
UNIT - 2

Instruction Formats (Zero, One, Two and Three

Address Instruction)

Computer perform task on the basis of instruction provided. A instruction in computer
comprises of groups called fields. These field contains different information as for
computers every thing is in 0 and 1 so each field has different significance on the basis
of which a CPU decide what so perform. The most common fields are:

 Operation field which specifies the operation to be performed like addition.
 Address field which contain the location of operand, i.e., register or memory

location.
 Mode field which specifies how operand is to be founded.

A instruction is of various length depending upon the number of addresses it contain.
Generally CPU organization are of three types on the basis of number of address fields:

1. Single Accumulator organization
2. General register organization
3. Stack organization

In first organization operation is done involving a special register called accumulator. In
second on multiple registers are used for the computation purpose. In third organization
the work on stack basis operation due to which it does not contain any address field. It
is not necessary that only a single organization is applied a blend of various
organization is mostly what we see generally.

On the basis of number of address instruction are classified as:

Note that we will use X = (A+B)*(C+D) expression to showcase the procedure.

1. Zero Address Instructions –

A stack based computer do not use address field in instruction.To evaluate a
expression first it is converted to revere Polish Notation i.e. Post fix Notation.

Expression: X = (A+B)*(C+D)

Postfixed : X = AB+CD+*

TOP means top of stack

M[X] is any memory location

PUSH A TOP = A

PUSH B TOP = B

ADD

TOP = A+B

PUSH C TOP = C

PUSH D TOP = D

ADD

TOP = C+D

MUL

TOP = (C+D)*(A+B)

POP X M[X] = TOP

2. One Address Instructions –
This use a implied ACCUMULATOR register for data manipulation.One operand is
in accumulator and other is in register or memory location.Implied means that the
CPU already know that one operand is in accumulator so there is no need to
specify it.

Expression: X = (A+B)*(C+D)

AC is accumulator

M[] is any memory location

M[T] is temporary location

LOAD A AC = M[A]

ADD B AC = AC + M[B]

STORE T M[T] = AC

LOAD C AC = M[C]

ADD D AC = AC + M[D]

MUL T AC = AC * M[T]

STORE X M[X] = AC

3. Two Address Instructions –
This is common in commercial computers.Here two address can be specified in the
instruction.Unlike earlier in one address instruction the result was stored in
accumulator here result cab be stored at different location rather than just
accumulator, but require more number of bit to represent address.

Here destination address can also contain operand.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

MOV R2, C R2 = C

ADD R2, D R2 = R2 + D

MUL R1, R2 R1 = R1 * R2

MOV X, R1 M[X] = R1

4. Three Address Instructions –
This has three address field to specify a register or a memory location. Program
created are much short in size but number of bits per instruction increase. These
instructions make creation of program much easier but it does not mean that
program will run much faster because now instruction only contain more
information but each micro operation (changing content of register, loading
address in address bus etc.) will be performed in one cycle only.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

Computer Organization | Different Instruction Cycles

Registers Involved In Each Instruction Cycle:

 Memory address registers(MAR) : It is connected to the address lines of the system bus.
It specifies the address in memory for a read or write operation.

 Memory Buffer Register(MBR) : It is connected to the data lines of the system bus. It
contains the value to be stored in memory or the last value read from the memory.

 Program Counter(PC) : Holds the address of the next instruction to be fetched.
 Instruction Register(IR) : Holds the last instruction fetched.

The Instruction Cycle –

Each phase of Instruction Cycle can be decomposed into a sequence of elementary micro-

operations. In the above examples, there is one sequence each for the Fetch, Indirect, Execute

and Interrupt Cycles.

The Indirect Cycle is always followed by the Execute Cycle. The Interrupt Cycle is
always followed by the Fetch Cycle. For both fetch and execute cycles, the next cycle
depends on the state of the system.

