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Basic Concepts

Go through the following definitions:

Definition

A subset B of an associative algebra A over a field F is said to be weakly
closed if for all ordered pairs (a, b), a, b ∈ B, there exists γ(a, b) ∈ F such
that a× b = ab + γ(a, b)ba ∈ B.

Definition

A subset S of a weakly closed set B is said to be a subsystem if
c × d ∈ S , for all c , d ∈ S .

Definition

A subsystem S of a weakly closed set B is said to be a left ideal
(respectively, ideal) if a× c ∈ S , (respectively, a× c , c × a ∈ S) for all
a ∈ B, c ∈ S .
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Lecture 1

Now work out the following examples:

Example

Let B be a subalgebra of AL. Then ab − ba ∈ B for all a, b ∈ B. Take
γ(a, b) = −1 for all a, b ∈ B so that B is weakly closed set.

Example

If B is a subalgebra of AL with basis {e, f , h} such that [e, f ] = h,
[e, h] = 2e, [f , h] = −2f , then S = Fe ∪ Ff ∪ Fh is a subsystem of B.

Example

Let Sn(F ) denote the set of all symmetric n × n matrices over F and let
a, b ∈ Sn(F ). Then (ab + ba)t = ba + ab implies that ab + ba ∈ Sn(F ).
Hence, with γ(a, b) = 1 for all a, b ∈ Sn(F ), we have that Sn(F ) is a
weakly closed set in Mn(F ), the set of all n × n matrices over F .
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Lecture 1

Example

Let B = SSn(F ) ∪ Sn(F ), where SSn(F ) denotes the set of all n × n
skew-symmetric matrices over F . Then we have the following:
for a, b ∈ Sn(F ), (ab + ba)t = ba + ab implies ab + ba ∈ Sn(F ),
for a ∈ SSn(F ), b ∈ Sn(F ), (ab − ba)t = −ba + ab implies
ab − ba ∈ Sn(F ),
for a ∈ Sn(F ), b ∈ SSn(F ), (ab − ba)t = −ba + ab implies
ab − ba ∈ Sn(F ),
for a, b ∈ SSn(F ), (ab − ba)t = ba− ab implies ab − ba ∈ SSn(F ).

Choose

γ(a, b) =

{
1 if a, b ∈ Sn(F ),

−1 otherwise.

Clearly, B is a weakly closed set in Mn(F ) and Sn(F ) is an ideal of B.
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Lecture 1

Example

If B is a weakly closed set in A such that γ(a, b) = 0 for all a, b ∈ B, then
B is a multiplicative semigroup in A.

Notations: If A is an algebra over F , then we mean that A is an
associative algebra with 1, otherwise we say that A is associative algebra.
Let A be an algebra (associative algebra) over F and C ⊆ A then the
subalgebra C † (respectively, C ∗) of A containing 1 generated by C
(respectively, subalgebra of A generated by C ) is called the enveloping
algebra (respectively, the enveloping associative algebra) of C in A.
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Lecture 1

Definition

Let A be an associative algebra over a field F and let B1 and B2 be
subspaces of A. Then
B1B2 = subspace spanned by {b1b2 | b1 ∈ B1, b2 ∈ B2}. Thus A1 = A
and Ak = Ak−1A for all k ≥ 2. We say that A is nilpotent if there exists a
positive integer n such that An = 0, that is, every product of k elements in
A is zero. Also A is said to be nil if every element of A is nilpotent, that
is, for every a ∈ A, there exists na ∈ N such that ana = 0. Clearly, every
nilpotent algebra is nil but not conversely.

Definition

Let A be a finite dimensional algebra over a field F . A nilpotent ideal R of
A of maximal dimension is called the radical of A. Further, A is called
semisimple if R = 0. Note that A

R is always semisimple. If R is radical of A
and I is a nilpotent ideal of A then R + I is nilpotent, and so R + I = R.
Hence, I ⊆ R. Therefore R contains every nilpotent ideal of A.
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Lecture 2

Lemma

Let B be a weakly closed set in an associative algebra A. If w ∈ B then
wB = {w}∗ ∩ B is a subsystem of B such that w∗B = {w}∗.

Proof.

