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Basic Concepts

Go through the following definitions:

Definition

A subset B of an associative algebra A over a field F is said to be weakly
closed if for all ordered pairs (a, b), a, b € B, there exists v(a, b) € F such
that a x b= ab+ v(a, b)ba € B.

Definition
A subset S of a weakly closed set B is said to be a subsystem if
cxdeS, forallc,deS.

Definition

A subsystem S of a weakly closed set B is said to be a left ideal
(respectively, ideal) if a x c € S, (respectively, a X ¢, ¢ x a € S) for all
aceB, ces.

v
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Lecture 1

Now work out the following examples:

Example

Let B be a subalgebra of A;. Then ab — ba € B for all a,b € B. Take
v(a, b) = —1 for all a, b € B so that B is weakly closed set.

Example

If B is a subalgebra of A; with basis {e, f, h} such that [e, f] = h,
[e, h] = 2e, [f, h] = —2f, then S = Fe U Ff U Fh is a subsystem of B.

Example

Let S,(F) denote the set of all symmetric n x n matrices over F and let
a,b € S,(F). Then (ab + ba)" = ba + ab implies that ab + ba € S,(F).
Hence, with y(a, b) = 1 for all a, b € 5,(F), we have that S,(F) is a
weakly closed set in M,,(F), the set of all n x n matrices over F.

v
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Lecture 1

Example

Let B = SS,(F) U Sy(F), where SS,(F) denotes the set of all n x n
skew-symmetric matrices over F. Then we have the following:

for a, b € Sy(F), (ab+ ba)* = ba + ab implies ab + ba € S,(F),

for a € SSy(F), b € S,(F), (ab— ba)" = —ba + ab implies

ab — ba € S,(F),

for a € Sy(F), b € SS,(F), (ab — ba)" = —ba + ab implies

ab — ba € S,(F),

for a, b € SS,(F), (ab — ba)' = ba — ab implies ab — ba € SS,(F).

(o b) = {1 if a, b € Sy(F),

Choose

—1 otherwise.

Clearly, B is a weakly closed set in M,(F) and S,(F) is an ideal of B.

Paper | (Unit I11) M.Sc. Semester IV March 25, 2020 4/35



Lecture 1

Example

If B is a weakly closed set in A such that y(a, b) = 0 for all a, b € B, then
B is a multiplicative semigroup in A.

Notations: If A is an algebra over F, then we mean that A is an
associative algebra with 1, otherwise we say that A is associative algebra.
Let A be an algebra (associative algebra) over F and C C A then the
subalgebra CT (respectively, C*) of A containing 1 generated by C
(respectively, subalgebra of A generated by C) is called the enveloping
algebra (respectively, the enveloping associative algebra) of C in A.
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Lecture 1

Definition

Let A be an associative algebra over a field F and let B; and B, be
subspaces of A. Then

B1 B, = subspace spanned by {b1by | by € By, by € By}. Thus Al = A
and AK = AK=1A for all k > 2. We say that A is nilpotent if there exists a
positive integer n such that A" = 0, that is, every product of k elements in
Ais zero. Also A is said to be nil if every element of A is nilpotent, that
is, for every a € A, there exists n; € N such that a" = 0. Clearly, every
nilpotent algebra is nil but not conversely.

Definition

Let A be a finite dimensional algebra over a field F. A nilpotent ideal R of
A of maximal dimension is called the radical of A. Further, A is called
semisimple if R = 0. Note that % is always semisimple. If R is radical of A
and / is a nilpotent ideal of A then R + [ is nilpotent, and so R+ 1 = R.

Hence, | C R. Therefore R contains everv nilpotent ideal of A.
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N
Lecture 2

Lemma

Let B be a weakly closed set in an associative algebra A. If w € B then
wg = {w}* N B is a subsystem of B such that wj = {w}*.

Proof.

Clearly, {w}* = {ayw + aow? +--- +a,w" | n€ N,a; € F}. Then for
fi,h e{w}*NB, fi x f € {w}* N B. Therefore wg is a subsystem of B.
Also, {w}* C wj, as w € wg. Further, wg C {w}* implies wj C {w}*.
Hence, wj = {w}". O

v
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Lecture 2

Lemma

If S is a subsystem of B and w € B be such that s x w € §* for all s € S,
then S*w C wS* + S*.

v

Proof.

