UNIT - III

LECTURE — 1

In general, it is not true that every submodule of a free module is

free.

EXAMPLE 0.1. Let R = Z[z]. Then R is a free R-module. The ideal
I = (2,z) of R is a submodule of R. If a and b are nonzero elements of
I, then ab — ba = 0. Thus, no two nonzero elements of I are R-linearly
independent. Therefore, if [ is a free R-module, then it must be a cyclic

submodule of R. But this is not the case as [ is not a principal ideal
of R.

THEOREM 0.2. Let R be a PID and let M be a free R-module. If
N is a submodule of M, then N is a free R-module and rank p(N) <
rank r(M).

Proof not required.

COROLLARY 0.3. Let R be a PID and let M be a finitely generated
R-module. If N 1s a submodule of M, then N is also finitely generated.
In fact, if M is generated by m elements then N can be generated by n

elements such that n < m.

Proof. There is a free R-module F' of rank m such that M ~ F/K,
for some submodule K of F. Then, there exists a submodule F; of
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F containing K such that N ~ F;/K. By Theorem 0.2, F} is a free
R-module and rank gz(F;) < rank g(F'). Thus, N is a finitely generated

R-module with number of generators at most rank r(F}).

PROPOSITION 0.4. A free module over an integral domain is torsion

free.

Proof. Let M be a free module over an integral domain R and let
B ={z;|i€ I} beabasis of M. Then for x = ., riz; € M\ {0}, if
r € R such that rz = 0, then rr; = 0 for all « € I. Since x # 0, r; # 0

for some 7 € I and so r = 0.

LECTURE — 11

The converse of the above Proposition is, in general, not true. For
example, the Z-module Q is torsion free but not free. However, we have

the following:

THEOREM 0.5. A finitely generated torsion free module over a PID

1s free.

Proof. Let M be a torsion free module over a PID R with X C
M \ {0}, a finite set of generators of M. Since M is a torsion free,
x € M\ {0} and rz = 0 implies » = 0. So, every nonzero element
of M is R-linearly independent. Therefore, let S = {z1,..., 21} be a
maximal linearly independent subset of X.

Let N = (S). Then N is a free R-module with a basis S. If
y € X \ S, then there exist r,,71,...,7; in R, not all zero, such that
ryy + 1z + - + gz = 0. Clearly, r, # 0, otherwise r; = 0 for all 7.
Thus, ryy = —(rx1 + -+ rpx,) € N. Hence, to each y € X, there
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exists r, € 2\ {0} such that r,y € N. Let r = [[ 7, Then r # 0
and rx € N for all x € X, and so rM C N.

Define a mapping f: M — M by f(z) = rz. Then f is an R-module
homomorphism with ker f = {x € M | r& = 0}. Since M is torsion
free, ker f = {0} and f is 1 — 1. Hence, M ~ Im f =rM C N. Thus,
M is isomorphic to a submodule of a free R-module N. Therefore, M

is free by Theorem 0.2.

COROLLARY 0.6. If M is a finitely generated module over a PID
R, then
M~TM)® M/T(M).

Proof. We have the following short exact sequence:
0—T(M)—M—M/T(M)—0.
M is finitely generated implies, M /T (M) is also finitely generated.

Also, M/T(M) is a torsion free module. By Theorem 0.5, M /T (M) is a
free module. So, the above sequence splits and M ~ T(M)® M /T (M).

LECTURE — 111

We have seen before that if M is a module over a division ring D,
then every linearly independent subset of M can be extended to form
a basis of M. If 0 # x € M, and M is a module over a division ring D,
then {z} is linearly independent and hence M has a basis containing

x. In general, this is not true.

ExaMPLE 0.7. Let R be a PID. R considered as an R-module is
a torsion free cyclic module. R is commutative, hence eery basis of
R contains only one element. Now for r € R\ {0}, {r} is linearly
independent. If {r} is a basis of R, then we must have s € R such that
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sr = 1, i.e., r must be a unit in R. Conversely, if r is a unit in R,
then {r} is a basis of R. Thus if r is a non-unit, then R has no basis

containing 7.