We assumed a new 2-bit register called Instruction Cycle Code (ICC). The ICC
designates the state of processor in terms of which portion of the cycle it is in:-
00 : Fetch Cycle
01 : Indirect Cycle
10 : Execute Cycle
11 : Interrupt Cycle

At the end of the each cycles, the ICC is set appropriately.The above flowchart
of Instruction Cycle describes the complete sequence of micro-operations, depending
only on the instruction sequence and the interrupt pattern(this is a simplified example).
The operation of the processor is described as the performance of a sequence of micro-
operation.
Different Instruction Cycles:

1. The Fetch Cycle –
At the beginning of the fetch cycle, the address of the next instruction to be executed is in
the Program Counter(PC).

Step 1: The address in the program counter is moved to the memory address
register(MAR), as this is the only register which is connected to address lines of
the system bus.

Step 2: The address in MAR is placed on the address bus, now the control unit
issues a READ command on the control bus, and the result appears on the data
bus and is then copied into the memory buffer register(MBR). Program counter is
incremented by one, to get ready for the next instruction.(These two action can be
performed simultaneously to save time)

Step 3: The content of the MBR is moved to the instruction register(IR).

Thus, a simple Fetch Cycle consist of three steps and four micro-operation.
Symbolically, we can write these sequence of events as follows:-

Here ‘I’ is the instruction length. The notations (t1, t2, t3) represents successive
time units. We assume that a clock is available for timing purposes and it emits
regularly spaced clock pulses. Each clock pulse defines a time unit. Thus, all time
units are of equal duration. Each micro-operation can be performed within the time
of a single time unit.
First time unit: Move the contents of the PC to MAR.
Second time unit: Move contents of memory location specified by MAR to MBR.
Increment content of PC by I.
Third time unit: Move contents of MBR to IR.
Note: Second and third micro-operations both take place during the second time
unit.

2. The Indirect Cycles –

Once an instruction is fetched, the next step is to fetch source operands. Source
Operand is being fetched by indirect addressing(it can be fetched by
any addressing mode, here its done by indirect addressing). Register-based
operands need not be fetched. Once the opcode is executed, a similar process
may be needed to store the result in main memory. Following micro-
operations takes place:-

Step 1: The address field of the instruction is transferred to the MAR. This is used
to fetch the address of the operand.
Step 2: The address field of the IR is updated from the MBR.(So that it now
contains a direct addressing rather than indirect addressing)
Step 3: The IR is now in the state, as if indirect addressing has not been occurred.

Note: Now IR is ready for the execute cycle, but it skips that cycle for a moment to
consider the Interrupt Cycle .

3. The Execute Cycle

The other three cycles(Fetch, Indirect and Interrupt) are simple and predictable.
Each of them requires simple, small and fixed sequence of micro-operation. In
each case same micro-operation are repeated each time around.
Execute Cycle is different from them. Like, for a machine with N different opcodes
there are N different sequence of micro-operations that can occur.
Lets take an hypothetical example :-
consider an add instruction:

Here, this instruction adds the content of location X to register R. Corresponding
micro-operation will be:-

We begin with the IR containing the ADD instruction.
Step 1: The address portion of IR is loaded into the MAR.
Step 2: The address field of the IR is updated from the MBR, so the reference

memory location is read.
Step 3: Now, the contents of R and MBR are added by the ALU.

Lets take a complex example :-

Here, the content of location X is incremented by 1. If the result is 0, the next
instruction will be skipped. Corresponding sequence of micro-operation will be :-

Here, the PC is incremented if (MBR) = 0. This test (is MBR equal to zero or not)
and action (PC is incremented by 1) can be implemented as one micro-operation.
Note : This test and action micro-operation can be performed during the same time
unit during which the updated value MBR is stored back to memory.

4. The Interrupt Cycle:
At the completion of the Execute Cycle, a test is made to determine whether any enabled
interrupt has occurred or not. If an enabled interrupt has occurred then Interrupt Cycle
occurs. The natare of this cycle varies greatly from one machine to another.
Lets take a sequence of micro-operation:-

Step 1: Contents of the PC is transferred to the MBR, so that they can be saved for
return.
Step 2: MAR is loaded with the address at which the contents of the PC are to be
saved.
PC is loaded with the address of the start of the interrupt-processing routine.
Step 3: MBR, containing the old value of PC, is stored in memory.

