LECTURE - I

In general, it is not true that every submodule of a free module is free.

EXAMPLE 0.1. Let $R = \mathbb{Z}[x]$. Then R is a free R-module. The ideal $I = \langle 2, x \rangle$ of R is a submodule of R. If a and b are nonzero elements of I, then ab - ba = 0. Thus, no two nonzero elements of I are R-linearly independent. Therefore, if I is a free R-module, then it must be a cyclic submodule of R. But this is not the case as I is not a principal ideal of R.

THEOREM 0.2. Let R be a PID and let M be a free R-module. If N is a submodule of M, then N is a free R-module and $rank_R(N) \leq rank_R(M)$.

Proof not required.

COROLLARY 0.3. Let R be a PID and let M be a finitely generated R-module. If N is a submodule of M, then N is also finitely generated. In fact, if M is generated by m elements then N can be generated by n elements such that $n \leq m$.

Proof. There is a free *R*-module *F* of rank *m* such that $M \simeq F/K$, for some submodule *K* of *F*. Then, there exists a submodule F_1 of

F containing K such that $N \simeq F_1/K$. By Theorem 0.2, F_1 is a free R-module and rank $R(F_1) \leq \operatorname{rank} R(F)$. Thus, N is a finitely generated R-module with number of generators at most rank $R(F_1)$.

PROPOSITION 0.4. A free module over an integral domain is torsion free.

Proof. Let M be a free module over an integral domain R and let $B = \{x_i \mid i \in I\}$ be a basis of M. Then for $x = \sum_{i \in I} r_i x_i \in M \setminus \{0\}$, if $r \in R$ such that rx = 0, then $rr_i = 0$ for all $i \in I$. Since $x \neq 0, r_j \neq 0$ for some $j \in I$ and so r = 0.

$$LECTURE - II$$

The converse of the above Proposition is, in general, not true. For example, the \mathbb{Z} -module \mathbb{Q} is torsion free but not free. However, we have the following:

THEOREM 0.5. A finitely generated torsion free module over a PID is free.

Proof. Let M be a torsion free module over a PID R with $X \subseteq M \setminus \{0\}$, a finite set of generators of M. Since M is a torsion free, $x \in M \setminus \{0\}$ and rx = 0 implies r = 0. So, every nonzero element of M is R-linearly independent. Therefore, let $S = \{x_1, \ldots, x_k\}$ be a maximal linearly independent subset of X.

Let $N = \langle S \rangle$. Then N is a free R-module with a basis S. If $y \in X \setminus S$, then there exist r_y, r_1, \ldots, r_k in R, not all zero, such that $r_yy + r_1x_1 + \cdots + r_kx_k = 0$. Clearly, $r_y \neq 0$, otherwise $r_i = 0$ for all i. Thus, $r_yy = -(r_1x_1 + \cdots + r_kx_k) \in N$. Hence, to each $y \in X$, there

2

exists $r_y \in R \setminus \{0\}$ such that $r_y y \in N$. Let $r = \prod_{y \in X} r_y$. Then $r \neq 0$ and $rx \in N$ for all $x \in X$, and so $rM \subseteq N$.

Define a mapping $f: M \to M$ by f(x) = rx. Then f is an R-module homomorphism with ker $f = \{x \in M \mid rx = 0\}$. Since M is torsion free, ker $f = \{0\}$ and f is 1 - 1. Hence, $M \simeq \text{Im } f = rM \subseteq N$. Thus, M is isomorphic to a submodule of a free R-module N. Therefore, Mis free by Theorem 0.2.

COROLLARY 0.6. If M is a finitely generated module over a PID R, then

$$M \simeq T(M) \oplus M/T(M).$$

Proof. We have the following short exact sequence:

$$0 \longrightarrow T(M) \longrightarrow M \longrightarrow M/T(M) \longrightarrow 0$$

M is finitely generated implies, M/T(M) is also finitely generated. Also, M/T(M) is a torsion free module. By Theorem 0.5, M/T(M) is a free module. So, the above sequence splits and $M \simeq T(M) \oplus M/T(M)$.

