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LECTURE − I
In general, it is not true that every submodule of a free module is

free.

Example 0.1. Let R = Z[x]. Then R is a free R-module. The ideal

I = 〈2, x〉 of R is a submodule of R. If a and b are nonzero elements of

I, then ab− ba = 0. Thus, no two nonzero elements of I are R-linearly

independent. Therefore, if I is a free R-module, then it must be a cyclic

submodule of R. But this is not the case as I is not a principal ideal

of R.

Theorem 0.2. Let R be a PID and let M be a free R-module. If

N is a submodule of M , then N is a free R-module and rank R(N) ≤
rank R(M).

Proof not required.

Corollary 0.3. Let R be a PID and let M be a finitely generated

R-module. If N is a submodule of M , then N is also finitely generated.

In fact, if M is generated by m elements then N can be generated by n

elements such that n ≤ m.

Proof. There is a free R-module F of rank m such that M ' F/K,

for some submodule K of F . Then, there exists a submodule F1 of
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F containing K such that N ' F1/K. By Theorem 0.2, F1 is a free

R-module and rank R(F1) ≤ rank R(F ). Thus, N is a finitely generated

R-module with number of generators at most rank R(F1).

Proposition 0.4. A free module over an integral domain is torsion

free.

Proof. Let M be a free module over an integral domain R and let

B = {xi | i ∈ I } be a basis of M . Then for x =
∑

i∈I rixi ∈M \{0}, if

r ∈ R such that rx = 0, then rri = 0 for all i ∈ I. Since x 6= 0, rj 6= 0

for some j ∈ I and so r = 0.

LECTURE − II

The converse of the above Proposition is, in general, not true. For

example, the Z-module Q is torsion free but not free. However, we have

the following:

Theorem 0.5. A finitely generated torsion free module over a PID

is free.

Proof. Let M be a torsion free module over a PID R with X ⊆
M \ {0}, a finite set of generators of M . Since M is a torsion free,

x ∈ M \ {0} and rx = 0 implies r = 0. So, every nonzero element

of M is R-linearly independent. Therefore, let S = {x1, . . . , xk} be a

maximal linearly independent subset of X.

Let N = 〈S〉. Then N is a free R-module with a basis S. If

y ∈ X \ S, then there exist ry, r1, . . . , rk in R, not all zero, such that

ryy + r1x1 + · · · + rkxk = 0. Clearly, ry 6= 0, otherwise ri = 0 for all i.

Thus, ryy = −(r1x1 + · · · + rkxk) ∈ N . Hence, to each y ∈ X, there
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exists ry ∈ R \ {0} such that ryy ∈ N . Let r =
∏

y∈X ry. Then r 6= 0

and rx ∈ N for all x ∈ X, and so rM ⊆ N .

Define a mapping f : M →M by f(x) = rx. Then f is an R-module

homomorphism with ker f = {x ∈ M | rx = 0 }. Since M is torsion

free, ker f = {0} and f is 1− 1. Hence, M ' Im f = rM ⊆ N . Thus,

M is isomorphic to a submodule of a free R-module N . Therefore, M

is free by Theorem 0.2.

Corollary 0.6. If M is a finitely generated module over a PID

R, then

M ' T (M)⊕M/T (M).

Proof. We have the following short exact sequence:

0−→T (M)−→M−→M/T (M)−→0.

M is finitely generated implies, M/T (M) is also finitely generated.

Also, M/T (M) is a torsion free module. By Theorem 0.5, M/T (M) is a

free module. So, the above sequence splits and M ' T (M)⊕M/T (M).

LECTURE − III
We have seen before that if M is a module over a division ring D,

then every linearly independent subset of M can be extended to form

a basis of M . If 0 6= x ∈M , and M is a module over a division ring D,

then {x} is linearly independent and hence M has a basis containing

x. In general, this is not true.