Let &« € §*. Then « is a linear combination of monomials s;s, - - - s,
si € S. We prove, by induction on r, that aw € wS* + §*.

If s €S, then sw = —(s,w)ws + s x w € wS* + S*. Therefore, the
result is true for r = 1. Let the result be true for r — 1. Now

s152- - Sw = 85152 -+ - Sp—1(—(Sr, w)ws, + 5, X w)
= —y(sr,w)(s152 - Sp—1W)S, + 515 - - - Sp—1(Sr X W)
€ (wS* +S%)s, + S* CwS*+ 5.

D)
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Lecture 2

Lemma

If S is a subsystem of B such that 5* is nilpotent and S* # B*. Then
there exists w € B such that w ¢ S* but s x w € S* for all s € S.

Proof.

If B C S§* then B* C §* C B* or S* = B*. So B ¢ §* and there exists
wy € B such that wy ¢ S*.

If s x wy € §* for all s € S, then take w = w;. Otherwise, there exists

s1 € S such that wo = 51 X wg ¢ S5*. So, wp € B\S*

If s x wo € S* for all s € S, take w = wy, otherwise there exists s € S
such that ws = s, x wp € B\ §*.

Continuing like this, either we get the required element w in a finite
number of steps; or we get an infinite sequence w11 = s; X w; € B\ §*,
s;ieS,w; €B. L]

V.
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Proof Continued

In the second case wy = sx—1 X (Sk—2 X (Sk—3 X (-+- (51 X w1)))--+).
Since S§* is nilpotent, so there exist n € N such that any product of n
elements of S* is 0. Now

wy = 51 X wy = sywy + Y(s1, wi)wi sy
w3 = Sp X wo = Sown + Y(s2, wo ) wosy
= sos1wy + Y(s1, wa)sowasy + y(S2, wa)siwi sy + Y(s2, wa)y(s1, wi)wisi s,
Wy = 53 X w3 = s3w3 + Y(s3, w3)wss3
= s35p51W1 + Y(51, Wi)s3Sowis1 + (52, Wa)S351 W1 Sy
+ (52, w2)y(s1, wi)s3wisisp + Y(s3, wa){s2s1wiS3 + (51, Wi )Sowy sy

+ v(s2, w2)s1w1 5253 + Y(S2, w2 )Y(51, Wi)wis19083}.

In general, wo, is a linear combination of terms c1c - - - ciwidido - - - di
where ¢;,d; € S, j+ k =2n—1. So, either j > n or k > n. Hence, either
c1cp---¢i=0o0rdidr---dg = 0. So, wo, = 0 € S5, a contradiction.
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N
Lecture 3

Theorem

Let V' be a vector space over a field F, dimg(V) < co. Let B be a weakly
closed set in L(V') such that every element of B is nilpotent, that is, for
every W € B there exists n € N such that W" = 0. Then B* is nilpotent.

Proof.

The proof is by induction on dimg(V). If dimg(V) =0 or B = {0}, then
the theorem is obvious. Therefore let dimg(V) > 0 and let B # {0}.

Let Q = {S| S is a subsystem of B and S* is nilpotent}. Let $ € Q be
such that dimg(5*) is maximal.

If 0 # W € B, then by Lemma 11, Wg = {W}* N B is a subsystem and
Wg = {W} = {aiw + aaw? +--- + a,w" | n € N, a; € F}. This implies
{W}* is nilpotent, and so W§ € Q. As W # 0, we have

W5 = {W}* # {0}. Therefore 5* # {0}. O

v
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N
Proof Continued

Let 5*(V) denote the space spanned by {T(x)|T € §*, x € V}. If

S*(V) =V, then forany x € V, x = 3., Ti(x;), x; € V, T; € §*.

Also x; = > Uj(y;), for some y; € V, U; € S* implies

x =32;2_; Ti(Uj(yj))- On repeating this, we get
x=S"TyTyTy...Ti(z), zi€ V, T, € 5.