Note: In step 2, two actions are implemented as one micro-operation. However,
most processor provide multiple types of interrupts, it may take one or more micro-
operation to obtain the save_address and the routine_address before they are
transferred to the MAR and PC respectively.

Difference between Horizontal and Vertical micro-

programmed Control Unit

Basically, control unit (CU) is the engine that runs the entire functions of a computer
with the help of control signals in the proper sequence. In the micro-
programmed control unit approach, the control signals that are associated with the
operations are stored in special memory units. It is convenient to think of sets of control
signals that cause specific micro-operations to occur as being “microinstructions”. The
sequences of microinstructions could be stored in an internal “control” memory.
Micro-programmed control unit can be classified into two types based on the type of
Control Word stored in the Control Memory, viz., Horizontal micro-programmed control
unit and Vertical micro-programmed control unit.

 In Horizontal micro-programmed control unit, the control signals are represented in the
decoded binary format, i.e., 1 bit/CS. Here ‘n’ control signals require n bit encoding. On the
other hand.

 In Vertical micro-programmed control unit, the control signals are represented in the
encoded binary format. Here ‘n’ control signals require log2n bit encoding.

Comparison between Horizontal micro-programmed control unit and Vertical micro-
programmed control unit:

HORIZONTAL Μ-PROGRAMMED CU VERTICAL Μ-PROGRAMMED CU

It supports longer control word. It supports shorter control word.

It allows higher degree of parallelism.

If degree is n, then n Control Signals

are enabled at a time.

It allows low degree of parallelism i.e., degree of

parallelism is either 0 or 1.

No additional hardware is required.

Additional hardware in the form of decoders are

required to generate control signals.

It is faster than Vertical micro-

programmed control unit.

it is slower than Horizontal micro-programmed

control unit.

It is less flexible than Vertical micro-

programmed control unit.

It is more flexible than Horizontal micro-

programmed control unit.

Horizontal micro-programmed control

unit uses horizontal microinstruction,

where every bit in the control field

attaches to a control line.

Vertical micro-programmed control unit uses

vertical microinstruction, where a code is used

for each action to be performedand thedecoder

translates this code into individual control

HORIZONTAL Μ-PROGRAMMED CU VERTICAL Μ-PROGRAMMED CU

signals.

Horizontal micro-programmed control

unit makes less use of ROM encoding

than vertical micro-programmed

control unit.

Vertical micro-programmed control unit makes

more use of ROM encoding to reduce the length

of the control word.

Example: Consider a hypothetical Control Unit which supports 4 k words. The
Hardware contains 64 control signals and 16 Flags. What is the size of control word
used in bits and control memory in byte using:
a) Horizontal Programming
b) Vertical programming
Solution:

a)For Horizontal

64 bits for 64 signals

Control Word Size = 4 + 64 + 12 = 80 bits

Control Memory = 4 kW = ((4* 80) / 8) = 40 kByte

a)For Vertical

6 bits for 64 signals i.e log264

Control Word Size = 4 + 6 + 12 = 22 bits

Control Memory = 4 kW = ((4* 22) / 8) = 11 kByte

Introduction of Control Unit and its Design

Control Unit is the part of the computer’s central processing unit (CPU), which directs
the operation of the processor. It was included as part of the Von Neumann
Architecture by John von Neumann. It is the responsibility of the Control Unit to tell the
computer’s memory, arithmetic/logic unit and input and output devices how to respond
to the instructions that have been sent to the processor. It fetches internal instructions of
the programs from the main memory to the processor instruction register, and based on
this register contents, the control unit generates a control signal that supervises the
execution of these instructions.
A control unit works by receiving input information to which it converts into control
signals, which are then sent to the central processor. The computer’s processor then
tells the attached hardware what operations to perform. The functions that a control unit
performs are dependent on the type of CPU because the architecture of CPU varies
from manufacturer to manufacturer. Examples of devices that require a CU are:

 Control Processing Units(CPUs)
 Graphics Processing Units(GPUs)

Functions of the Control Unit –
1. It coordinates the sequence of data movements into, out of, and between a processor’s

many sub-units.
2. It interprets instructions.
3. It controls data flow inside the processor.
4. It receives external instructions or commands to which it converts to sequence of control

signals.
5. It controls many execution units(i.e. ALU, data buffers and registers) contained within a

CPU.
6. It also handles multiple tasks, such as fetching, decoding, execution handling and storing

results.