Clearly, {w}∗ = {a1w + a2w
2 + · · ·+ anw

n | n ∈ N, ai ∈ F}. Then for
f1, f2 ∈ {w}∗ ∩ B, f1 × f2 ∈ {w}∗ ∩ B. Therefore wB is a subsystem of B.
Also, {w}∗ ⊆ w∗B , as w ∈ wB . Further, wB ⊆ {w}∗ implies w∗B ⊆ {w}∗.
Hence, w∗B = {w}∗.
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Lecture 2

Lemma

If S is a subsystem of B and w ∈ B be such that s ×w ∈ S∗ for all s ∈ S ,
then S∗w ⊆ wS∗ + S∗.

Proof.

Let α ∈ S∗. Then α is a linear combination of monomials s1s2 · · · sr ,
si ∈ S . We prove, by induction on r , that αw ∈ wS∗ + S∗.
If s ∈ S , then sw = −γ(s,w)ws + s × w ∈ wS∗ + S∗. Therefore, the
result is true for r = 1. Let the result be true for r − 1. Now

s1s2 · · · srw = s1s2 · · · sr−1(−γ(sr ,w)wsr + sr × w)

= −γ(sr ,w)(s1s2 · · · sr−1w)sr + s1s2 · · · sr−1(sr × w)

∈ (wS∗ + S∗)sr + S∗ ⊆ wS∗ + S∗.
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Lecture 2

Lemma

If S is a subsystem of B such that S∗ is nilpotent and S∗ 6= B∗. Then
there exists w ∈ B such that w /∈ S∗ but s × w ∈ S∗ for all s ∈ S .

Proof.

If B ⊆ S∗, then B∗ ⊆ S∗ ⊆ B∗ or S∗ = B∗. So B * S∗ and there exists
w1 ∈ B such that w1 /∈ S∗.
If s × w1 ∈ S∗ for all s ∈ S , then take w = w1. Otherwise, there exists
s1 ∈ S such that w2 = s1 × w1 /∈ S∗. So, w2 ∈ B \ S∗.
If s × w2 ∈ S∗ for all s ∈ S , take w = w2, otherwise there exists s2 ∈ S
such that w3 = s2 × w2 ∈ B \ S∗.
Continuing like this, either we get the required element w in a finite
number of steps; or we get an infinite sequence wi+1 = si × wi ∈ B \ S∗,
si ∈ S ,wi ∈ B.
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Proof Continued

In the second case wk = sk−1 × (sk−2 × (sk−3 × (· · · (s1 × w1))) · · · ).
Since S∗ is nilpotent, so there exist n ∈ N such that any product of n
elements of S∗ is 0. Now

w2 = s1 × w1 = s1w1 + γ(s1,w1)w1s1

w3 = s2 × w2 = s2w2 + γ(s2,w2)w2s2

= s2s1w1 + γ(s1,w1)s2w1s1 + γ(s2,w2)s1w1s2 + γ(s2,w2)γ(s1,w1)w1s1s2

w4 = s3 × w3 = s3w3 + γ(s3,w3)w3s3

= s3s2s1w1 + γ(s1,w1)s3s2w1s1 + γ(s2,w2)s3s1w1s2

+ γ(s2,w2)γ(s1,w1)s3w1s1s2 + γ(s3,w3){s2s1w1s3 + γ(s1,w1)s2w1s1s3

+ γ(s2,w2)s1w1s2s3 + γ(s2,w2)γ(s1,w1)w1s1s2s3}.

In general, w2n is a linear combination of terms c1c2 · · · cjw1d1d2 · · · dk
where ci , di ∈ S , j + k = 2n − 1. So, either j ≥ n or k ≥ n. Hence, either
c1c2 · · · cj = 0 or d1d2 · · · dk = 0. So, w2n = 0 ∈ S∗, a contradiction.
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Lecture 3

Theorem

Let V be a vector space over a field F , dimF (V ) <∞. Let B be a weakly
closed set in L(V ) such that every element of B is nilpotent, that is, for
every W ∈ B there exists n ∈ N such that W n = 0. Then B∗ is nilpotent.

Proof.