Since 5* is nilpotent, we have x = 0 which gives V = {0}, a contradiction.
Therefore {0} C 5*(V) € V, which implies 0 < dimg(5*(V)) < dimg(V).
Let S={T € B|T(5*(V)) C5*(V)}. If T,U €S, then
TxU=TU+~(T,U)UT and

(T x U)(x) = U(T(x) + (T, U)T(U(x)) € 5*(V) for all x € 5*(V).
This gives T x U € S. Thus S is subsystem of B and 5 C 5.
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N
Proof Continued

If T €S, then consider T* =T & (v) € L(5*(V))and T € L(§*‘(/V))
defined by T(v + S*(V)) = T(v)+ S*(V) forall v € V. Then )

B ={T*T* = T|§*(V) for some T € S}, Bo = {T| for some T € S} are
weakly closed systems of nilpotent linear transformations on $*(V) and
S*( 7 Since dimg(5*(V)), dimp( ‘(/V)> < dimg(V), so by induction
Bl, 82 are nilpotent. Therefore there exists p, g € N such that

T, Tp—Oon ~*( )forTGS and UfU;---U;=0o0n S*(V) for
Ui e S. This gives Ty To... Tp(v) € 5*(V) and

UiUs---UgTiTo - TP(Y) =0. TherNefore_g is nilpotent. Hence S € Q.
By maximality of dimg(S), we have §* = §*.
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Proof Continued

If S # B*, then by Lemma 13, there exists W € B such that W ¢ S* but
TxWeS* forall TeS§. By Lemma 12, $*W C WS5* + §* implies
that for all v € V and T € 5*, we have TW(v) = (WT; + T2)(v),

T; € §*. This gives W(T(v)) = Ti(W(v)) + T2(v) and therefore
W(5*(V)) € §*(V).

So, W € S. Now since W ¢ 5*, we get dimg(5*) > dimg(5*), a
contradiction. Hence, $* = B* and B* is nilpotent.

This completes the proof.
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Lecture 4

Example
Let T,(F) be the set of all n x n upper triangular matrices over a field F.
Verify that T,(F) is a subalgebra of M,(F) and dim(T,(F)) = 3n(n+1).
A basis of T,(F) is B = {Ej|i <j}, where Ejj = (€j)nxn such that

1 ifi=j,
€j = - .

0 ifi#j.
Clearly, T,(F), is Lie subalgebra of M,(F),. Let A,B € T,(F). Then we
canwrite A=3"7" ;37 ;a;E;and B=377; 7 bjEj;. Now

[A,B] = AB - BA

= D> ) aEi> Y bsEs—> ) biEj Y > askErs.

i=1 j=i r=1 s=r i=1 j=i r=1 s=r
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Example . . .
Ee ifj=r,

we have, therefore
0 if j £ r,

m%%:{

AB=3 (Z a,-,b,sE,-s> B (Z b,'rarsE;s> |

i=1 s=i \r=1 i=1 s=i \r=1
Now if i = s, then

n n

Z(airbrs - birars) = Z(asrbrs - bsrars)-

r=1 r=1

For r > s, b,s =0 = a,, for r <s, as, =0 = bg,, and for r = s, we have
assbss - bssass =0.
Therefore, >"_,(as-bys — bsrars) = 0, and hence [A, B] = C = (c;;), where
cij =0 for i > j, thatis, C € N,(F), the set of all n x n strictly
upper-triangular matrices over F.
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-
Example . . .

Now, if A € Np(F) then A= (aj), aj=0fori>j, j=1,2,...,n This
gives

A2 = (bjj) such that bj =0fori>j—1, j=2,...,n
A = (cij) such that ¢ =0fori>j—2, j=3,...,n,

and continuing we get A" =0 as A" = (dj;) such that dj; = 0 for
i>j—(n—1)=j—n+1,j=n. Thatis, di, =0. So N,(F) consists of
nil-triangular matrices and T,(F)®) C N, (F).