Example 0.7. Let R be a PID. R considered as an R-module is

a torsion free cyclic module. R is commutative, hence eery basis of

R contains only one element. Now for r ∈ R \ {0}, {r} is linearly

independent. If {r} is a basis of R, then we must have s ∈ R such that
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sr = 1, i.e., r must be a unit in R. Conversely, if r is a unit in R,

then {r} is a basis of R. Thus if r is a non-unit, then R has no basis

containing r.

Example 0.8. Let M = R⊕R, where R is a PID. Then M is a free

R-module of rank 2 and is also torsion free. If r is a nonzero nonunit in

R, then {x = (r, 0)} is R-linearly independent. If y = (a, b) ∈M , such

that {x, y} is R-linearly independent, then there do not exist α, β ∈ R
such that (1, 0) = αx + βy. Indeed, if β = 0, then αx = (1, 0) implies

that r is a unit in R; if β 6= 0, then b = 0. But then (0, 1) 6= αx + βy

for any α, β ∈ R. So {x} can not be extended to form a basis of M

Definition: Let M be a module over a ring R. A torsion free nonzero

element x ∈M is primitive if x = ry for some y ∈M and r ∈ R, then

r is a unit in R.

Example 0.9. In a module over a division ring D, every nonzero

element is primitive.

Example 0.10. In the Z-module Q, there are no primitive ele-

ments,. This is because for every q ∈ Q, q = n.q/n but n is a unit in Z
if and only if n 6= ±1.

Example 0.11. An element x of a ring R is a primitive element of

the R-module R if and only if x is a unit in R. This is because x = x1

and so if x is primitive, then x must be a unit.

Lemma 0.12. Let R be a PID and let M be a free R-module with a

basis B = {xi | i ∈ I }.
(i) x =

∑
i∈I rixi ∈ M \ {0} is a primitive element if and only if

gcd({ ri | i ∈ I }) = 1.
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(ii) If y =
∑

i∈I sixi ∈ M \ {0} and if r(y) = gcd({ si | i ∈ I }), then

y = r(y)y′, and y′ is a primitive element of M .

Proof. (i) In a PID, gcd is unique up to multiplication by a unit.

So, it is enough to show that d = gcd({ ri | i ∈ I }) is a unit in R. Let

ri = dsi for all i ∈ I. Then x = d(
∑

i∈I sixi). Thus, if x is primitive,

then d is a unit in R. Conversely, if x = ay, a ∈ R, y =
∑

i∈I sixi ∈M ,

then ri = asi, and so a|ri for all i. Thus, if d = 1, then a is a unit in

R. Hence, x is a primitive element.

(ii) This is simple.

LECTURE − IV

Theorem 0.13. Let M be a free module over a PID R. If x is a

primitive element of M , then M has a basis containing x.

Proof. Let rank R(M) = n. We prove the result by induction on n.

If n = 1, and M has a basis {x1}, then x = rx1 for some r ∈ R. Since,

x is primitive, r is a unit in R. Thus, M = Rx1 = Rx. Hence, {x} is

also a basis of M .

Now assume that the statement is true for all free R-modules of

rank at most n − 1. Let B = {x1, . . . , xn} be a basis of M , and let

M1 = 〈x1, . . . , xn−1〉. Then x =
∑n

i=1 rixi (ri ∈ R). If rn = 0, then

x ∈M1. Since rank R(M1) = n−1, by the induction hypothesis, M1 has

a basis {x, x′2, . . . , x′n−1}, and hence {x, x′2, . . . , x′n−1, xn} is a basis of

M . If rn 6= 0, then let y =
∑n−1

i=1 rixi. Then y ∈M1. If y = 0, then x =

rnxn. Since x is primitive, so rn is a unit in R, and so {x1, . . . , xn−1, x}
is a basis of M . If y 6= 0, then by Lemma 0.12, there is a primitive

element y′ ∈ M such that y = ry′, for some r ∈ R. By the induction

hypothesis, M1 has a basis {y′, x′2, . . . , x′n−1}, and so M has a basis
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{y′, x′2, . . . , x′n−1, xn}. Now x = rnxn+y = rnxn+ry′, and gcd(rn, r) = 1

(Lemma 0.12). Then arn+br = 1 for some a, b ∈ R. Let y′′ = ay′−bxn.