ExXAMPLE 0.8. Let M = R® R, where R is a PID. Then M is a free
R-module of rank 2 and is also torsion free. If r is a nonzero nonunit in
R, then {z = (r,0)} is R-linearly independent. If y = (a,b) € M, such
that {x,y} is R-linearly independent, then there do not exist o, § € R
such that (1,0) = ax + By. Indeed, if 5 = 0, then ax = (1,0) implies
that r is a unit in R; if § # 0, then b = 0. But then (0,1) # az + By
for any «, 5 € R. So {z} can not be extended to form a basis of M

DEFINITION: Let M be a module over a ring R. A torsion free nonzero
element x € M is primitive if x = ry for some y € M and r € R, then

r is a unit in R.

ExAMPLE 0.9. In a module over a division ring D, every nonzero

element is primitive.

ExAMPLE 0.10. In the Z-module Q, there are no primitive ele-

ments,. This is because for every ¢ € @), ¢ = n.q/n but n is a unit in Z
if and only if n # +1.

ExXAMPLE 0.11. An element x of a ring R is a primitive element of
the R-module R if and only if x is a unit in R. This is because x = x1

and so if x is primitive, then z must be a unit.

LEMMA 0.12. Let R be a PID and let M be a free R-module with a
basis B={x; |i € 1}.
(1) © = Y ;e iz € M\ {0} is a primitive element if and only if
ged({r;|1el}) =1
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(1) If y = > ,cp siws € M\ {0} and if r(y) = ged({s; | i € I }), then
y=r(y)y, and y' is a primitive element of M.

Proof. (i) In a PID, ged is unique up to multiplication by a unit.
So, it is enough to show that d = ged({r; | i € I }) is a unit in R. Let
r; = ds; for all ¢ € I. Then x = d(>]
then d is a unit in R. Conversely, if t = ay, a € R,y = >

six;). Thus, if x is primitive,
s;x; € M,

iel
el
then r; = as;, and so a|r; for all i. Thus, if d = 1, then a is a unit in
R. Hence, z is a primitive element.

(73) This is simple.

LECTURE — IV

THEOREM 0.13. Let M be a free module over a PID R. If x is a

primitive element of M, then M has a basis containing x.

Proof. Let rank r(M) = n. We prove the result by induction on n.
If n =1, and M has a basis {1}, then x = rz; for some r € R. Since,
x is primitive, r is a unit in R. Thus, M = Rx; = Rx. Hence, {x} is
also a basis of M.

Now assume that the statement is true for all free R-modules of
rank at most n — 1. Let B = {z1,...,x,} be a basis of M, and let
M, = (x1,...,2p—1). Then z =3 " rx; (r; € R). If r, =0, then

x € M. Since rank g(M;) = n—1, by the induction hypothesis, M; has

a basis {z,x},...,2),_,}, and hence {x,z5,..., 2/ _,,x,} is a basis of
M. Tfr, #0, then let y = 3" r;z;. Theny € My. If y = 0, then o =
T'nTy. Since x is primitive, so 7, is a unit in R, and so {z1,..., 2, 1,2}

is a basis of M. If y # 0, then by Lemma 0.12, there is a primitive
element vy € M such that y = ry/, for some r € R. By the induction
hypothesis, M; has a basis {y/,z),...,2,_;}, and so M has a basis
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{2, ...,x,_1,x,}. Nowx = rpx,+y = ma,+ry’, and ged(ry,, r) =1
(Lemma 0.12). Then ar, +br = 1 for some a,b € R. Let ¥’ = ay’ —bx,,.
Then z,y" € (x,,y'). Also x, 3" are linearly independent: if ux+vy” =
0 for u,v € R, then (ur, — bv)z, + (ur + av)y’ = 0, and the linear
independence of x,, and ¢ implies that ur, — bv = 0 and ur + av = 0,
and so on solving these equations for v and v, we get u = v = 0. Thus,
{z,y"} is a basis of (z,,y'). Therefore, {x,z),..., 2/ _;,y"} is a basis
of M.

If M is of infinite rank with a basis B = {; | i € I }, then choose
a finite subset {z;,,...,x; } of B so that z € (z;,,...,x;,) = N. Thus,
x is a primitive element of a module N of finite rank. By the above
argument, there is a basis {z, 2, ...,z } of N. Hence, {x, 2}, ..., 2/, }U

rrn

{x;|ieI\{i,...,in}} is a basis of M containing .

