetneq B^{*N}(V) = \{0\},$$

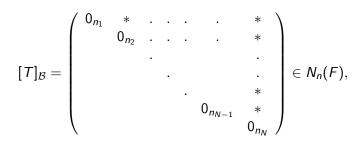
where $N \in \mathbb{N}$ such that $B^{*N}(V) = \{0\}$ but $B^{*(N-1)}(V) \neq \{0\}$.

Let $\mathcal{B}_1 = \{e_1, e_2, \dots, e_n\}$ be a basis for $B^{*(N-1)}(V)$. Extend this to obtain a basis $\mathcal{B}_2 = \{e_1, e_2, \dots, e_{n_1+n_2}\}$ for $B^{*(N-2)}(V)$. Continuing like this we obtain a basis $\mathcal{B} = \mathcal{B}_N = \{e_1, e_2, \dots, e_{n_1+n_2+\dots+n_N}\}$ for V, $n_1 + n_2 + \cdots + n_N = m = \dim_E(V).$ Since $B(B^{*(N-k)}(V)) \subseteq B^{*(N-k+1)}(V)$, so for any $T \in B$: $T(e_1) = T(e_2) = \cdots = T(e_{n_1}) = 0;$ $T(e_{n_1+1}), T(e_{n_1+2}), \ldots, T(e_{n_1+n_2}) =$ linear combination of elements of \mathcal{B}_1 ; $T(e_{n_1+n_2+1}), T(e_{n_1+n_2+2}), \dots, T(e_{n_1+n_2+n_2}) = \text{linear combination of}$ elements of \mathcal{B}_2 : and so on $T(e_{n_1+n_2+\cdots+n_{N-1}+1}),\ldots,T(e_{n_1+n_2+\cdots+n_N}) =$ linear combination of elements of \mathcal{B}_{N-1} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof . . .

This gives



where * denote entries which may be nonzero.

This completes the proof.

Lemma

Let B be a weakly closed subset of an associative algebra A over a field F and let I be an ideal of B. Then

1 $I^{*k}B^* \subseteq B^*I^{*k} + I^{*k};$ B $I^{*k}B^* \subseteq I^{*k}B^* + I^{*k};$

$$(B^*I^*)^k \subseteq B^*I^{*k};$$

$$(I^*B^*)^k \subseteq I^{*k}B^*$$

Proof.

1. We prove by induction. By Lemma 2, $I^*w \subseteq wI^* + I^*$ for all $w \in B$, as I is an ideal. Therefore, if $w_1, w_2, \ldots, w_r \in B$, then $I^*w_1w_2\cdots w_r \subseteq B^*I^* + I^*$. This implies $I^*B^* \subseteq B^*I^* + I^*$. Assume that $I^{*k-1}B^* \subseteq B^*I^{*k-1} + I^{*k-1}$.

Proof . . .

Now, for $a_1, a_2, \ldots, a_k \in I^*$, $w \in B^*$, we have

$$\begin{aligned} \mathsf{a}_{1}\mathsf{a}_{2}\cdots\mathsf{a}_{k}w &= \mathsf{a}_{1}\mathsf{a}_{2}\cdots\mathsf{a}_{k-1}(\mathsf{a}_{k}w)\subseteq\mathsf{a}_{1}\mathsf{a}_{2}\cdots\mathsf{a}_{k-1}(B^{*}I^{*}+I^{*}) \\ &\subseteq (B^{*}I^{*k-1}+I^{*k-1})I^{*}+I^{*k-1})I^{*} \\ &\subseteq B^{*}I^{*k}+I^{*k}. \end{aligned}$$

2. Let $w \in B$, and let $a \in I$. Then $wa + \gamma(w, a)aw = w \times a \in I$. This gives $wI^* \subseteq I^*w + I^*$, and so $B^*I^* \subseteq I^*B^* + I^*$. Thus the result is true for k = 1. Rest follows by applying induction on k.

3. It is clearly true for k = 1. Assume that $(B^*I^*)^k \subseteq B^*I^{*k}$. Then

$$(B^*I^*)^{k+1} = (B^*I^*)^k (B^*I^*) \subseteq B^*I^{*k}B^*I^*$$

$$\subseteq B^* (B^*I^{*k} + I^{*k})I^* \subseteq B^*I^{*k+1}$$

4. Similar to (3) above.

Theorem

Let B and V be as in Theorem 14. Let I be an ideal of B such that every element of I is nilpotent. Then $I^* \subseteq R$, the radical of B^* . Hence, $I \subseteq R$.