Then x, y′′ ∈ 〈xn, y′〉. Also x, y′′ are linearly independent: if ux+vy′′ =

0 for u, v ∈ R, then (urn − bv)xn + (ur + av)y′ = 0, and the linear

independence of xn and y′ implies that urn − bv = 0 and ur + av = 0,

and so on solving these equations for u and v, we get u = v = 0. Thus,

{x, y′′} is a basis of 〈xn, y′〉. Therefore, {x, x′2, . . . , x′n−1, y′′} is a basis

of M .

If M is of infinite rank with a basis B = {xi | i ∈ I }, then choose

a finite subset {xi1 , . . . , xin} of B so that x ∈ 〈xi1 , . . . , xin〉 = N . Thus,

x is a primitive element of a module N of finite rank. By the above

argument, there is a basis {x, x′2, . . . , x′n} of N . Hence, {x, x′2, . . . , x′n}∪
{xi | i ∈ I \ {i1, . . . , in} } is a basis of M containing x.

Example 0.14. Let x = (2, 4, 3) = 2e1 + 3e2 + 4e3 ∈ Z3, where

{e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} is standard basis of Z3.

x is a primitive element of Z-module Z3 as gcd(2, 4, 3) = 1. Now

x = 2e1 + 4e2 + 3e3 = 2y1 + 3e3, where y1 = e1 + 2e2, a primitive

element of Z3. Since y1 ∈ 〈e1, e2〉, we can find x2 ∈ 〈e1, e2〉 so that

〈y1, x2〉 = 〈e1, e2〉. Since y1 = e1 + 2e2 (a = 1, b = 2⇒ c = 1, d = −1),

by the above argument, x2 = −e1−e2. Thus, {y1, x2, e3} is a basis of Z3.

Now x = 2y1 + 3e3 ∈ 〈y1, e3〉, and x is primitive we have x1 = −y1− e3
(a = 2, b = 3, c = 1, d = −1) and 〈x, x1〉 = 〈y1, e3〉. Hence, {x, x1, x2}
is a required basis of Z3.

LECTURE − V

Proposition 0.15. Let M be a module over a division ring D of

finite rank n and let X = {x1, . . . , xn} be a subset of M \ {0}.
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(i) If X is a linearly independent set, then X is a basis of M .

(ii) If X generates M , then X is a basis of M .

Proof. (i) Since rank D(M) = n, the set X is a maximal linearly

independent subset of M . Hence, X is a basis of M .

(ii) Let Y = {y1, . . . , yk} be a maximal linearly independent subset

of X. The set Y is nonempty since every nonzero element of M is

linearly independent. We now claim that Y = X. Suppose on the

contrary that there is y ∈ X \Y . Then Y ∪{y} is a linearly dependent

set, and so for some r, r1, . . . , rk ∈ R, ry+r1y1+· · ·+rkyk = 0. If r = 0,

then r1, . . . , rk are all zero, and so Y ∪ {y} is linearly independent set.

This contradicts that Y is a maximal linearly independent subset of X.

Thus, r 6= 0 and y =
∑k

i=1(−r−1ri)yi ∈ 〈Y 〉. Therefore, X ⊆ 〈Y 〉 and

M = 〈Y 〉. But then rank D(M) = k, a contradiction.

Proposition 0.15(i) may not be true for finitely generated free mod-

ules over PIDs.

Example 0.16. Let M = Z ⊕ Z be a free Z-module of rank 2.

Then {(2, 0), (0, 1)} is a linearly independent subset of M and it does

not generate M as (1, 0) 6= r(2, 0) + s(0, 1) for any r, s ∈ Z.

However, statement (ii) of Proposition 0.15 is valid for such mod-

ules.

Proposition 0.17. Let R be a PID and let M be a finitely generated

free R-module of rank n. If X = {x1, . . . , xn} ⊆ M \ {0}, and X

generates M , then X is a basis.