LECTURE - III

We have seen before that if M is a module over a division ring D, then every linearly independent subset of M can be extended to form a basis of M. If $0 \neq x \in M$, and M is a module over a division ring D, then $\{x\}$ is linearly independent and hence M has a basis containing x. In general, this is not true.

EXAMPLE 0.7. Let R be a PID. R considered as an R-module is a torsion free cyclic module. R is commutative, hence every basis of R contains only one element. Now for $r \in R \setminus \{0\}, \{r\}$ is linearly independent. If $\{r\}$ is a basis of R, then we must have $s \in R$ such that sr = 1, i.e., r must be a unit in R. Conversely, if r is a unit in R, then $\{r\}$ is a basis of R. Thus if r is a non-unit, then R has no basis containing r.

EXAMPLE 0.8. Let $M = R \oplus R$, where R is a PID. Then M is a free R-module of rank 2 and is also torsion free. If r is a nonzero nonunit in R, then $\{x = (r, 0)\}$ is R-linearly independent. If $y = (a, b) \in M$, such that $\{x, y\}$ is R-linearly independent, then there do not exist $\alpha, \beta \in R$ such that $(1, 0) = \alpha x + \beta y$. Indeed, if $\beta = 0$, then $\alpha x = (1, 0)$ implies that r is a unit in R; if $\beta \neq 0$, then b = 0. But then $(0, 1) \neq \alpha x + \beta y$ for any $\alpha, \beta \in R$. So $\{x\}$ can not be extended to form a basis of M

DEFINITION: Let M be a module over a ring R. A torsion free nonzero element $x \in M$ is **primitive** if x = ry for some $y \in M$ and $r \in R$, then r is a unit in R.

EXAMPLE 0.9. In a module over a division ring D, every nonzero element is primitive.

EXAMPLE 0.10. In the Z-module \mathbb{Q} , there are no primitive elements,. This is because for every $q \in Q$, q = n.q/n but n is a unit in Z if and only if $n \neq \pm 1$.

EXAMPLE 0.11. An element x of a ring R is a primitive element of the R-module R if and only if x is a unit in R. This is because x = x1 and so if x is primitive, then x must be a unit.

LEMMA 0.12. Let R be a PID and let M be a free R-module with a basis $B = \{x_i \mid i \in I\}$. (i) $x = \sum_{i \in I} r_i x_i \in M \setminus \{0\}$ is a primitive element if and only if $gcd(\{r_i \mid i \in I\}) = 1$. (ii) If $y = \sum_{i \in I} s_i x_i \in M \setminus \{0\}$ and if $r(y) = \gcd(\{s_i \mid i \in I\})$, then y = r(y)y', and y' is a primitive element of M.

Proof. (i) In a PID, gcd is unique up to multiplication by a unit. So, it is enough to show that $d = \gcd(\{r_i \mid i \in I\})$ is a unit in R. Let $r_i = ds_i$ for all $i \in I$. Then $x = d(\sum_{i \in I} s_i x_i)$. Thus, if x is primitive, then d is a unit in R. Conversely, if x = ay, $a \in R$, $y = \sum_{i \in I} s_i x_i \in M$, then $r_i = as_i$, and so $a|r_i$ for all i. Thus, if d = 1, then a is a unit in R. Hence, x is a primitive element.

(ii) This is simple.

LECTURE - IV

THEOREM 0.13. Let M be a free module over a PID R. If x is a primitive element of M, then M has a basis containing x.

Proof. Let rank $_R(M) = n$. We prove the result by induction on n. If n = 1, and M has a basis $\{x_1\}$, then $x = rx_1$ for some $r \in R$. Since, x is primitive, r is a unit in R. Thus, $M = Rx_1 = Rx$. Hence, $\{x\}$ is also a basis of M.