Hence, T,(F). is a solvable Lie algebra but it is not a nilpotent Lie
algebra. By Theorem 14, N,(F)* is nilpotent associative algebra. (For, if
dimg(V) = n then L(V) =~ M,(F) and N,(F) is a weakly closed set in

M, (F) such that every element of N,(F) is nilpotent. Now use the
previous theorem.)
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Lecture 5

Theorem

Let V and B be as in Theorem 14. Then there exists a basis B for VV such
that for all T € B, [T]|g € Np(F).

.

Proof.

Assume V # {0}. Let B*(V) be the space spanned by

{T(v)lve V,T € B*}. Then B*(V) # V as in the proof of Theorem 14.
(5(V) £ V).

Also, B*2(V) = B*(B*(V)) and as above, if B*(V) # 0, then

B*2(V) C B*(V).

Thus we get a chain

V2 BY (V)2 B3(V) 228N W) 2 BN(V) = {0},

where N € N such that B*N(V) = {0} but B*N-1(V) #£ {0}. O
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N
Proof . . .

Let By = {e1,e,...,en} be a basis for B*(N-1)(V). Extend this to
obtain a basis By = {e1, e, ..., €nin} for B*N=2 (V). Continuing like
this we obtain a basis B = By = {e1,e2,...,€n4npttny} for V,
n+n+---ny=m=dimg(V).

Since B(B*(N_k)(V)) C B*N=k+1)(V/) so forany T € B:

T(e1) = T(e2) =--- = T(em) = 0;

T(en+1), T(e,,1+2) T (€n,+n,) = linear combination of elements of By;
T(en+n.1)s T(e,,1+,,2+2), .+ T(eny+ny+ns) = linear combination of
elements of By;

and so on

T(eny+nptetny_141)s - - T (€nytnyt-tny) = linear combination of

elements of By_.
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N
Proof . . .

This gives

[Tls =

OnN—l *

Ony

where * denote entries which may be nonzero.

This completes the proof.
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Lecture 6

Lemma

Let B be a weakly closed subset of an associative algebra A over a field F
and let | be an ideal of B. Then

o I*kB* C B*I*k 4 /*k,.
e B*I*k C I*kB* + /*k’.
e (B*/*)k C B*/*k,'
Q (I*B*)k C I*B*.

Proof.
1. We prove by induction. By Lemma 2, I"w C w/* + I* for all w € B, as
I is an ideal. Therefore, if wy, wo,...,w, € B, then

Fwiwy - - w, C B*I* + I*. This implies [*B* C B*I* + I*.
Assume that [*k—1B* C B*[*k—1 4 [*k—1

O

v
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N
Proof . . .

Now, for a1, as,...,ax € I*, w € B*, we have

daiap - - agw

arax - ak_1(axw) C ajax - - a1 (B I" + 1)
(B*I*kfl + /*kfl)l* + I*kfl)l*
B*I*k + /*k'

N 1N

2. Let we B, and let a€ . Then wa+ y(w,a)aw = w x a € /. This
gives wl* C I*w + I*, and so B*I* C [*B* 4+ I*. Thus the result is true for
k = 1. Rest follows by applying induction on k.

3. It is clearly true for k = 1. Assume that (B*/*)k C B*/*k. Then

B*(B*/*k + /*k)/* C B*/*k+1

N

4. Similar to (3) above.
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Lecture 6

Theorem

Let B and V' be as in Theorem 14. Let | be an ideal of B such that every
element of | is nilpotent. Then I* C R, the radical of B*. Hence, | C R.

v

Proof.

Clearly, B*I* 4 I* is a two sided ideal of associative algebra B* as
B*(B*I* + I*) C B*I* and

(B*I* + I*)B* C B*(B*I* + I*) + B*I* + I* C B*I* 4 I*.

Also (B*I* + I*)k C B*I* + Ik,

By Theorem 14, /* is nilpotent. Let n € N, such that /*” = {0}. Then
(B*I* + I*)" C B*I* and (B*I*)" C B*I*" = {0}. This implies

(B*I* + 1*)™ = {0}. Therefore, B*I* + [* is a nilpotent ideal of B*.