Proof. Let {e1, . . . , en} be a standard basis of Rn. Then there is

an R-module homomorphism f : Rn → M such that f(ei) = xi for
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i = 1, . . . , n. Since M = 〈X〉, f is actually a R-module epimorphism.

Thus, there is a short exact sequence 0−→K−→Rn f−→M−→0 with

ker f = K. Since M is free, Rn ' M ⊕ K. By Theorem 0.2, K is

a free R-module and rank R(K) ≤ n. Therefore, n = rank R(Rn) =

rank R(M) + rank R(K). Hence, rank R(K) = 0, and K = {0}. Thus,

f is an isomorphism, and X is a basis of M .

LECTURE − V I

Theorem 0.18. (Invariant factor theorem for submodules)

Let R be a PID, let M be a free R-module and let N be a submodule of

M of finite rank n. Then there is a basis B of M , a subset {x1, . . . , xn}
of B and nonzero elements r1, . . . , rn of R such that {r1x1, . . . , rnxn}
is a basis of N and for each i, ri divides ri+1.

Proof not required.

Theorem 0.19. Let M be a nonzero finitely generated module over

a PID R. If µ(M) = n, then M is a direct sum of cyclic submodules:

M = Rx1 ⊕ · · · ⊕Rxn

such that Ann (xi) ⊇ Ann (xi+1) for i = 1, . . . , n−1, with Ann (x1) 6= R

and Ann (xn) = Ann (M).

Proof. Let M = 〈u1, . . . , un〉 and let f : Rn → M be defined by

f(a1,. . ., an) =
∑n

i=1 aiui. Then, f is an R-module epimorphism. If

K = ker f , then K is a free submodule of rank m and m ≤ n (The-

orem 0.2). Choose a basis {y1, . . . , yn} of Rn and nonzero elements

r1, . . . , rm of R such that {r1y1, . . . , rmym} is a basis of K and for each

i, ri|ri+1 (Theorem 0.18). If for each i, xi = f(yi), then {x1, . . . , xn}
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generates M . Since for any x ∈ M there is y ∈ Rn such that f(y) = x

and since y =
∑n

i=1 aiyi for some a1, . . . , an ∈ R, so x =
∑n

i=1 aixi.

Next, we show that M = Rx1⊕· · ·⊕Rxn. Suppose that
∑n

i=1 aixi =

0, ai ∈ R. Then
∑n

i=1 aiyi ∈ K, and so
∑n

i=1 aiyi =
∑m

j=1 bjrjyj, for

some b1, . . . , bm ∈ R. Since {y1, . . . , yn} is a basis of Rn, so ai = biri

for i = 1, . . . ,m and ai = 0 for i = m+ 1, . . . , n. Now for i = 1, . . . ,m,

aixi = f(aiyi) = f(biriyi) = 0, as riyi ∈ K. Hence, aixi = 0 for all i

and M = Rx1 ⊕ · · · ⊕Rxn.

If a ∈ Ann (xi), then axi = 0, and so f(ayi) = 0, that is, ayi ∈
K. If i > m, then ayi ∈ K implies that a = 0. Thus for i > m,

Ann (xi) = {0}. If i ≤ m, then ayi ∈ K implies that ayi =
∑m

j=1 bjrjyj,

for some b1, . . . , bm ∈ R, and so a = biri, that is, ri|a. Thus, Ann (xi) ⊆
〈ri〉. Since rixi = rif(yi) = f(riyi) = 0, so ri ∈ Ann (xi). Therefore,

Ann (xi) = 〈ri〉. Since for each i, ri|ri+1, so Ann (xi) ⊇ Ann (xi+1).

Finally, if m < n, then M has a torsion free element, and so

Ann (xn) = {0} = Ann (M). If m = n, then M is a torsion module and

ri|rn for all i, and so rnM = {0}. Thus, Ann (xn) = 〈rn〉 = Ann (M).