Now assume that the statement is true for all free *R*-modules of rank at most n-1. Let $B = \{x_1, \ldots, x_n\}$ be a basis of *M*, and let $M_1 = \langle x_1, \ldots, x_{n-1} \rangle$. Then $x = \sum_{i=1}^n r_i x_i$ $(r_i \in R)$. If $r_n = 0$, then $x \in M_1$. Since rank $_R(M_1) = n-1$, by the induction hypothesis, M_1 has a basis $\{x, x'_2, \ldots, x'_{n-1}\}$, and hence $\{x, x'_2, \ldots, x'_{n-1}, x_n\}$ is a basis of *M*. If $r_n \neq 0$, then let $y = \sum_{i=1}^{n-1} r_i x_i$. Then $y \in M_1$. If y = 0, then x = $r_n x_n$. Since *x* is primitive, so r_n is a unit in *R*, and so $\{x_1, \ldots, x_{n-1}, x\}$ is a basis of *M*. If $y \neq 0$, then by Lemma 0.12, there is a primitive element $y' \in M$ such that y = ry', for some $r \in R$. By the induction hypothesis, M_1 has a basis $\{y', x'_2, \ldots, x'_{n-1}\}$, and so *M* has a basis

 $\{y', x'_2, \ldots, x'_{n-1}, x_n\}$. Now $x = r_n x_n + y = r_n x_n + ry'$, and $gcd(r_n, r) = 1$ (Lemma 0.12). Then $ar_n + br = 1$ for some $a, b \in R$. Let $y'' = ay' - bx_n$. Then $x, y'' \in \langle x_n, y' \rangle$. Also x, y'' are linearly independent: if ux + vy'' = 0 for $u, v \in R$, then $(ur_n - bv)x_n + (ur + av)y' = 0$, and the linear independence of x_n and y' implies that $ur_n - bv = 0$ and ur + av = 0, and so on solving these equations for u and v, we get u = v = 0. Thus, $\{x, y''\}$ is a basis of $\langle x_n, y' \rangle$. Therefore, $\{x, x'_2, \ldots, x'_{n-1}, y''\}$ is a basis of M.

If M is of infinite rank with a basis $B = \{x_i \mid i \in I\}$, then choose a finite subset $\{x_{i_1}, \ldots, x_{i_n}\}$ of B so that $x \in \langle x_{i_1}, \ldots, x_{i_n} \rangle = N$. Thus, x is a primitive element of a module N of finite rank. By the above argument, there is a basis $\{x, x'_2, \ldots, x'_n\}$ of N. Hence, $\{x, x'_2, \ldots, x'_n\} \cup$ $\{x_i \mid i \in I \setminus \{i_1, \ldots, i_n\}\}$ is a basis of M containing x.

EXAMPLE 0.14. Let $x = (2, 4, 3) = 2e_1 + 3e_2 + 4e_3 \in \mathbb{Z}^3$, where $\{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ is standard basis of \mathbb{Z}^3 . x is a primitive element of \mathbb{Z} -module \mathbb{Z}^3 as gcd(2, 4, 3) = 1. Now $x = 2e_1 + 4e_2 + 3e_3 = 2y_1 + 3e_3$, where $y_1 = e_1 + 2e_2$, a primitive element of \mathbb{Z}^3 . Since $y_1 \in \langle e_1, e_2 \rangle$, we can find $x_2 \in \langle e_1, e_2 \rangle$ so that $\langle y_1, x_2 \rangle = \langle e_1, e_2 \rangle$. Since $y_1 = e_1 + 2e_2$ ($a = 1, b = 2 \Rightarrow c = 1, d = -1$), by the above argument, $x_2 = -e_1 - e_2$. Thus, $\{y_1, x_2, e_3\}$ is a basis of \mathbb{Z}^3 . Now $x = 2y_1 + 3e_3 \in \langle y_1, e_3 \rangle$, and x is primitive we have $x_1 = -y_1 - e_3$ (a = 2, b = 3, c = 1, d = -1) and $\langle x, x_1 \rangle = \langle y_1, e_3 \rangle$. Hence, $\{x, x_1, x_2\}$ is a required basis of \mathbb{Z}^3 .

LECTURE - V

PROPOSITION 0.15. Let M be a module over a division ring D of finite rank n and let $X = \{x_1, \ldots, x_n\}$ be a subset of $M \setminus \{0\}$.

(i) If X is a linearly independent set, then X is a basis of M.
(ii) If X generates M, then X is a basis of M.