Types of Control Unit –
There are two types of control units: Hardwired control unit and Microprogrammable
control unit.

1. Hardwired Control Unit –
In the Hardwired control unit, the control signals that are important for instruction execution
control are generated by specially designed hardware logical circuits, in which we can not
modify the signal generation method without physical change of the circuit structure. The
operation code of an instruction contains the basic data for control signal generation. In
the instruction decoder, the operation code is decoded. The instruction decoder
constitutes a set of many decoders that decode different fields of the instruction opcode.

As a result, few output lines going out from the instruction decoder obtains active
signal values. These output lines are connected to the inputs of the matrix that
generates control signals for executive units of the computer. This matrix
implements logical combinations of the decoded signals from the instruction
opcode with the outputs from the matrix that generates signals representing
consecutive control unit states and with signals coming from the outside of the
processor, e.g. interrupt signals. The matrices are built in a similar way as a
programmable logic arrays.

Control signals for an instruction execution have to be generated not in a single
time point but during the entire time interval that corresponds to the instruction
execution cycle. Following the structure of this cycle, the suitable sequence of
internal states is organized in the control unit.

A number of signals generated by the control signal generator matrix are sent back
to inputs of the next control state generator matrix. This matrix combines these
signals with the timing signals, which are generated by the timing unit based on the
rectangular patterns usually supplied by the quartz generator. When a new
instruction arrives at the control unit, the control units is in the initial state of new
instruction fetching. Instruction decoding allows the control unit enters the first
state relating execution of the new instruction, which lasts as long as the timing
signals and other input signals as flags and state information of the computer
remain unaltered. A change of any of the earlier mentioned signals stimulates the
change of the control unit state.

This causes that a new respective input is generated for the control signal
generator matrix. When an external signal appears, (e.g. an interrupt) the control
unit takes entry into a next control state that is the state concerned with the
reaction to this external signal (e.g. interrupt processing). The values of flags and
state variables of the computer are used to select suitable states for the instruction
execution cycle.

The last states in the cycle are control states that commence fetching the next
instruction of the program: sending the program counter content to the main
memory address buffer register and next, reading the instruction word to the
instruction register of computer. When the ongoing instruction is the stop
instruction that ends program execution, the control unit enters an operating
system state, in which it waits for a next user directive.

2. Microprogrammable control unit –
The fundamental difference between these unit structures and the structure of the
hardwired control unit is the existence of the control store that is used for storing words
containing encoded control signals mandatory for instruction execution.

In microprogrammed control units, subsequent instruction words are fetched into
the instruction register in a normal way. However, the operation code of each
instruction is not directly decoded to enable immediate control signal generation
but it comprises the initial address of a microprogram contained in the control
store.

 With a single-level control store:
In this, the instruction opcode from the instruction register is sent to the control store
address register. Based on this address, the first microinstruction of a microprogram
that interprets execution of this instruction is read to the microinstruction register.
This microinstruction contains in its operation part encoded control signals, normally
as few bit fields. In a set microinstruction field decoders, the fields are decoded. The
microinstruction also contains the address of the next microinstruction of the given
instruction microprogram and a control field used to control activities of the
microinstruction address generator.

The last mentioned field decides the addressing mode (addressing operation)
to be applied to the address embedded in the ongoing microinstruction. In
microinstructions along with conditional addressing mode, this address is
refined by using the processor condition flags that represent the status of
computations in the current program. The last microinstruction in the

instruction of the given microprogram is the microinstruction that fetches the
next instruction from the main memory to the instruction register.