EXAMPLE 0.14. Let # = (2,4,3) = 2e; + 3ey + 4e3 € Z3, where
{e; = (1,0,0),e5 = (0,1,0),e3 = (0,0,1)} is standard basis of Z>.
r is a primitive element of Z-module Z* as ged(2,4,3) = 1. Now
r = 2e1 + 4eg + 3e3 = 2y; + 3es, where y; = ey + 2e9, a primitive
element of Z®. Since y; € (ej,ey), we can find zy € (€1, ey) so that
(y1, ) = (e1,€9). Since yy =e1+2e3 (a=1,b=2=c=1,d=—1),
by the above argument, 75 = —e; —ey. Thus, {y1, T2, €3} is a basis of Z3.
Now = = 2y; + 3e3 € (y1, e3), and z is primitive we have x; = —y; — e3
(a=2,b=3,c=1,d=—1) and (x,x1) = (y1,e3). Hence, {x, 1,22}

is a required basis of Z3.

LECTURE -V

ProrosSITION 0.15. Let M be a module over a division ring D of
finite rank n and let X = {z1,...,x,} be a subset of M \ {0}.



UNIT - III 7

(i) If X is a linearly independent set, then X is a basis of M.
(i) If X generates M, then X is a basis of M.

Proof. (i) Since rank p(M) = n, the set X is a maximal linearly
independent subset of M. Hence, X is a basis of M.

(i) Let Y = {y1,...,yx} be a maximal linearly independent subset
of X. The set Y is nonempty since every nonzero element of M is
linearly independent. We now claim that ¥ = X. Suppose on the
contrary that there is y € X \ Y. Then Y U {y} is a linearly dependent
set, and so for some r,ry,...,1x € R, ry+riy1+---+rpyr = 0. If r =0,
then 7y, ..., 7 are all zero, and so Y U {y} is linearly independent set.
This contradicts that Y is a maximal linearly independent subset of X.
Thus, 7 # 0 and y = 3.0 (—r'r;)y; € (V). Therefore, X C (Y) and
M = (Y'). But then rank p(M) = k, a contradiction.

Proposition 0.15(i) may not be true for finitely generated free mod-

ules over PIDs.

EXAMPLE 0.16. Let M = Z & 7Z be a free Z-module of rank 2.
Then {(2,0),(0,1)} is a linearly independent subset of M and it does
not generate M as (1,0) # r(2,0) + s(0, 1) for any r, s € Z.

However, statement (ii) of Proposition 0.15 is valid for such mod-

ules.

PROPOSITION 0.17. Let R be a PID and let M be a finitely generated
free R-module of rank n. If X = {z1,...,2,} € M\ {0}, and X

generates M, then X is a basis.

Proof. Let {ei,...,e,} be a standard basis of R". Then there is
an R-module homomorphism f: R* — M such that f(e;) = z; for
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i=1,...,n. Since M = (X), f is actually a R-module epimorphism.
Thus, there is a short exact sequence 0— K R Lo M0 with
ker f = K. Since M is free, R ~ M & K. By Theorem 0.2, K is
a free R-module and rank g(K) < n. Therefore, n = rank g(R") =
rank p(M) + rank p(K). Hence, rank zg(K) = 0, and K = {0}. Thus,

f is an isomorphism, and X is a basis of M.

LECTURE - VI

THEOREM 0.18. (Invariant factor theorem for submodules)
Let R be a PID, let M be a free R-module and let N be a submodule of
M of finite rank n. Then there is a basis B of M, a subset {z1,...,x,}
of B and nonzero elements ry,...,r, of R such that {rixq,... ,roz,}

s a basis of N and for each i, r; divides r;,q.
Proof not required.

THEOREM 0.19. Let M be a nonzero finitely generated module over
a PID R. If u(M) = n, then M is a direct sum of cyclic submodules:

M = Rx; ®--- ® Rz,

such that Ann(x;) 2 Ann(z41) fori=1,...,n—1, with Ann(z1) # R
and Ann(x,) = Ann(M).

Proof. Let M = (uy,...,u,) and let f: R* — M be defined by
flai,...,an) = > au;. Then, f is an R-module epimorphism. If
K = ker f, then K is a free submodule of rank m and m < n (The-
orem 0.2). Choose a basis {y1,...,y,} of R" and nonzero elements
1, .., m of Rsuch that {riy;,...,"nym} is a basis of K and for each
i, ri|riy1 (Theorem 0.18). If for each i, x; = f(v;), then {z1,...,2,}
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generates M. Since for any x € M there is y € R™ such that f(y) ==
and since y = Y., a;y; for some a1, ...,a, € R,s0ox =Y | a,;.