Proof. (i) Since rank $_D(M) = n$, the set X is a maximal linearly independent subset of M. Hence, X is a basis of M.

(*ii*) Let $Y = \{y_1, \ldots, y_k\}$ be a maximal linearly independent subset of X. The set Y is nonempty since every nonzero element of M is linearly independent. We now claim that Y = X. Suppose on the contrary that there is $y \in X \setminus Y$. Then $Y \cup \{y\}$ is a linearly dependent set, and so for some $r, r_1, \ldots, r_k \in R, ry+r_1y_1+\cdots+r_ky_k = 0$. If r = 0, then r_1, \ldots, r_k are all zero, and so $Y \cup \{y\}$ is linearly independent set. This contradicts that Y is a maximal linearly independent subset of X. Thus, $r \neq 0$ and $y = \sum_{i=1}^k (-r^{-1}r_i)y_i \in \langle Y \rangle$. Therefore, $X \subseteq \langle Y \rangle$ and $M = \langle Y \rangle$. But then rank $_D(M) = k$, a contradiction.

Proposition 0.15(i) may not be true for finitely generated free modules over PIDs.

EXAMPLE 0.16. Let $M = \mathbb{Z} \oplus \mathbb{Z}$ be a free \mathbb{Z} -module of rank 2. Then $\{(2,0), (0,1)\}$ is a linearly independent subset of M and it does not generate M as $(1,0) \neq r(2,0) + s(0,1)$ for any $r, s \in \mathbb{Z}$.

However, statement (ii) of Proposition 0.15 is valid for such modules.

PROPOSITION 0.17. Let R be a PID and let M be a finitely generated free R-module of rank n. If $X = \{x_1, \ldots, x_n\} \subseteq M \setminus \{0\}$, and X generates M, then X is a basis.

Proof. Let $\{e_1, \ldots, e_n\}$ be a standard basis of \mathbb{R}^n . Then there is an \mathbb{R} -module homomorphism $f: \mathbb{R}^n \to M$ such that $f(e_i) = x_i$ for i = 1, ..., n. Since $M = \langle X \rangle$, f is actually a R-module epimorphism. Thus, there is a short exact sequence $0 \longrightarrow K \longrightarrow R^n \xrightarrow{f} M \longrightarrow 0$ with ker f = K. Since M is free, $R^n \simeq M \oplus K$. By Theorem 0.2, K is a free R-module and rank $_R(K) \leq n$. Therefore, $n = \operatorname{rank}_R(R^n) =$ rank $_R(M) + \operatorname{rank}_R(K)$. Hence, rank $_R(K) = 0$, and $K = \{0\}$. Thus, f is an isomorphism, and X is a basis of M.

LECTURE - VI

THEOREM 0.18. (Invariant factor theorem for submodules) Let R be a PID, let M be a free R-module and let N be a submodule of M of finite rank n. Then there is a basis B of M, a subset $\{x_1, \ldots, x_n\}$ of B and nonzero elements r_1, \ldots, r_n of R such that $\{r_1x_1, \ldots, r_nx_n\}$ is a basis of N and for each i, r_i divides r_{i+1} .

Proof not required.

THEOREM 0.19. Let M be a nonzero finitely generated module over a PID R. If $\mu(M) = n$, then M is a direct sum of cyclic submodules:

$$M = Rx_1 \oplus \dots \oplus Rx_n$$

such that $Ann(x_i) \supseteq Ann(x_{i+1})$ for i = 1, ..., n-1, with $Ann(x_1) \neq R$ and $Ann(x_n) = Ann(M)$.

Proof. Let $M = \langle u_1, \ldots, u_n \rangle$ and let $f: \mathbb{R}^n \to M$ be defined by $f(a_1, \ldots, a_n) = \sum_{i=1}^n a_i u_i$. Then, f is an \mathbb{R} -module epimorphism. If $K = \ker f$, then K is a free submodule of rank m and $m \leq n$ (Theorem 0.2). Choose a basis $\{y_1, \ldots, y_n\}$ of \mathbb{R}^n and nonzero elements r_1, \ldots, r_m of R such that $\{r_1y_1, \ldots, r_my_m\}$ is a basis of K and for each $i, r_i | r_{i+1}$ (Theorem 0.18). If for each $i, x_i = f(y_i)$, then $\{x_1, \ldots, x_n\}$

generates M. Since for any $x \in M$ there is $y \in \mathbb{R}^n$ such that f(y) = xand since $y = \sum_{i=1}^n a_i y_i$ for some $a_1, \ldots, a_n \in \mathbb{R}$, so $x = \sum_{i=1}^n a_i x_i$.