 With a two-level control store:
In this, in a control unit with a two-level control store, besides the control memory for
microinstructions, a nano-instruction memory is included. In such a control unit,
microinstructions do not contain encoded control signals. The operation part of
microinstructions contains the address of the word in the nano-instruction memory,
which contains encoded control signals. The nano-instruction memory contains all
combinations of control signals that appear in microprograms that interpret the
complete instruction set of a given computer, written once in the form of nano-
instructions.

In this way, unnecessary storing of the same operation parts of
microinstructions is avoided. In this case, microinstruction word can be much
shorter than with the single level control store. It gives a much smaller size in
bits of the microinstruction memory and, as a result, a much smaller size of
the entire control memory. The microinstruction memory contains the control
for selection of consecutive microinstructions, while those control signals are
generated at the basis of nano-instructions. In nano-instructions, control
signals are frequently encoded using 1 bit/ 1 signal method that eliminates
decoding.

Memory Hierarchy Design and its Characteristics

In the Computer System Design, Memory Hierarchy is an enhancement to organize the
memory such that it can minimize the access time. The Memory Hierarchy was
developed based on a program behavior known as locality of references.The figure
below clearly demonstrates the different levels of memory hierarchy :

This Memory Hierarchy Design is divided into 2 main types:

1. External Memory or Secondary Memory –

Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage
devices which are accessible by the processor via I/O Module.

2. Internal Memory or Primary Memory –
Comprising of Main Memory, Cache Memory & CPU registers. This is directly
accessible by the processor.

We can infer the following characteristics of Memory Hierarchy Design from above
figure:

1. Capacity:
It is the global volume of information the memory can store. As we move from top
to bottom in the Hierarchy, the capacity increases.

2. Access Time:
It is the time interval between the read/write request and the availability of the data.
As we move from top to bottom in the Hierarchy, the access time increases.

3. Performance:
Earlier when the computer system was designed without Memory Hierarchy
design, the speed gap increases between the CPU registers and Main Memory
due to large difference in access time. This results in lower performance of the
system and thus, enhancement was required. This enhancement was made in the
form of Memory Hierarchy Design because of which the performance of the system
increases. One of the most significant ways to increase system performance is
minimizing how far down the memory hierarchy one has to go to manipulate data.

4. Cost per bit:
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e.
Internal Memory is costlier than External Memory.

Introduction to memory and memory units

Memories are made up of registers. Each register in the memory is one storage
location. Storage location is also called as memory location. Memory locations are
identified using Address. The total number of bit a memory can store is its capacity.
A storage element is called a Cell. Each register is made up of storage element in
which one bit of data is stored. The data in a memory are stored and retrieved by the
process called writing and reading respectively.

A word is a group of bits where a memory unit stores binary information. A word with
group of 8 bits is called a byte.
A memory unit consists of data lines, address selection lines, and control lines that
specify the direction of transfer. The block diagram of a memory unit is shown below:

Data lines provide the information to be stored in memory. The control inputs specify the
direction transfer. The k-address lines specify the word chosen.

When there are k address lines, 2k memory word can be accessed.
Refer for RAM and ROM, different types of RAM, cache memory, and secondary
memory.

Difference between Byte Addressable Memory and

Word Addressable Memory

Memory is a storage component in the Computer used to store application programs.
The Memory Chip is divided into equal parts called as “CELLS”. Each Cell is uniquely
identified by a binary number called as “ADDRESS”. For example, the Memory Chip
configuration is represented as ’64 K x 8′ as shown in the figure below.

The following information can be obtained from the memory chip representation shown
above:

1. Data Space in the Chip = 64K X 8
2. Data Space in the Cell = 8 bits

3. Address Space in the Chip = =16 bits
Now we can clearly state the difference between Byte Addressable Memory & Word
Addressable Memory.

BYTE ADDRESSABLE MEMORY WORD ADDRESSABLE MEMORY

When the data space in the cell = 8

bits then the corresponding address

space is called as Byte Address.