Next, we show that M = Rx1®---® Rx,. Suppose that Z?:l a;x; =
0, a; € R. Then 71" ay; € K, and so D" ay; = Y 7%, byrjy;, for
some by,...,b, € R. Since {yi,...,y,} is a basis of R", so a; = b;r;
fori=1,....manda;=0fort=m+1,...,n. Nowfori=1,...,m,
a;x; = flay;) = f(biryy;) = 0, as ry; € K. Hence, a;x; = 0 for all 4
and M = Rx1 & --- & Rx,.

If a € Ann (z;), then az; = 0, and so f(ay;) = 0, that is, ay; €
K. If ¢ > m, then ay; € K implies that a = 0. Thus for ¢ > m,
Ann (7;) = {0}. If i <m, then ay; € K implies that ay; = 37", b;r;y;,
for some by, ..., b, € R, and so a = b;r;, that is, r;|a. Thus, Ann (z;) C
(r;). Since ryx; = rif (y;) = f(riy;) = 0, so r; € Ann (z;). Therefore,
Ann (z;) = (r;). Since for each i, r|r;iy1, so Ann (z;) O Ann (z;41).

Finally, if m < n, then M has a torsion free element, and so
Ann (z,) = {0} = Ann (M). If m = n, then M is a torsion module and
ri|rn for all 4, and so r, M = {0}. Thus, Ann (z,,) = (r,) = Ann (M).

Now Ann (x1) # R, because otherwise Rx; = 0 and pu(M) < n.

LECTURE —VII

COROLLARY 0.20. If M is a finitely generated module over a PID
R, then M =T (M) & F, where F is a free module of finite rank.

Proof. By Theorem 0.19, M = Rzy @ --- ® Rz, with Ann(z;) D

Ann (z;49) fori=1,...,n— 1. Let k be the least positive integer such
that Ann (z411) = {0}. Then Ann (2441) =--- = Ann(x,) = {0}, and
SO Tki1,- .., T, are torsion free elements in M. Therefore, F' = Rxp1 6

-+ @ Rz, is a free R-module of rank n — k. Let T'= Rx; ® - - - ® Rxy.
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Then M =T @& F and we claim that T(M) = T. Since Ann (z;) 2
Ann (z;) for ¢ = 1,...,k and R is a PID, so if Ann (zx) = (a), then
ax =0 for all x € T. Thus, T C T'(M). Conversely, if x € T'(M), then
x=y+z forsomey € T and z € F. Let r € R\ {0} such that rz = 0.
Then ry +7rz =0. Since M =T @ F, so rz = 0. But I is torsion free,

and so z = 0.

The cyclic decomposition is, in general, not unique. If M is a free
R-module of rank n, where R is a PID, and if {z1,...,2,} is a basis
of M, then M = Rx; & --- @ Rx,. So every basis will give a different

cyclic decomposition.

PRrROPOSITION 0.21. Let R be a PID and let M and N be finitely gen-
erated R-modules. Then M and N are isomorphic modules if and only if
T (M) and T(N) are isomorphic and rank r(M/T(M)) = rank g(N/T(N)).

Proof. If f: M — N is an R-module isomorphism, then for x € M
with 7z = 0, and r € R\ {0}, we have rf(x) = f(rx) = 0, and so
f(x) € T(N). Therefore, f(T(M)) C T(N). Similarly, for f~!, we have
FUT(N)) C T(M). Hence, f(T(M)) = T(N), and flrqs): T(M)
T(N)is an R-module isomorphism. If n: N — N/T(N) is the canonical
R-module epimorphism, then no f: M — N/T(N) is an R-module
epimorphism and ker(no f) = T'(M). Therefore, M/T(M) ~ N/T(N),
and so rank gx(M/T(M)) = rank r(N/T(N)).

Conversely, if rank gr(M/T(M)) = rank r(N/T(N)), then M/T'(M) =
N/T(N)and so M =T(M)® M/T(M)=T(N)® N/T(N) = N.
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LECTURE —VIII

DEeFINITION: If M is a finitely generated torsion module over a PID R
and M = Rx1®---® Rxy, with R # Ann (z1) O --- D Ann (z,,) # {0},

then the chain of annihilator ideals is called the chain of invariant

ideals of M. If Ann (z;) = (r;) for all 4, then generators r4,...,r, are
such that r;|r;. 1 for i = 1,...,m — 1, called the invariant factors of
M.