Next, we show that $M = Rx_1 \oplus \cdots \oplus Rx_n$. Suppose that $\sum_{i=1}^n a_i x_i = 0$, $a_i \in R$. Then $\sum_{i=1}^n a_i y_i \in K$, and so $\sum_{i=1}^n a_i y_i = \sum_{j=1}^m b_j r_j y_j$, for some $b_1, \ldots, b_m \in R$. Since $\{y_1, \ldots, y_n\}$ is a basis of R^n , so $a_i = b_i r_i$ for $i = 1, \ldots, m$ and $a_i = 0$ for $i = m + 1, \ldots, n$. Now for $i = 1, \ldots, m$, $a_i x_i = f(a_i y_i) = f(b_i r_i y_i) = 0$, as $r_i y_i \in K$. Hence, $a_i x_i = 0$ for all i and $M = Rx_1 \oplus \cdots \oplus Rx_n$.

If $a \in \operatorname{Ann}(x_i)$, then $ax_i = 0$, and so $f(ay_i) = 0$, that is, $ay_i \in K$. If i > m, then $ay_i \in K$ implies that a = 0. Thus for i > m, $\operatorname{Ann}(x_i) = \{0\}$. If $i \leq m$, then $ay_i \in K$ implies that $ay_i = \sum_{j=1}^m b_j r_j y_j$, for some $b_1, \ldots, b_m \in R$, and so $a = b_i r_i$, that is, $r_i | a$. Thus, $\operatorname{Ann}(x_i) \subseteq \langle r_i \rangle$. Since $r_i x_i = r_i f(y_i) = f(r_i y_i) = 0$, so $r_i \in \operatorname{Ann}(x_i)$. Therefore, $\operatorname{Ann}(x_i) = \langle r_i \rangle$. Since for each $i, r_i | r_{i+1}$, so $\operatorname{Ann}(x_i) \supseteq \operatorname{Ann}(x_{i+1})$.

Finally, if m < n, then M has a torsion free element, and so Ann $(x_n) = \{0\} = \text{Ann}(M)$. If m = n, then M is a torsion module and $r_i | r_n$ for all i, and so $r_n M = \{0\}$. Thus, Ann $(x_n) = \langle r_n \rangle = \text{Ann}(M)$.

Now Ann $(x_1) \neq R$, because otherwise $Rx_1 = 0$ and $\mu(M) < n$.

LECTURE - VII

COROLLARY 0.20. If M is a finitely generated module over a PID R, then $M = T(M) \oplus F$, where F is a free module of finite rank.

Proof. By Theorem 0.19, $M = Rx_1 \oplus \cdots \oplus Rx_n$ with $\operatorname{Ann}(x_i) \supseteq$ Ann (x_{i+1}) for $i = 1, \ldots, n-1$. Let k be the least positive integer such that Ann $(x_{k+1}) = \{0\}$. Then Ann $(x_{k+1}) = \cdots = \operatorname{Ann}(x_n) = \{0\}$, and so x_{k+1}, \ldots, x_n are torsion free elements in M. Therefore, $F = Rx_{k+1} \oplus \cdots \oplus Rx_n$ is a free R-module of rank n - k. Let $T = Rx_1 \oplus \cdots \oplus Rx_k$. Then $M = T \oplus F$ and we claim that T(M) = T. Since $\operatorname{Ann}(x_1) \supseteq$ $\operatorname{Ann}(x_i)$ for $i = 1, \ldots, k$ and R is a PID, so if $\operatorname{Ann}(x_k) = \langle a \rangle$, then ax = 0 for all $x \in T$. Thus, $T \subseteq T(M)$. Conversely, if $x \in T(M)$, then x = y + z, for some $y \in T$ and $z \in F$. Let $r \in R \setminus \{0\}$ such that rx = 0. Then ry + rz = 0. Since $M = T \oplus F$, so rz = 0. But F is torsion free, and so z = 0.