The proof is by induction on dimF (V ). If dimF (V ) = 0 or B = {0}, then
the theorem is obvious. Therefore let dimF (V ) > 0 and let B 6= {0}.
Let Ω = {S | S is a subsystem of B and S∗ is nilpotent}. Let S̃ ∈ Ω be
such that dimF (S̃∗) is maximal.
If 0 6= W ∈ B, then by Lemma 11, WB = {W }∗ ∩ B is a subsystem and
W ∗

B = {W }∗ = {a1w + a2w
2 + · · ·+ anw

n | n ∈ N, ai ∈ F}. This implies
{W }∗ is nilpotent, and so W ∗

B ∈ Ω. As W 6= 0, we have
W ∗

B = {W }∗ 6= {0}. Therefore S̃∗ 6= {0}.
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Proof Continued

Let S̃∗(V ) denote the space spanned by {T (x)|T ∈ S̃∗, x ∈ V }. If
S̃∗(V ) = V , then for any x ∈ V , x =

∑
i Ti (xi ), xi ∈ V , Ti ∈ S̃∗.

Also xi =
∑

j Uj(yj), for some yj ∈ V , Uj ∈ S̃∗ implies
x =

∑
i

∑
j Ti (Uj(yj)). On repeating this, we get

x =
∑

Ti1Ti2Ti3 . . .Tir (zi ), zi ∈ V , Tij ∈ S̃∗.

Since S̃∗ is nilpotent, we have x = 0 which gives V = {0}, a contradiction.
Therefore {0} ( S̃∗(V ) ( V , which implies 0 < dimF (S̃∗(V )) < dimF (V ).
Let S̄ = {T ∈ B|T (S̃∗(V )) ⊆ S̃∗(V )}. If T ,U ∈ S̄ , then
T × U = TU + γ(T ,U)UT and
(T × U)(x) = U(T (x)) + γ(T ,U)T (U(x)) ∈ S̃∗(V ) for all x ∈ S̃∗(V ).
This gives T × U ∈ S̄ . Thus S̄ is subsystem of B and S̃ ⊆ S̄ .
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Proof Continued

If T ∈ S̄ , then consider T ∗ = T |S̃∗(V ) ∈ L(S̃∗(V )) and T̄ ∈ L( V
S̃∗(V )

)

defined by T̄ (v + S̃∗(V )) = T (v) + S̃∗(V ) for all v ∈ V . Then
B1 = {T ∗|T ∗ = T |S̃∗(V ) for some T ∈ S̄}, B2 = {T̄ | for some T ∈ S̄} are

weakly closed systems of nilpotent linear transformations on S̃∗(V ) and
V

S̃∗(V )
. Since dimF (S̃∗(V )), dimF

(
V

S̃∗(V )

)
< dimF (V ), so by induction

B∗1 ,B
∗
2 are nilpotent. Therefore there exists p, q ∈ N such that

T̄1T̄2 · · · T̄p = 0 on V
S̃∗(V )

for Ti ∈ S̄ ; and U∗1U
∗
2 · · ·U∗q = 0 on S̃∗(V ) for

Ui ∈ S̄ . This gives T1T2 . . .Tp(v) ∈ S̃∗(V ) and
U1U2 · · ·UqT1T2 · · ·Tp(v) = 0. Therefore S̄ is nilpotent. Hence S̄ ∈ Ω.
By maximality of dimF (S̃), we have S̃∗ = S̄∗.
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Proof Continued

If S̃∗ 6= B∗, then by Lemma 13, there exists W ∈ B such that W /∈ S̃∗ but
T ×W ∈ S̃∗ for all T ∈ S̃ . By Lemma 12, S̃∗W ⊆WS̃∗ + S̃∗ implies
that for all v ∈ V and T ∈ S̃∗, we have TW (v) = (WT1 + T2)(v),
Ti ∈ S̃∗. This gives W (T (v)) = T1(W (v)) + T2(v) and therefore
W (S̃∗(V )) ⊆ S̃∗(V ).
So, W ∈ S̄ . Now since W /∈ S̃∗, we get dimF (S̄∗) > dimF (S̃∗), a
contradiction. Hence, S̃∗ = B∗ and B∗ is nilpotent.

This completes the proof.
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Lecture 4

Example

Let Tn(F ) be the set of all n × n upper triangular matrices over a field F .
Verify that Tn(F ) is a subalgebra of Mn(F ) and dim(Tn(F )) = 1

2n(n + 1).
A basis of Tn(F ) is B = {Eij |i ≤ j}, where Eij = (eij)n×n such that

eij =

{
1 if i = j ,

0 if i 6= j .