Now Ann (x1) 6= R, because otherwise Rx1 = 0 and µ(M) < n.

LECTURE − V II

Corollary 0.20. If M is a finitely generated module over a PID

R, then M = T (M)⊕ F , where F is a free module of finite rank.

Proof. By Theorem 0.19, M = Rx1 ⊕ · · · ⊕ Rxn with Ann (xi) ⊇
Ann (xi+1) for i = 1, . . . , n− 1. Let k be the least positive integer such

that Ann (xk+1) = {0}. Then Ann (xk+1) = · · · = Ann (xn) = {0}, and

so xk+1, . . . , xn are torsion free elements in M . Therefore, F = Rxk+1⊕
· · · ⊕Rxn is a free R-module of rank n− k. Let T = Rx1 ⊕ · · · ⊕Rxk.
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Then M = T ⊕ F and we claim that T (M) = T . Since Ann (x1) ⊇
Ann (xi) for i = 1, . . . , k and R is a PID, so if Ann (xk) = 〈a〉, then

ax = 0 for all x ∈ T . Thus, T ⊆ T (M). Conversely, if x ∈ T (M), then

x = y+z, for some y ∈ T and z ∈ F . Let r ∈ R\{0} such that rx = 0.

Then ry + rz = 0. Since M = T ⊕ F , so rz = 0. But F is torsion free,

and so z = 0.

The cyclic decomposition is, in general, not unique. If M is a free

R-module of rank n, where R is a PID, and if {x1, . . . , xn} is a basis

of M , then M = Rx1 ⊕ · · · ⊕ Rxn. So every basis will give a different

cyclic decomposition.

Proposition 0.21. Let R be a PID and let M and N be finitely gen-

erated R-modules. Then M and N are isomorphic modules if and only if

T (M) and T (N) are isomorphic and rank R(M/T (M)) = rank R(N/T (N)).

Proof. If f : M → N is an R-module isomorphism, then for x ∈M
with rx = 0, and r ∈ R \ {0}, we have rf(x) = f(rx) = 0, and so

f(x) ∈ T (N). Therefore, f(T (M)) ⊆ T (N). Similarly, for f−1, we have

f−1(T (N)) ⊆ T (M). Hence, f(T (M)) = T (N), and f |T (M) : T (M) →
T (N) is an R-module isomorphism. If η : N → N/T (N) is the canonical

R-module epimorphism, then η ◦ f : M → N/T (N) is an R-module

epimorphism and ker(η ◦ f) = T (M). Therefore, M/T (M) ' N/T (N),

and so rank R(M/T (M)) = rank R(N/T (N)).

Conversely, if rank R(M/T (M)) = rank R(N/T (N)), thenM/T (M) ∼=
N/T (N) and so M ∼= T (M)⊕M/T (M) ∼= T (N)⊕N/T (N) ∼= N .
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LECTURE − V III

Definition: If M is a finitely generated torsion module over a PID R

and M = Rx1⊕· · ·⊕Rxm with R 6= Ann (x1) ⊇ · · · ⊇ Ann (xm) 6= {0},
then the chain of annihilator ideals is called the chain of invariant

ideals of M . If Ann (xi) = 〈ri〉 for all i, then generators r1, . . . , rm are

such that ri|ri+1 for i = 1, . . . ,m − 1, called the invariant factors of

M .

There is another decomposition of a torsion module over a PID

using the prime factorization property of a PID.

Definition: Let R be an integral domain and let M be an R-module.

If p is a prime in R, then a p-primary component of M is

Mp = {x ∈M | pnx = 0 for some n ∈ N }.

Verify that Mp is a submodule of M . If M = Mp, then M is called a

p-primary module. We say that M is primary if M = Mp for some

prime p.

Theorem 0.22. A finitely generated torsion module over a PID is

a direct sum of primary submodules.