The cyclic decomposition is, in general, not unique. If M is a free R-module of rank n, where R is a PID, and if $\{x_1, \ldots, x_n\}$ is a basis of M, then $M = Rx_1 \oplus \cdots \oplus Rx_n$. So every basis will give a different cyclic decomposition.

PROPOSITION 0.21. Let R be a PID and let M and N be finitely generated R-modules. Then M and N are isomorphic modules if and only if T(M) and T(N) are isomorphic and $rank_R(M/T(M)) = rank_R(N/T(N))$.

Proof. If $f: M \to N$ is an *R*-module isomorphism, then for $x \in M$ with rx = 0, and $r \in R \setminus \{0\}$, we have rf(x) = f(rx) = 0, and so $f(x) \in T(N)$. Therefore, $f(T(M)) \subseteq T(N)$. Similarly, for f^{-1} , we have $f^{-1}(T(N)) \subseteq T(M)$. Hence, f(T(M)) = T(N), and $f|_{T(M)}: T(M) \to$ T(N) is an *R*-module isomorphism. If $\eta: N \to N/T(N)$ is the canonical *R*-module epimorphism, then $\eta \circ f: M \to N/T(N)$ is an *R*-module epimorphism and $\ker(\eta \circ f) = T(M)$. Therefore, $M/T(M) \simeq N/T(N)$, and so $\operatorname{rank}_R(M/T(M)) = \operatorname{rank}_R(N/T(N))$.

Conversely, if rank $_R(M/T(M)) = \operatorname{rank}_R(N/T(N))$, then $M/T(M) \cong N/T(N)$ and so $M \cong T(M) \oplus M/T(M) \cong T(N) \oplus N/T(N) \cong N$.

LECTURE - VIII

DEFINITION: If M is a finitely generated torsion module over a PID Rand $M = Rx_1 \oplus \cdots \oplus Rx_m$ with $R \neq \operatorname{Ann}(x_1) \supseteq \cdots \supseteq \operatorname{Ann}(x_m) \neq \{0\}$, then the chain of annihilator ideals is called the **chain of invariant ideals** of M. If $\operatorname{Ann}(x_i) = \langle r_i \rangle$ for all i, then generators r_1, \ldots, r_m are such that $r_i | r_{i+1}$ for $i = 1, \ldots, m-1$, called the **invariant factors** of M.

There is another decomposition of a torsion module over a PID using the prime factorization property of a PID.

DEFINITION: Let R be an integral domain and let M be an R-module. If p is a prime in R, then a p-primary component of M is

$$M_p = \{ x \in M \mid p^n x = 0 \text{ for some } n \in \mathbb{N} \}.$$

Verify that M_p is a submodule of M. If $M = M_p$, then M is called a p-primary module. We say that M is primary if $M = M_p$ for some prime p.

THEOREM 0.22. A finitely generated torsion module over a PID is a direct sum of primary submodules.

Proof. Let R be a PID and let M be a finitely generated torsion Rmodule. If $M = \langle y_1, \ldots, y_n \rangle$, then as M is torsion, $\operatorname{Ann}(y_i) = \langle a_i \rangle$ for each i, and so $a_1 \cdots a_n$ is a nonzero element of $\operatorname{Ann}(M)$. Let $\operatorname{Ann}(M) =$ $\langle r \rangle$ and $r = up_1^{k_1} \cdots p_l^{k_l}$ be the unique factorization of r into a product of nonassociate primes p_1, \ldots, p_l with u a unit in R. Let