Clearly, Tn(F )L is Lie subalgebra of Mn(F )L. Let A,B ∈ Tn(F ). Then we
can write A =

∑n
i=1

∑n
j=i aijEij and B =

∑n
i=1

∑n
j=i bijEij . Now

[A,B] = AB − BA

=
n∑

i=1

n∑
j=i

aijEij

n∑
r=1

n∑
s=r

brsErs −
n∑

i=1

n∑
j=i

bijEij

n∑
r=1

n∑
s=r

arsErs .
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Example . . .

As EijErs =

{
Eis if j = r ,

0 if j 6= r ,
we have, therefore

[A,B] =
n∑

i=1

n∑
s=i

(
n∑

r=1

airbrsEis

)
−

n∑
i=1

n∑
s=i

(
n∑

r=1

birarsEis

)
.

Now if i = s, then

n∑
r=1

(airbrs − birars) =
n∑

r=1

(asrbrs − bsrars).

For r > s, brs = 0 = ars , for r < s, asr = 0 = bsr , and for r = s, we have
assbss − bssass = 0.
Therefore,

∑n
r=1(asrbrs − bsrars) = 0, and hence [A,B] = C = (cij), where

cij = 0 for i ≥ j , that is, C ∈ Nn(F ), the set of all n × n strictly
upper-triangular matrices over F .
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Example . . .

Now, if A ∈ Nn(F ) then A = (aij), aij = 0 for i ≥ j , j = 1, 2, . . . , n. This
gives

A2 = (bij) such that bij = 0 for i ≥ j − 1, j = 2, . . . , n.

A3 = (cij) such that cij = 0 for i ≥ j − 2, j = 3, . . . , n,

and continuing we get An = 0 as An = (dij) such that dij = 0 for
i ≥ j − (n − 1) = j − n + 1, j = n. That is, d1n = 0. So Nn(F ) consists of
nil-triangular matrices and Tn(F )(1) ⊆ Nn(F ).
Hence, Tn(F )L is a solvable Lie algebra but it is not a nilpotent Lie
algebra. By Theorem 14, Nn(F )∗ is nilpotent associative algebra. (For, if
dimF (V ) = n then L(V ) ' Mn(F ) and Nn(F ) is a weakly closed set in
Mn(F ) such that every element of Nn(F ) is nilpotent. Now use the
previous theorem.)
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Lecture 5

Theorem

Let V and B be as in Theorem 14. Then there exists a basis B for V such
that for all T ∈ B, [T ]B ∈ Nn(F ).

Proof.

Assume V 6= {0}. Let B∗(V ) be the space spanned by
{T (v)|v ∈ V ,T ∈ B∗}. Then B∗(V ) 6= V as in the proof of Theorem 14.
(S̃(V ) 6= V ).
Also, B∗2(V ) = B∗(B∗(V )) and as above, if B∗(V ) 6= 0, then
B∗2(V ) ( B∗(V ).
Thus we get a chain

V ) B∗(V ) ) B∗2(V ) ) · · · ) B∗(N−1)(V ) ) B∗N(V ) = {0},

where N ∈ N such that B∗N(V ) = {0} but B∗(N−1)(V ) 6= {0}.
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Proof . . .

Let B1 = {e1, e2, . . . , en1} be a basis for B∗(N−1)(V ). Extend this to
obtain a basis B2 = {e1, e2, . . . , en1+n2} for B∗(N−2)(V ). Continuing like
this we obtain a basis B = BN = {e1, e2, . . . , en1+n2+···+nN} for V ,
n1 + n2 + · · · nN = m = dimF (V ).
Since B(B∗(N−k)(V )) ⊆ B∗(N−k+1)(V ), so for any T ∈ B:
T (e1) = T (e2) = · · · = T (en1) = 0;
T (en1+1),T (en1+2), . . . ,T (en1+n2) = linear combination of elements of B1;
T (en1+n2+1),T (en1+n2+2), . . . ,T (en1+n2+n3) = linear combination of
elements of B2;
and so on
T (en1+n2+···+nN−1+1), . . . ,T (en1+n2+···+nN ) = linear combination of
elements of BN−1.
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Proof . . .

This gives

[T ]B =



0n1 ∗ . . . . ∗
0n2 . . . . ∗

. .
. .
. ∗

0nN−1
∗

0nN


∈ Nn(F ),

where ∗ denote entries which may be nonzero.