Proof. Let R be a PID and let M be a finitely generated torsion R-

module. If M = 〈y1, . . . , yn〉, then as M is torsion, Ann (yi) = 〈ai〉 for

each i, and so a1 · · · an is a nonzero element of Ann (M). Let Ann (M) =

〈r〉 and r = upk11 · · · p
kl
l be the unique factorization of r into a product

of nonassociate primes p1, . . . , pl with u a unit in R. Let

Mpi = {x ∈M | pni x = 0 for some n ∈ N }.
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If x ∈ Mpi and x 6= 0, then Ann (x) = 〈pki 〉 for some k ∈ Z+. Since

Ann (M) ⊆ Ann (x), so pki |r, and so k ≤ ki. Therefore, Mpi = {x ∈
M | pkii x = 0 }. Now we will prove that M = Mp1 ⊕ · · · ⊕ Mpl . If

qi = r/pkii , then gcd(q1, . . . , ql) = 1, and so b1q1 + · · ·+ blql = 1 for some

b1, . . . , bl ∈ R. Therefore, x = x1 + · · · + xl, where xi = biqix ∈ Mpi .

Thus, M = Mp1 + · · ·+Mpl . Let x1 + · · ·+xl = 0, where each xi ∈Mpi .

If xj 6= 0 for some j, then qj(x1 + · · · + xl) = 0 implies that qjxj = 0.

Since gcd(p
kj
j , qj) = 1, so ap

kj
j + bqj = 1, for some a, b ∈ R. Therefore,

xj = (ap
kj
j + bqj)xj = 0. Hence, M = Mp1 ⊕ · · · ⊕Mpl .

LECTURE − IX

Theorem 0.23. A finitely generated torsion module over a PID is

a direct sum of primary cyclic submodules.

Proof. Let R be a PID and let M be a finitely generated torsion

R-module. By Theorem 0.22, M = Mp1 ⊕ · · · ⊕ Mpl , a direct sum

of primary submodules. Now for i = 1, . . . , l, by Theorem 0.19, it

follows that Mpi = Rxi1⊕ · · · ⊕Rxini
such that R 6= Ann (xi1) ⊇ · · · ⊇

Ann (xini
) 6= {0}. Hence, M = ⊕l

i=1Mpi = ⊕l
i=1 ⊕

ni
j=1 Rxij.

Note that in the proof of Theorem 0.23 if we let Ann (xij) = 〈peiji 〉
for j = 1, . . . , ni and i = 1, . . . , l, then we have ei1 ≤ · · · ≤ eini

. The

set of primes { peiji | j = 1, . . . , ni, i = 1, . . . , l } are called the set of

elementary divisors of M .

Let M be a module over a PID R. An element a ∈M is said to have

order r if Ann (a) = 〈r〉. The element r is unique up to multiplication

by a unit. If a is of order r then the cyclic submodule Ra generated by

a is said to be cyclic of order r. Note that a ∈ M has order 0 if and
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only if Ra ' R, that is, Ra is a free R-module of rank one. Also a is

of order 1 (∈ R) if and only if a = 0.

Now we can combine all these results together to obtain the follow-

ing fundamental theorem for a finitely generated module over a PID.

Theorem 0.24. Let M be a finitely generated module over a PID

R.

(i) M is the direct sum of a free module F of finite rank and a finite

number of cyclic torsion modules. The torsion summands, if any, are

of orders r1, . . . , rl, where r1, . . . , rl are nonzero elements of R such

that ri|ri+1 for i = 1, . . . , l − 1. The rank of F and the list of ideals

〈r1〉, . . . , 〈rl〉 are uniquely determined by M .

(ii) M is the direct sum of a free submodule E of finite rank and a finite

number of cyclic torsion modules, if any, of orders pe11 , . . . , p
ek
k , where

p1, . . . , pk are primes in R (not necessarily distinct) and e1, . . . , ek are

positive integers (not necessarily distinct). The rank of E and the list

of ideals 〈pe11 〉, . . . , 〈p
ek
k 〉 are uniquely determined by M .

That’s all in UNIT-III students. I shall be coming back to you soon

with the fourth and the final unit.

Take care and stay safe


