Building Information Systems

Note: In addition to the following main points, the students should refer to the detailed study material which has already been e-mailed to them.

The Systems Development Cycle Systems Analysis Production and System Design Building Maintenance Conversion Testing

•

- Systems development: Activities that go into producing an information system ٠ solution to an organizational problem or opportunity
 - Systems analysis •
 - Systems design
 - Programming •
 - Testing
 - Conversion ٠
 - Production and maintenance

- Systems analysis
 - Analysis of problem that will be solved by system
 - Defining the problem and identifying causes
 - Specifying solutions
 - Systems proposal report identifies and examines alternative solutions
 - Identifying information requirements
 - Includes feasibility study
 - Is solution feasible from financial, technical, organizational standpoint
 - Is solution a good investment?
 - Is required technology, skill available?
 - Establishing information requirements
 - Who needs what information, where, when, and how
 - Define objectives of new/modified system
 - Detail the functions new system must perform
 - Faulty requirements analysis is leading cause of systems failure and high systems development cost

Systems design

- Describe system specifications that will deliver functions identified during systems analysis
- Should address all managerial, organizational, and technological components of system solution
- Role of end users
 - User information requirements drive system building
 - Users must have sufficient control over design process to ensure that system reflects their business priorities and information needs
 - Insufficient user involvement in design effort is major cause of system failure

• Programming:

- System specifications from design stage are translated into software program code
- Software may be purchased, leased, or outsourced instead

- Testing
 - To ensure system produces right results
 - Unit testing: Tests each program in system separately
 - System testing: Tests functioning of system as a whole
 - Acceptance testing: Makes sure system is ready to be used in production setting
 - Test plan: All preparations for series of tests

Conversion

- Process of changing from old system to new system
- Four main strategies
 - Parallel strategy
 - Direct cutover
 - Pilot study
 - Phased approach
- Requires end-user training
- Finalization of detailed documentation showing how system works from technical and end-user standpoint

• Production and maintenance

- System reviewed to determine if any revisions needed
- May prepare formal **postimplementation audit** document
- Maintenance
 - Changes in hardware, software, documentation, or procedures to a production system to correct errors, meet new requirements, or improve processing efficiency
 - 20% debugging, emergency work
 - 20% changes to hardware, software, data, reporting
 - 60% of work: User enhancements, improving documentation, recoding for greater processing efficiency

CORE ACTIVITY	DESCRIPTION
Systems analysis	Identify problem(s)
	Specify solutions
	Establish information requirements
Systems design	Create design specifications
Programming	Translate design specifications into code
Testing	Unit test
	Systems test
	Acceptance test
Conversion	Plan conversion
	Prepare documentation
	Train users and technical staff
Production and	Operate the system
maintenance	Evaluate the system
	Modify the system

• Most prominent methodologies for modeling and designing systems:

- Structured methodologies
- Object-oriented development

• Structured methodologies

- Structured: Techniques are step-by-step, progressive
- Process-oriented: Focusing on modeling processes or actions that manipulate data
- Separate data from processes
- Data flow diagram:
 - Primary tool for representing system's component processes and flow of data between them
 - Offers logical graphic model of information flow

- High-level and lower-level diagrams can be used to break processes down into successive layers of detail
- Data dictionary: Defines contents of data flows and data stores
- **Process specifications:** Describe transformation occurring within lowest level of data flow diagrams
- **Structure chart:** Top-down chart, showing each level of design, relationship to other levels, and place in overall design structure

• Object-oriented development

- Uses **object** as basic unit of systems analysis and design
 - Object:
 - Combines data and the specific processes that operate on those data
 - Data encapsulated in object can be accessed and modified only by operations, or methods, associated with that object
- Object-oriented modeling based on concepts of class and inheritance
 - Objects belong to a certain class and have features of that class
 - May inherit structures and behaviors of a more general, ancestor class
- More iterative and incremental than traditional structured development
 - Systems analysis: Interactions between system and users analyzed to identify objects
 - **Design phase:** Describes how objects will behave and interact; grouped into classes, subclasses and hierarchies
 - Implementation: Some classes may be reused from existing library of classes, others created or inherited
- Because objects reusable, object-oriented development can potentially reduce time and cost of development
- Computer-aided software engineering (CASE)
 - Software tools to automate development and reduce repetitive work, including
 - Graphics facilities for producing charts and diagrams
 - Screen and report generators, reporting facilities
 - Analysis and checking tools
 - Data dictionaries