This completes the proof.
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Lecture 6

Lemma

Let B be a weakly closed subset of an associative algebra A over a field F
and let I be an ideal of B. Then

1 I ∗kB∗ ⊆ B∗I ∗k + I ∗k ;

2 B∗I ∗k ⊆ I ∗kB∗ + I ∗k ;

3 (B∗I ∗)k ⊆ B∗I ∗k ;

4 (I ∗B∗)k ⊆ I ∗kB∗.

Proof.

1. We prove by induction. By Lemma 2, I ∗w ⊆ wI ∗ + I ∗ for all w ∈ B, as
I is an ideal. Therefore, if w1,w2, . . . ,wr ∈ B, then
I ∗w1w2 · · ·wr ⊆ B∗I ∗ + I ∗. This implies I ∗B∗ ⊆ B∗I ∗ + I ∗.
Assume that I ∗k−1B∗ ⊆ B∗I ∗k−1 + I ∗k−1.
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Proof . . .

Now, for a1, a2, . . . , ak ∈ I ∗, w ∈ B∗, we have

a1a2 · · · akw = a1a2 · · · ak−1(akw) ⊆ a1a2 · · · ak−1(B∗I ∗ + I ∗)

⊆ (B∗I ∗k−1 + I ∗k−1)I ∗ + I ∗k−1)I ∗

⊆ B∗I ∗k + I ∗k .

2. Let w ∈ B, and let a ∈ I . Then wa + γ(w , a)aw = w × a ∈ I . This
gives wI ∗ ⊆ I ∗w + I ∗, and so B∗I ∗ ⊆ I ∗B∗+ I ∗. Thus the result is true for
k = 1. Rest follows by applying induction on k .
3. It is clearly true for k = 1. Assume that (B∗I ∗)k ⊆ B∗I ∗k . Then

(B∗I ∗)k+1 = (B∗I ∗)k(B∗I ∗) ⊆ B∗I ∗kB∗I ∗

⊆ B∗(B∗I ∗k + I ∗k)I ∗ ⊆ B∗I ∗k+1

4. Similar to (3) above.
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Lecture 6

Theorem

Let B and V be as in Theorem 14. Let I be an ideal of B such that every
element of I is nilpotent. Then I ∗ ⊆ R, the radical of B∗. Hence, I ⊆ R.

Proof.

Clearly, B∗I ∗ + I ∗ is a two sided ideal of associative algebra B∗ as
B∗(B∗I ∗ + I ∗) ⊆ B∗I ∗ and
(B∗I ∗ + I ∗)B∗ ⊆ B∗(B∗I ∗ + I ∗) + B∗I ∗ + I ∗ ⊆ B∗I ∗ + I ∗.
Also (B∗I ∗ + I ∗)k ⊆ B∗I ∗ + I ∗k .
By Theorem 14, I ∗ is nilpotent. Let n ∈ N, such that I ∗n = {0}. Then
(B∗I ∗ + I ∗)n ⊆ B∗I ∗ and (B∗I ∗)n ⊆ B∗I ∗n = {0}. This implies
(B∗I ∗ + I ∗)n

2
= {0}. Therefore, B∗I ∗ + I ∗ is a nilpotent ideal of B∗.

So, I ⊆ I ∗ ⊆ B∗I ∗ + I ∗ ⊆ R, as every nilpotent ideal of an associative
algebra is contained in its radical.
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Lecture 7

Theorem

(Engel’s Theorem on abstract Lie algebras) If L is a finite dimensional Lie
algebra, then L is nilpotent if and only if ada is nilpotent for all a ∈ L.

Proof.

As L is nilpotent, there exists n ∈ N such that Ln = {0}. Therefore
[· · · [[a1, a2], a3], . . . , an] = 0 for all ai ∈ L. In particular, for all x , a ∈ L, we
have

[· · · [[x , a], a], · · · a︸ ︷︷ ︸
(n−1)-times

] = 0.

Hence, adn−1
a = 0 for all a ∈ L, and so ada is nilpotent.

Conversely, let L be finite dimensional and let ada be nilpotent for all
a ∈ L. Now Inn(L) = {ada|a ∈ L}.This set is a Lie algebra of nilpotent
linear operators on L. (as [ada, adb] = ad[a,b] ∈ Inn(L)).
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Proof . . .