Proof.

Clearly, $B^*I^* + I^*$ is a two sided ideal of associative algebra B^* as $B^*(B^*I^* + I^*) \subseteq B^*I^*$ and $(B^*I^* + I^*)B^* \subseteq B^*(B^*I^* + I^*) + B^*I^* + I^* \subseteq B^*I^* + I^*$. Also $(B^*I^* + I^*)^k \subseteq B^*I^* + I^{*k}$. By Theorem 14, I^* is nilpotent. Let $n \in \mathbb{N}$, such that $I^{*n} = \{0\}$. Then $(B^*I^* + I^*)^n \subseteq B^*I^*$ and $(B^*I^*)^n \subseteq B^*I^{*n} = \{0\}$. This implies $(B^*I^* + I^*)^{n^2} = \{0\}$. Therefore, $B^*I^* + I^*$ is a nilpotent ideal of B^* . So, $I \subseteq I^* \subseteq B^*I^* + I^* \subseteq R$, as every nilpotent ideal of an associative algebra is contained in its radical.

Theorem

(Engel's Theorem on abstract Lie algebras) If L is a finite dimensional Lie algebra, then L is nilpotent if and only if ad_a is nilpotent for all $a \in L$.

Proof.

As *L* is nilpotent, there exists $n \in \mathbb{N}$ such that $L^n = \{0\}$. Therefore $[\cdots [[a_1, a_2], a_3], \ldots, a_n] = 0$ for all $a_i \in L$. In particular, for all $x, a \in L$, we have

$$[\cdots [[x, \underbrace{a], a], \cdots a}_{(n-1)\text{-times}}] = 0.$$

Hence, $ad_a^{n-1} = 0$ for all $a \in L$, and so ad_a is nilpotent. Conversely, let L be finite dimensional and let ad_a be nilpotent for all $a \in L$. Now $Inn(L) = \{ad_a | a \in L\}$. This set is a Lie algebra of nilpotent linear operators on L. (as $[ad_a, ad_b] = ad_{[a,b]} \in Inn(L)$).

Proof . . .

Now Inn(L) is a weakly closed set in L(L) and $\dim_F(L) < \infty$ such that every element of Inn(L) is nilpotent. Therefore by Theorem 14, $Inn(L)^*$ is a nilpotent associative algebra. So, there exists $m \in \mathbb{N}$ such that $ad_{a_1}ad_{a_2}\cdots ad_{a_m} = 0$ for all $a_i \in L$. This gives $[\cdots [[a, a_1], a_2], \ldots, a_m] = 0$ for all $a, a_1, \ldots, a_m \in L$. Hence, $L^{m+1} = \{0\}$ and L is nilpotent. This completes the proof.

Theorem

(Engel's Theorem on Lie algebra of linear transformations) If L is a Lie algebra of linear transformations on a finite dimensional vector space V, (that is, L is a Lie subalgebra of $L(V)_L$) and every $T \in L$ is nilpotent then L^* is nilpotent.

Proof.

As L is a Lie subalgebra of $L(V)_L$, so L is a weakly closed set in L(V). Now apply Theorem of Lecture 3.

Lemma

(Fitting) Let V be a vector space over a field F, $\dim_F(V) < \infty$. Let $T \in L(V)$. Then $V = V_{0T} \oplus V_{1T}$ where each V_{iT} is invariant under T such that if $T_i = T|_{V_{iT}}$, then T_0 is nilpotent and T_1 is an automorphism of V_{1T} .

Proof.

Clearly, $V \supseteq T(V) \supseteq T^2(V) \supseteq \cdots$ is a sequence of subspaces of V. As $\dim_F(V) < \infty$, there exists $r \in \mathbb{N}$ such that $V_{1T} = T^r(V) = T^{(r+1)}(V) = \cdots$. Let $W_i = \{z \in V | T^i(z) = 0\}$. Then $W_1 \subseteq W_2 \subseteq \cdots$ is a sequence of subspaces of V. As $\dim_F(V) < \infty$, there exists $s \in \mathbb{N}$ such that $V_{0T} = W_s = W_{s+1} = \cdots$. Let $t = \max(r, s)$. Then $V_{0T} = W_t$ and $V_{1T} = T^t(V)$.