There is another decomposition of a torsion module over a PID

using the prime factorization property of a PID.

DEFINITION: Let R be an integral domain and let M be an R-module.

If p is a prime in R, then a p-primary component of M is

M,={xe M|p'"x=0 for some n € N}.

Verify that M, is a submodule of M. If M = M,,, then M is called a
p-primary module. We say that M is primary if M = M, for some

prime p.

THEOREM 0.22. A finitely generated torsion module over a PID is

a direct sum of primary submodules.

Proof. Let R be a PID and let M be a finitely generated torsion R-
module. If M = (y,...,yn), then as M is torsion, Ann (y;) = (a;) for
each i, and so ay - - - a,, is a nonzero element of Ann (M). Let Ann (M) =
(r) and r = upt" - - - pfl be the unique factorization of r into a product

of nonassociate primes py,...,p; with u a unit in R. Let

M, ={x € M |plx=0 for somen € N}.
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If z € My, and = # 0, then Ann (x) = (pF) for some k € Z*. Since
Ann (M) C Ann(z), so pF|r, and so k < k;. Therefore, M,, = {x €
M | pFiz = 0}. Now we will prove that M = M, & --- ® M,,. If
¢ = r/pfi, then ged(qq, ..., q) = 1, and so bygy +- - -+ byg = 1 for some
bi,...,b0p € R. Therefore, x = x1 + - -+ + x;, where z; = bjqx € M,,.
Thus, M = M, +---+M,,. Let x;+---+2; = 0, where each z; € M,,.
If z; # 0 for some j, then g;(x; + --- + x;) = 0 implies that g;z; = 0.
Since gcd(p?j, ¢;) =1, so ap? + bg; = 1, for some a,b € R. Therefore,
T = (ap?j +bgj)x; = 0. Hence, M = M,, & --- & M,,.

LECTURE — IX

THEOREM 0.23. A finitely generated torsion module over a PID is

a direct sum of primary cyclic submodules.

Proof. Let R be a PID and let M be a finitely generated torsion
R-module. By Theorem 0.22, M = M, & --- ®© M,,, a direct sum
of primary submodules. Now for ¢ = 1,...,l, by Theorem 0.19, it
follows that M,, = Rx;; @ - - - ® Rxyy, such that R # Ann (z;) 2 -+ D
Ann (z4,,) # {0}. Hence, M = @l_ | M,,, = ®|_, ®}., Rx;;.

Note that in the proof of Theorem 0.23 if we let Ann (z;;) = (p;”)
for j=1,...,n, and ¢ = 1,...,[, then we have e < --- < e;,,. The
set of primes {p;” | j = 1,...,n;, i = 1,...,1} are called the set of
elementary divisors of M.

Let M be a module over a PID R. An element a € M is said to have
order r if Ann (a) = (r). The element r is unique up to multiplication
by a unit. If a is of order r then the cyclic submodule Ra generated by
a is said to be cyclic of order r. Note that a € M has order 0 if and
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only if Ra ~ R, that is, Ra is a free R-module of rank one. Also a is
of order 1 (€ R) if and only if a = 0.

Now we can combine all these results together to obtain the follow-

ing fundamental theorem for a finitely generated module over a PID.

THEOREM 0.24. Let M be a finitely generated module over a PID
R.
(i) M is the direct sum of a free module F of finite rank and a finite
number of cyclic torsion modules. The torsion summands, if any, are
of orders ry,...,r;, where ry,...,r; are nonzero elements of R such
that ri|riyq fori = 1,...,0 — 1. The rank of F' and the list of ideals
(r1),...,(r;) are uniquely determined by M.
(i) M is the direct sum of a free submodule E of finite rank and a finite
number of cyclic torsion modules, if any, of orders pi*,...,py*, where
D1, .-, Pk are primes in R (not necessarily distinct) and ey, ..., ex are
positive integers (not necessarily distinct). The rank of E and the list

of ideals (pi),. .., (py*) are uniquely determined by M.

That’s all in UNIT-III students. I shall be coming back to you soon
with the fourth and the final unit.

Take care and stay safe