Now Inn(L) is a weakly closed set in L(L) and dimF (L) <∞ such that
every element of Inn(L) is nilpotent. Therefore by Theorem 14, Inn(L)∗ is
a nilpotent associative algebra. So, there exists m ∈ N such that
ada1ada2 · · · adam = 0 for all ai ∈ L. This gives [· · · [[a, a1], a2], . . . , am] = 0
for all a, a1, . . . , am ∈ L. Hence, Lm+1 = {0} and L is nilpotent. This
completes the proof.

Theorem

(Engel’s Theorem on Lie algebra of linear transformations) If L is a Lie
algebra of linear transformations on a finite dimensional vector space V ,
(that is, L is a Lie subalgebra of L(V )L) and every T ∈ L is nilpotent then
L∗ is nilpotent.

Proof.

As L is a Lie subalgebra of L(V )L, so L is a weakly closed set in L(V ).
Now apply Theorem of Lecture 3.
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Lecture 8

Lemma

(Fitting) Let V be a vector space over a field F , dimF (V ) <∞. Let
T ∈ L(V ). Then V = V0T ⊕ V1T where each ViT is invariant under T
such that if Ti = T |ViT

, then T0 is nilpotent and T1 is an automorphism
of V1T .

Proof.

Clearly, V ⊇ T (V ) ⊇ T 2(V ) ⊇ · · · is a sequence of subspaces of V . As
dimF (V ) <∞, there exists r ∈ N such that
V1T = T r (V ) = T (r+1)(V ) = · · · .
Let Wi = {z ∈ V |T i (z) = 0}. Then W1 ⊆W2 ⊆ · · · is a sequence of
subspaces of V . As dimF (V ) <∞, there exists s ∈ N such that
V0T = Ws = Ws+1 = · · · .
Let t = max(r , s). Then V0T = Wt and V1T = T t(V ).
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Proof . . .

Let x ∈ V , then T t(V ) = T 2t(V ) implies T t(x) = T 2t(y) for some
y ∈ V . This gives

x = (x − T t(y)) + T t(y) ∈ V0T + V1T .

Hence, V = V0T + V1T .
Let z ∈ V0T ∩ V1T . Then z = T t(v) for some v ∈ V and T t(z) = 0, that
is, T 2t(v) = 0. Therefore v ∈W2t = Wt = V0T , and so z = T t(v) = 0.
Therefore V = V0T ⊕ V1T .
Since V0T = Wt , we have T t = 0 on V0T , that is, T0 = T |V0T

is
nilpotent. Also V1T = T r (V ) = T r+1(V ) implies that for all v ∈ V there
exists w ∈ V such that T r (v) = T r+1(w) = T (T r (w)). Hence,
T1 = T |V1T

is surjective; and as dimF (V1T ) <∞, T1 is also injective.
Therefore, T1 is an automorphism of V1T .

This completes the proof.
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Lecture 8

Note that the subspace V0T is called Fitting null component of V relative
to T and the subspace V1T is called Fitting one component of V relative
to T .

Theorem

(Primary Decomposition Theorem) Let V be a vector space over a field F ,
dimF (V ) <∞ and let T ∈ L(V ). If mT (x) = pr11 (x)pr22 (x) · · · prkk (x) is
minimal polynomial of T where pi (x)’s are its monic irreducible factors
and ri ’s are positive integers, then V = Vp1T ⊕ Vp2T ⊕ · · · ⊕ VpkT , where
VpiT = {v ∈ V |prii (T )(v) = 0} are T–invariant subspaces of V . Also if
for each i , Ti = T |Vpi T

, then minimal polynomial of Ti is prii (x).

The T -invariant subspaces VpiT , described in the above theorem, are
called primary components of V corresponding to T . Note that if
pi (x) = x , then T ri

i = 0 or T ri = 0 on VpiT . This implies VpiT ⊆ V0T .
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Lecture 9

Further, if pj(x) 6= x , then x - pj(x), and so Tj is an isomorphism.
Therefore VpjT = T (VpjT ) = · · · , and so VpjT ⊆ V1T .

Hence,
∑

pj (x)6=x VpjT ⊆ V1T . Therefore

V = V0T ⊕ V1T = VxT ⊕
∑

pj (x)6=x VpjT . That is, Fitting null component
V0T = VxT = characterstic space of characterstic root 0 of T ; and Fitting
one component V1T =

∑
pj (x)6=x VpjT .

Next we shall study nilpotent Lie algebras of linear transformations on a
finite dimensional vector space V over a field F .