Proof . . .

Let $x \in V$, then $T^t(V) = T^{2t}(V)$ implies $T^t(x) = T^{2t}(y)$ for some $y \in V$. This gives

$$x = (x - T^{t}(y)) + T^{t}(y) \in V_{0T} + V_{1T}.$$

Hence, $V = V_{0T} + V_{1T}$. Let $z \in V_{0T} \cap V_{1T}$. Then $z = T^t(v)$ for some $v \in V$ and $T^t(z) = 0$, that is, $T^{2t}(v) = 0$. Therefore $v \in W_{2t} = W_t = V_{0T}$, and so $z = T^t(v) = 0$. Therefore $V = V_{0T} \oplus V_{1T}$. Since $V_{0T} = W_t$, we have $T^t = 0$ on V_{0T} , that is, $T_0 = T|_{V_{0T}}$ is nilpotent. Also $V_{1T} = T^r(V) = T^{r+1}(V)$ implies that for all $v \in V$ there exists $w \in V$ such that $T^r(v) = T^{r+1}(w) = T(T^r(w))$. Hence, $T_1 = T|_{V_{1T}}$ is surjective; and as $\dim_F(V_{1T}) < \infty$, T_1 is also injective. Therefore, T_1 is an automorphism of V_{1T} .

This completes the proof.

Paper I (Unit III)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Note that the subspace V_{0T} is called Fitting null component of V relative to T and the subspace V_{1T} is called Fitting one component of V relative to T.

Theorem

(Primary Decomposition Theorem) Let V be a vector space over a field F, $\dim_F(V) < \infty$ and let $T \in L(V)$. If $m_T(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$ is minimal polynomial of T where $p_i(x)$'s are its monic irreducible factors and r_i 's are positive integers, then $V = V_{p_1T} \oplus V_{p_2T} \oplus \cdots \oplus V_{p_kT}$, where $V_{p_iT} = \{v \in V | p_i^{r_i}(T)(v) = 0\}$ are T-invariant subspaces of V. Also if for each i, $T_i = T|_{V_{p;T}}$, then minimal polynomial of T_i is $p_i^{r_i}(x)$.

The *T*-invariant subspaces V_{p_iT} , described in the above theorem, are called primary components of *V* corresponding to *T*. Note that if $p_i(x) = x$, then $T_i^{r_i} = 0$ or $T^{r_i} = 0$ on V_{p_iT} . This implies $V_{p_iT} \subseteq V_{0T}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Further, if $p_j(x) \neq x$, then $x \nmid p_j(x)$, and so T_j is an isomorphism. Therefore $V_{p_jT} = T(V_{pjT}) = \cdots$, and so $V_{p_jT} \subseteq V_{1T}$.

Hence, $\sum_{p_j(x)\neq x} V_{p_jT} \subseteq V_{1T}$. Therefore $V = V_{0T} \oplus V_{1T} = V_{xT} \oplus \sum_{p_j(x)\neq x} V_{p_jT}$. That is, Fitting null component $V_{0T} = V_{xT}$ = characteristic space of characteristic root 0 of T; and Fitting one component $V_{1T} = \sum_{p_j(x)\neq x} V_{p_jT}$.

Next we shall study nilpotent Lie algebras of linear transformations on a finite dimensional vector space V over a field F.

イロト 不得下 イヨト イヨト 二日

Let A be an associative algebra over a field F. For $a \in A$ inner derivation $ad_a : A \to A$ is given by $ad_a(x) = [x, a]$ for all $x \in A$. Define inductively

$$x^{(0)} = x, \ x^{(1)} = [x^{(0)}, a] = ad_a(x), \ x^{(k)} = ad_a^{(k-1)}(x).$$

Then

$$xa = ax + ad_a(x) = ax^{(0)} + x^{(1)},$$

$$xa^2 = (xa)a = (ax^{(0)} + x^{(1)})a = a(ax^{(0)} + x^{(1)}) + ax^{(1)} + x^{(2)}$$

$$= a^2x + \binom{2}{1}ax^{(1)} + x^{(2)}.$$

Let $xa^{k-1} = a^{k-1}x + \binom{k-1}{1}a^{k-2}x^{(1)} + \dots + \binom{k-1}{k-2}ax^{(k-2)} + x^{(k-1)}$, then