When the data space in the cell = word

length of CPU then the

corresponding address space is called

as Word Address.

Based on this data storage i.e. Bytewise

storage, the memory chip configuration

is named as Byte Addressable

Memory.

Based on this data storage i.e. Wordwise

storage, the memory chip configuration is

named as Word Addressable Memory.

For eg. : 64K X 8 chip has 16 bit

Address and cell size = 8 bits (1

Byte) which means that in this chip,

data is stored byte by byte.

For eg. : For a 16-bit CPU, 64K X 16 chip

has 16 bit Address & cell size = 16 bits

(Word Length of CPU) which means that in

this chip, data is stored word by word.

NOTE :
i) The most important point to be noted is that in case of either of Byte Address or Word
Address, the address size can be any number of bits (depends on the number of cells in
the chip) but the cell size differs in each case.
ii)The default memory configuration in the Computer design is Byte Addressable .

Random Access Memory (RAM) and Read Only

Memory (ROM)

Memory is the most essential element of a computing system because without it
computer can’t perform simple tasks. Computer memory is of two basic type – Primary
memory(RAM and ROM) and Secondary memory(hard drive,CD,etc.). Random Access
Memory (RAM) is primary-volatile memory and Read Only Memory (ROM) is primary-
non-volatile memory.

1. Random Access Memory (RAM) –

 It is also called as read write memory or the main memory or the primary memory.
 The programs and data that the CPU requires during execution of a program are

stored in this memory.
 It is a volatile memory as the data loses when the power is turned off.
 RAM is further classified into two types- SRAM (Static Random Access

Memory) and DRAM (Dynamic Random Access Memory).

2. Read Only Memory (ROM) –
 Stores crucial information essential to operate the system, like the program

essential to boot the computer.
 It is not volatile.
 Always retains its data.
 Used in embedded systems or where the programming needs no change.
 Used in calculators and peripheral devices.
 ROM is further classified into 4 types- ROM, PROM, EPROM, and EEPROM.

Types of Read Only Memory (ROM) –
1. PROM (Programmable read-only memory) – It can be programmed by user.

Once programmed, the data and instructions in it cannot be changed.
2. EPROM (Erasable Programmable read only memory) – It can be

reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it,
erase all the previous data.

3. EEPROM (Electrically erasable programmable read only memory) – The data
can be erased by applying electric field, no need of ultra violet light. We can erase
only portions of the chip.

Different Types of RAM (Random Access Memory)

RAM(Random Access Memory) is a part of computer’s Main Memory which is directly
accessible by CPU. RAM is used to Read and Write data into it which is accessed by
CPU randomly. RAM is volatile in nature, it means if the power goes off, the stored
information is lost. RAM is used to store the data that is currently processed by the
CPU. Most of the programs and data that are modifiable are stored in RAM.

Integrated RAM chips are available in two form:

1. SRAM(Static RAM)
2. DRAM(Dynamic RAM)

The block diagram of RAM chip is given below.

SRAM
The SRAM memories consist of circuits capable of retaining the stored information as
long as the power is applied. That means this type of memory requires constant power.
SRAM memories are used to build Cache Memory.

SRAM Memory Cell: Static memories(SRAM) are memories that consist of circuits
capable of retaining their state as long as power is on. Thus this type of memories is
called volatile memories. The below figure shows a cell diagram of SRAM. A latch is
formed by two inverters connected as shown in the figure. Two transistors T1 and T2
are used for connecting the latch with two bit lines. The purpose of these transistors is
to act as switches that can be opened or closed under the control of the word line,
which is controlled by the address decoder. When the word line is at 0-level, the
transistors are turned off and the latch remains its information. For example, the cell is
at state 1 if the logic value at point A is 1 and at point B is 0. This state is retained as
long as the word line is not activated.

For Read operation, the word line is activated by the address input to the address

decoder. The activated word line closes both the transistors (switches) T1 and T2. Then
the bit values at points A and B can transmit to their respective bit lines. The sense/write

circuit at the end of the bit lines sends the output to the processor.
For Write operation, the address provided to the decoder activates the word line to
close both the switches. Then the bit value that to be written into the cell is provided
through the sense/write circuit and the signals in bit lines are then stored in the cell.