- Code and documentation generators
- Support iterative design by automating revisions and changes and providing prototyping facilities
- Require organizational discipline to be used effectively
- Other Alternative Systems-Building Methods
 - Traditional systems life-cycle
 - Prototyping
 - End-user development
 - Application software packages
 - Outsourcing

Traditional systems lifecycle:

- Oldest method for building information systems
- Phased approach divides development into formal stages
 - Follows "waterfall" approach: Tasks in one stage finish before another stage begins
- Maintains formal division of labor between end users and information systems specialists
- Emphasizes formal specifications and paperwork
- Still used for building large complex systems
- Can be costly, time-consuming, and inflexible

• Prototyping

- Building experimental system rapidly and inexpensively for end users to evaluate
- Prototype: Working but preliminary version of information system
 - Approved prototype serves as template for final system
- Steps in prototyping
 - Identify user requirements
 - Develop initial prototype
 - Use prototype
 - Revise and enhance prototype

• Advantages of prototyping

- Useful if some uncertainty in requirements or design solutions
- Often used for end-user interface design
- More likely to fulfill end-user requirements

Disadvantages

- May gloss over essential steps
- May not accommodate large quantities of data or large number of users
- May not undergo full testing or documentation

• End-user development:

- Uses **fourth-generation languages** to allow end-users to develop systems with little or no help from technical specialists
- Fourth generation languages: Less procedural than conventional
 programming languages
 - PC software tools
 - Query languages
 - Report generators
 - Graphics languages
 - Application generators
 - Application software packages
 - Very high-level programming languages
- Advantages:
 - More rapid completion of projects
 - High-level of user involvement and satisfaction
- Disadvantages:
 - Not designed for processing-intensive applications
 - Inadequate management and control, testing, documentation
 - Loss of control over data
- Managing end-user development
 - Require cost-justification of end-user system projects
 - Establish hardware, software, and quality standards

• Application software packages

- Save time and money
- Many packages offer customization features:
 - Allow software package to be modified to meet unique requirements without destroying integrity of package software
- Evaluation criteria for systems analysis include:
 - Functions provided by the package, flexibility, user friendliness, hardware and software resources, database requirements, installation and maintenance efforts, documentation, vendor quality, and cost
- Request for Proposal (RFP)
 - Detailed list of questions submitted to packaged-software vendors
 - Used to evaluate alternative software packages

Outsourcing

- Several types
 - Cloud and SaaS providers
 - Subscribing companies use software and computer hardware provided by vendors
 - External vendors
 - Hired to design, create software
 - Domestic outsourcing
 - Driven by firms need for additional skills, resources, assets
 - Offshore outsourcing
 - Driven by cost-savings
- Advantages
 - Allows organization flexibility in IT needs

• Disadvantages

- Hidden costs, e.g.
 - Identifying and selecting vendor
 - Transitioning to vendor
- Opening up proprietary business processes to third party

• Rapid application development (RAD)

- Process of creating workable systems in a very short period of time
- Utilizes techniques such as:
 - Visual programming and other tools for building graphical user interfaces
 - Iterative prototyping of key system elements
 - Automation of program code generation
 - Close teamwork among end users and information systems specialists

• Joint application design (JAD)

- Used to accelerate generation of information requirements and to develop initial systems design
- Brings end users and information systems specialists together in interactive session to discuss system's design
- Can significantly speed up design phase and involve users at intense level

• Agile development

- Focuses on rapid delivery of working software by breaking large project into several small sub-projects
- Subprojects
 - Treated as separate, complete projects
 - Completed in short periods of time using iteration and continuous feedback
- Emphasizes face-to-face communication over written documents, allowing collaboration and faster decision making

Component-based development

- Groups of objects that provide software for common functions (e.g., online ordering) and can be combined to create large-scale business applications
- Web services
 - Reusable software components that use XML and open Internet standards (platform independent)
 - Enable applications to communicate with no custom programming required to share data and services

- Can engage other Web services for more complex transactions
- Using platform and device-independent standards can result in significant cost-savings and opportunities for collaboration with other companies