< □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{aligned} xa^{k} &= (xa^{k-1})a \\ &= a^{k-1}(ax^{(0)} + x^{(1)}) + \binom{k-1}{1}a^{k-2}(ax^{(1)} + x^{(2)}) + \cdots \\ &+ \binom{k-1}{k-2}a(ax^{(k-2)} + x^{(k-1)}) + ax^{(k-1)} + x^{(k)} \\ &= a^{k}x + \binom{k}{1}a^{k-1}x^{(1)} + \binom{k}{2}a^{k-2}x^{(2)} + \cdots + \binom{k}{k-1}ax^{(k-1)} + x^{(k)}. \end{aligned}$$

Similarly,

$$a^{k}x = xa^{k} - {k \choose 1}x^{(1)}a^{k-1} + {k \choose 2}x^{(2)}a^{k-2} + \cdots \pm x^{(k)}.$$

Paper I (Unit III)

M.Sc. Semester IV

March 25, 2020 31 / 35

イロト 不問 トイヨト イヨト 二三

Lemma

Let V be a vector space over F, dim_F(V) < ∞ and let T, U \in L(V) such that there exists N \in \mathbb{N} satisfying $[\cdots [[U, \underbrace{T], T], \cdots, T}] = 0$. Then V_{0T}, V_{1T} are invariant under U.

Proof.

Let $v \in V_{0T}$. Then $T^m(v) = 0$ for some m. Therefore for k = N + m - 1,

$$T^{k}(U(v)) = UT^{k}(v)$$

$$= (T^{k}U + {\binom{k}{1}}T^{k-1}U^{(1)} + {\binom{k}{2}}T^{k-2}U^{(2)}$$

$$+ \dots + {\binom{k}{N-1}}T^{k-N+1}U^{(N-1)} + \dots + {\binom{k}{k-1}}TU^{(k-1)} +$$

$$= U(T^{k}(v)) + {\binom{k}{1}}U^{(1)}(T^{k-1}(v)) + \dots + {\binom{k}{N-1}}U^{(N-1)}(T^{m}(v))$$

$$+ {\binom{k}{N}}U^{(N)}(T^{m-1}(v)) + \dots + U^{(k)}(v).$$
Here $U^{(0)} = U, U^{(1)} = ad_{T}(U^{(0)}) = [U, T], U^{(r)} = ad_{T}^{(r-1)}(U), r \ge 1.$ So $U^{(N)} = 0.$

Paper I (Unit III)

Therefore for $m = k - N + 1 \le j \le k$, $T^j(v) = 0$ and for j > N - 1, $U^{(j)} = 0$. Hence, $T^k(U(v)) = 0$, and so $U(v) \in V_{0T}$. Now let $v \in V_{1T} = T^t(V) = T^{t+1}(V) = \cdots = T^{t+N-1}(V)$. Then there exists $w \in V$ such that $v = T^{t+N-1}(w)$. Now

$$U(v) = U(T^{t+N-1}(w)) = T^{t+N-1}U(w)$$

= $(UT^{t+N-1} - {t+N-1 \choose 1}U^{(1)}T^{t+N-2} + {t+N-1 \choose 2}U^{(2)}T^{t+N-3}$
+ $\cdots + (-1)^{N-1}{t+N-1 \choose N-1}U^{(N-1)}T^{t} + (-1)^{N}{t+N-1 \choose N}U^{(N-1)}U^{(N-1)}$
+ $\cdots \pm U^{(t+N-1)})(w)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof . . .

$$U(v) = T^{t+N-1}(U(w)) - {\binom{t+N-1}{1}} T^{t+N-2}(U^{(1)}(w)) + {\binom{t+N-1}{2}} T^{t+N-3}(U^{(2)}(w)) + \dots + (-1)^{N-1} {\binom{t+N-1}{N-1}} T + (-1)^N {\binom{t+N-1}{N}} T^{t-1}(U^{(N)}(w)) + \dots \pm U^{(t+N-1)}(w).$$

So, for $j \ge N$, $U^{(j)} = 0$ and for j < N, $T^{t+j}(U^{(N-j-1)}(w)) \in T^{t+j}(V) = V_{1T}$. Hence, $U(v) \in V_{1T}$. This completes the proof.

Dear Students, The e-content on Unit 4 will be uploaded next week.

STAY SAFE

Paper I (Unit III)

M.Sc. Semester IV

イロト 不得下 イヨト イヨト 二日