Paper I (Unit III) M.Sc. Semester IV March 25, 2020 29 / 35



Lecture 9

Let A be an associative algebra over a field F . For a ∈ A inner derivation
ada : A→ A is given by ada(x) = [x , a] for all x ∈ A.
Define inductively

x (0) = x , x (1) = [x (0), a] = ada(x), x (k) = ad
(k−1)
a (x).

Then

xa = ax + ada(x) = ax (0) + x (1),

xa2 = (xa)a = (ax (0) + x (1))a = a(ax (0) + x (1)) + ax (1) + x (2)

= a2x +

(
2

1

)
ax (1) + x (2).

Let xak−1 = ak−1x +
(k−1

1

)
ak−2x (1) + · · ·+

(k−1
k−2
)
ax (k−2) + x (k−1), then
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Lecture 9

xak = (xak−1)a

= ak−1(ax (0) + x (1)) +

(
k − 1

1

)
ak−2(ax (1) + x (2)) + · · ·

+

(
k − 1

k − 2

)
a(ax (k−2) + x (k−1)) + ax (k−1) + x (k)

= akx +

(
k

1

)
ak−1x (1) +

(
k

2

)
ak−2x (2) + · · ·+

(
k

k − 1

)
ax (k−1) + x (k).

Similarly,

akx = xak −
(
k

1

)
x (1)ak−1 +

(
k

2

)
x (2)ak−2 + · · · ± x (k).
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Lecture 10

Lemma

Let V be a vector space over F , dimF (V ) <∞ and let T ,U ∈ L(V ) such
that there exists N ∈ N satisfying [· · · [[U,T ],T ], · · · ,T︸ ︷︷ ︸

N-times

] = 0. Then V0T ,

V1T are invariant under U.
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Lecture 10

Proof.

Let v ∈ V0T . Then Tm(v) = 0 for some m. Therefore for k = N + m− 1,

T k(U(v)) = UT k(v)

= (T kU +

(
k

1

)
T k−1U(1) +

(
k

2

)
T k−2U(2)

+ · · ·+
(

k

N − 1

)
T k−N+1U(N−1) + ...+

(
k

k − 1

)
TU(k−1) + U(k))(v)

= U(T k(v)) +

(
k

1

)
U(1)(T k−1(v)) + · · ·+

(
k

N − 1

)
U(N−1)(Tm(v))

+

(
k

N

)
U(N)(Tm−1(v)) + · · ·+ U(k)(v).

Here U(0) = U, U(1) = adT (U(0)) = [U,T ], U(r) = ad
(r−1)
T (U), r ≥ 1. So

U(N) = 0.
Paper I (Unit III) M.Sc. Semester IV March 25, 2020 33 / 35



Proof . . .

Therefore for m = k − N + 1 ≤ j ≤ k , T j(v) = 0 and for j > N − 1,
U(j) = 0. Hence, T k(U(v)) = 0, and so U(v) ∈ V0T .
Now let v ∈ V1T = T t(V ) = T t+1(V ) = · · · = T t+N−1(V ). Then there
exists w ∈ V such that v = T t+N−1(w). Now

U(v) = U(T t+N−1(w)) = T t+N−1U(w)

= (UT t+N−1 −
(
t + N − 1

1

)
U(1)T t+N−2 +

(
t + N − 1

2

)
U(2)T t+N−3

+ · · ·+ (−1)N−1
(
t + N − 1

N − 1

)
U(N−1)T t + (−1)N

(
t + N − 1

N

)
U(N)T t−1

+ · · · ± U(t+N−1))(w)
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Proof . . .

U(v) = T t+N−1(U(w))−
(
t + N − 1

1

)
T t+N−2(U(1)(w))

+

(
t + N − 1

2

)
T t+N−3(U(2)(w)) + · · ·+ (−1)N−1

(
t + N − 1

N − 1

)
T t(U(N−1)(w))

+ (−1)N
(
t + N − 1

N

)
T t−1(U(N)(w)) + · · · ± U(t+N−1)(w).

So, for j ≥ N, U(j) = 0 and for j < N,
T t+j(U(N−j−1)(w)) ∈ T t+j(V ) = V1T . Hence, U(v) ∈ V1T . This
completes the proof.

Dear Students, The e-content on Unit 4 will be uploaded next week.

STAY SAFE
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