So, | C I* C B*I* + I C R, as every nilpotent ideal of an associative
algebra is contained in its radical. O

v
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Lecture 7

Theorem

(Engel's Theorem on abstract Lie algebras) If L is a finite dimensional Lie
algebra, then L is nilpotent if and only if ad, is nilpotent for all a € L.

Proof.

As L is nilpotent, there exists n € N such that L” = {0}. Therefore

[ [[a1, a2], @3], .. .,an] = 0 for all a; € L. In particular, for all x,a € L, we
have

["'[[Xa3]73]a"'3] = 0.
~—
(n—1)-times
Hence, adé,”_1 =0 for all a € L, and so ad, is nilpotent.
Conversely, let L be finite dimensional and let ad, be nilpotent for all

ae L. Now Inn(L) = {ad,]a € L}.This set is a Lie algebra of nilpotent
linear operators on L. (as [ada, ady] = ad|, ) € Inn(L)). O

V.
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N
Proof . . .

Now Inn(L) is a weakly closed set in L(L) and dimg(L) < oo such that
every element of Inn(L) is nilpotent. Therefore by Theorem 14, Inn(L)* is
a nilpotent associative algebra. So, there exists m € N such that

ady ad,, - - - ad,, = 0 for all a; € L. This gives [---[[a, a1], a2],...,am] =0
for all a,a,...,am € L. Hence, L™ = {0} and L is nilpotent. This
completes the proof.

Theorem

(Engel's Theorem on Lie algebra of linear transformations) If L is a Lie
algebra of linear transformations on a finite dimensional vector space V,
(that is, L is a Lie subalgebra of L(V),) and every T € L is nilpotent then
L* is nilpotent.

v

Proof.

As L is a Lie subalgebra of L(V),, so L is a weakly closed set in L(V).
Now apply Theorem of Lecture 3. O

y
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Lecture 8

Lemma

(Fitting) Let V be a vector space over a field F, dimp(V) < co. Let
T € L(V). Then V = Vo1 @ Vi1 where each Vit is invariant under T
such that if T; = T|v.,, then Tq is nilpotent and Ty is an automorphism
of VlT-

Proof.

Clearly, V O T(V) D T2(V) D --- is a sequence of subspaces of V. As
dimg(V) < oo, there exists r € N such that

Vir = T(V)=TU(V) =

Let W; = {z € V|T/(z) = 0}. Then Wy C W, C --- is a sequence of
subspaces of V. As dimg(V) < oo, there exists s € N such that

Vor = Ws =Wy =---.

Let t = max(r,s). Then Vor = W; and Vi1 = TH(V). O

v
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N
Proof . . .

Let x € V, then TH(V) = T2{(V) implies T*(x) = T2(y) for some
y € V. This gives

x=(x—=T'y))+ T'(y) € Vor + Vit
Hence, V = Vo1 + V7.
Let z € Vor N Vi7. Then z = T(v) for some v € V and T*(z) =0, that
is, T2t(v) = 0. Therefore v € Wy; = W; = Vo7, and so z = T%(v) = 0.
Therefore V = Vo7 & V7.
Since Vo1 = W;, we have T* =0 on Vo7, thatis, To = T|y,, is
nilpotent. Also Vi1 = T"(V) = T"1(V) implies that for all v € V there
exists w € V such that T"(v) = T+ (w) = T(T"(w)). Hence,
T1 = Tl|v,, is surjective; and as dimg(Vi7) < 0o, Ty is also injective.
Therefore, T; is an automorphism of V;r.

This completes the proof.
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Lecture 8

Note that the subspace Vg7 is called Fitting null component of V' relative
to T and the subspace Vi 7 is called Fitting one component of V relative
to T.

Theorem

(Primary Decomposition Theorem) Let V be a vector space over a field F,
dimg(V) < oo and let T € L(V). If my(x) = pit(x)p(x) - - p(x) is
minimal polynomial of T where p;(x)’s are its monic irreducible factors
and r;'s are positive integers, then V.=V, 1 © Vp,,7 © --- & V), 1, where
Vo, m ={v € V|p(T)(v) = 0} are T—invariant subspaces of V. Also if
for each i, Ti = Tl|y, ;, then minimal polynomial of T; is pi(x).