$$M_{p_i} = \{ x \in M \mid p_i^n x = 0 \text{ for some } n \in \mathbb{N} \}.$$

If $x \in M_{p_i}$ and $x \neq 0$, then Ann $(x) = \langle p_i^k \rangle$ for some $k \in \mathbb{Z}^+$. Since Ann $(M) \subseteq$ Ann (x), so $p_i^k | r$, and so $k \leq k_i$. Therefore, $M_{p_i} = \{x \in M \mid p_i^{k_i}x = 0\}$. Now we will prove that $M = M_{p_1} \oplus \cdots \oplus M_{p_l}$. If $q_i = r/p_i^{k_i}$, then $gcd(q_1, \ldots, q_l) = 1$, and so $b_1q_1 + \cdots + b_lq_l = 1$ for some $b_1, \ldots, b_l \in R$. Therefore, $x = x_1 + \cdots + x_l$, where $x_i = b_iq_ix \in M_{p_i}$. Thus, $M = M_{p_1} + \cdots + M_{p_l}$. Let $x_1 + \cdots + x_l = 0$, where each $x_i \in M_{p_i}$. If $x_j \neq 0$ for some j, then $q_j(x_1 + \cdots + x_l) = 0$ implies that $q_jx_j = 0$. Since $gcd(p_j^{k_j}, q_j) = 1$, so $ap_j^{k_j} + bq_j = 1$, for some $a, b \in R$. Therefore, $x_j = (ap_j^{k_j} + bq_j)x_j = 0$. Hence, $M = M_{p_1} \oplus \cdots \oplus M_{p_l}$.

LECTURE - IX

THEOREM 0.23. A finitely generated torsion module over a PID is a direct sum of primary cyclic submodules.

Proof. Let R be a PID and let M be a finitely generated torsion R-module. By Theorem 0.22, $M = M_{p_1} \oplus \cdots \oplus M_{p_l}$, a direct sum of primary submodules. Now for $i = 1, \ldots, l$, by Theorem 0.19, it follows that $M_{p_i} = Rx_{i1} \oplus \cdots \oplus Rx_{in_i}$ such that $R \neq \operatorname{Ann}(x_{i1}) \supseteq \cdots \supseteq$ Ann $(x_{in_i}) \neq \{0\}$. Hence, $M = \bigoplus_{i=1}^l M_{p_i} = \bigoplus_{i=1}^l \bigoplus_{j=1}^{n_i} Rx_{ij}$.

Note that in the proof of Theorem 0.23 if we let $\operatorname{Ann}(x_{ij}) = \langle p_i^{e_{ij}} \rangle$ for $j = 1, \ldots, n_i$ and $i = 1, \ldots, l$, then we have $e_{i1} \leq \cdots \leq e_{in_i}$. The set of primes $\{ p_i^{e_{ij}} \mid j = 1, \ldots, n_i, i = 1, \ldots, l \}$ are called the set of **elementary divisors** of M.

Let M be a module over a PID R. An element $a \in M$ is said to have order r if Ann $(a) = \langle r \rangle$. The element r is unique up to multiplication by a unit. If a is of order r then the cyclic submodule Ra generated by a is said to be cyclic of order r. Note that $a \in M$ has order 0 if and only if $Ra \simeq R$, that is, Ra is a free *R*-module of rank one. Also *a* is of order 1 ($\in R$) if and only if a = 0.

Now we can combine all these results together to obtain the following fundamental theorem for a finitely generated module over a PID.

THEOREM 0.24. Let M be a finitely generated module over a PID R.

(i) M is the direct sum of a free module F of finite rank and a finite number of cyclic torsion modules. The torsion summands, if any, are of orders r_1, \ldots, r_l , where r_1, \ldots, r_l are nonzero elements of R such that $r_i|r_{i+1}$ for $i = 1, \ldots, l-1$. The rank of F and the list of ideals $\langle r_1 \rangle, \ldots, \langle r_l \rangle$ are uniquely determined by M.

(ii) M is the direct sum of a free submodule E of finite rank and a finite number of cyclic torsion modules, if any, of orders $p_1^{e_1}, \ldots, p_k^{e_k}$, where p_1, \ldots, p_k are primes in R (not necessarily distinct) and e_1, \ldots, e_k are positive integers (not necessarily distinct). The rank of E and the list of ideals $\langle p_1^{e_1} \rangle, \ldots, \langle p_k^{e_k} \rangle$ are uniquely determined by M.

That's all in UNIT-III students. I shall be coming back to you soon with the fourth and the final unit.

Take care and stay safe