The T-invariant subspaces V), 1, described in the above theorem, are
called primary components of V corresponding to 7. Note that if
pi(x) = x, then T/" =0 or T" =0 on V,, 1. This implies V,,7+ C Vy7.
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Lecture 9

Further, if pj(x) # x, then x { pj(x), and so T; is an isomorphism.
Therefore Vi, 7 = T(VpT) =+, and so ij-,- c ViT.

Hence, Z x)x Vo7 € Vit Therefore

V=VWr 69 V1T =Vt ® ij(x )2x Vo, 7. That is, Fitting null component
Vot = V7 =characterstic space of characterstic root 0 of T; and Fitting
one component Vi = ij(x)# Vp, T

Next we shall study nilpotent Lie algebras of linear transformations on a
finite dimensional vector space V over a field F.
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Lecture 9

Let A be an associative algebra over a field F. For a € A inner derivation
ad, : A— Ais given by ad,(x) = [x, a] for all x € A.
Define inductively

X0 = x XM = [xO 4] = ad,(x), x¥) = ad® D (x).
Then

xa = ax + ad,(x) = ax(® + x(),

xa® = (xa)a = (ax(® + xM)a = a(ax(®) 4+ xV)) + ax) 4 x()

= a’x + (i) ax) 4 x(2),

Let xak~1 = ak"1x + (kzl) ak2x(M) . 4 (£:2) ax(k=2) 4 x(k=1) then
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Lecture 9

xa* = (xa*1)a

_ (@ )y <" N 1) #2(axD) @) 1.

+ <i : ;) a(axth=2) 4 x(k=1)) 4 g (k=1 4 (k)

k k k
— gk k=1,(1) k=2,(2) 4 ... (k—1) (k)
ax—|—<1>a X +<2>a X\ 4 —|—<k_1>ax —+ x\"/.

Similarly,

Sx = xa — (f) NOWSIN (’;) K2k (B,
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N
Lecture 10

Lemma

Let V' be a vector space over F, dimg(V) < oo and let T, U € L(V) such
that there exists N € N satisfying [---[[U, T], T],---, T] =0. Then Vg,
—_—

) . N-times
Vi1 are invariant under U.
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Lecture 10

Proof.

Let v € Vor. Then T™(v) = 0 for some m. Therefore for k = N+ m — 1,
TH(U(v)) = UT"(v)

—(T"U+ (/1<> TRy 4 </2<> Th=2((2)

k k—N+1 (N—1) k (k—1)
+ +<N—1>T U + ...+ K—1 TU +

— U(TH()) + (’1‘) UO(TFL()) 4+ + (N’: 1) YD) (T
(£t s o

Here U® = U, UM = adr (U©) = [U, T], U = ad " D(U), r > 1. So
UM =0,
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Proof . . .

Therefore for m=k — N +1 <j <k, Tj(v)zoand for j > N-—-1,
UY) = 0. Hence, TK(U(v)) =0, and so U(v) € VoT.

Now let v € Vit = THV) = THLY(V) = ... = TTHN=1(V). Then there
exists w € V such that v = T**N=1(w). Now

U(v) = (T (w)) = TV U(w)

— (UTEN-L (t + N - 1) Y TEN-2 <t + N - 1> Y@ THN-3
1 2

+oe (1) <N_1)U T'+(-1) v U

+ oo £ UEFN=) ()
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Proof . . .

U(V) _ -,—t+N71(U(W)) _ (t + I]\-/ - 1> Tt+Nf2(U(1)(W))

* (H . 1) TN w)) + -+ (—1)N—1(tﬂ B 1) ;

N-—-1
+ (_1)N (t + N > Tt—l(U(N)(W)) 4ot U(t+N_1)(W).
So, for j > N, UY) =0 and for j < N,
THH(UWN=-D(w)) € TH(V) = Vi1. Hence, U(v) € Vi7. This
completes the proof.
Dear Students, The e-content on Unit 4 will be uploaded next week.

STAY SAFE
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