DRAM
DRAM stores the binary information in the form of electric charges that applied to
capacitors. The stored information on the capacitors tend to lose over a period of time
and thus the capacitors must be periodically recharged to retain their usage. The main
memory is generally made up of DRAM chips.

DRAM Memory Cell: Though SRAM is very fast, but it is expensive because of its
every cell requires several transistors. Relatively less expensive RAM is DRAM, due to
the use of one transistor and one capacitor in each cell, as shown in the below figure.,

where C is the capacitor and T is the transistor. Information is stored in a DRAM cell in
the form of a charge on a capacitor and this charge needs to be periodically recharged.
For storing information in this cell, transistor T is turned on and an appropriate voltage is
applied to the bit line. This causes a known amount of charge to be stored in the
capacitor. After the transistor is turned off, due to the property of the capacitor, it starts
to discharge. Hence, the information stored in the cell can be read correctly only if it is
read before the charge on the capacitors drops below some threshold value.

Types of DRAM
There are mainly 5 types of DRAM:

1. Asynchronous DRAM (ADRAM): The DRAM described above is the
asynchronous type DRAM. The timing of the memory device is controlled
asynchronously. A specialized memory controller circuit generates the necessary
control signals to control the timing. The CPU must take into account the delay in
the response of the memory.

2. Synchronous DRAM (SDRAM): These RAM chips’ access speed is directly
synchronized with the CPU’s clock. For this, the memory chips remain ready for
operation when the CPU expects them to be ready. These memories operate at
the CPU-memory bus without imposing wait states. SDRAM is commercially
available as modules incorporating multiple SDRAM chips and forming the
required capacity for the modules.

3. Double-Data-Rate SDRAM (DDR SDRAM): This faster version of SDRAM
performs its operations on both edges of the clock signal; whereas a standard
SDRAM performs its operations on the rising edge of the clock signal. Since they
transfer data on both edges of the clock, the data transfer rate is doubled. To
access the data at high rate, the memory cells are organized into two groups. Each
group is accessed separately.

4. Rambus DRAM (RDRAM): The RDRAM provides a very high data transfer rate
over a narrow CPU-memory bus. It uses various speedup mechanisms, like

synchronous memory interface, caching inside the DRAM chips and very fast
signal timing. The Rambus data bus width is 8 or 9 bits.

5. Cache DRAM (CDRAM): This memory is a special type DRAM memory with an
on-chip cache memory (SRAM) that acts as a high-speed buffer for the main
DRAM.

Difference between SRAM and DRAM
Below table lists some of the differences between SRAM and DRAM:

2D and 2.5D Memory organization

Internal structure of Memory either RAM or ROM is made of memory cells which
contains a memory bit. A group of 8 bits makes a word.The memory is formed in
multidimensional array of rows and columns. In which each cell stores a bit and a
complete row contains a word. A memory simply can be divided in this below form.
2n = N
where,n is the no. of address lines and N is the total memory in bytes.
There will be 2n words.
2D Memory organization –
In 2D organization memory is divided in the form of rows and columns(Matrix) . Each
row contains a word, now in this memory organization there is a decoder. A decoder is
a combinational circuit which contains n input lines and 2n output lines. One of the
output line will select the row which address is contained in the MAR and the word
which is represented by that row that will get selected and either read or write through
the data lines.

2.5D Memory organization –
In 2.5D Organization the scenario is the same but we have two different decoders one
is column decoder and another is row decoder. Column decoder used to select the
column and row decoder is used to select the row. Address from the MAR will go in
decoders’ input. Decoders will select the respective cell through the bit outline, the data
from that location will be read or through the bit in line data will be written at that
memory location.

Read and Write Operations –
1. If the select line is in Read mode then the Word/bit which is represented by the

MAR that will be coming out to the data lines and get read.
2. If the select line is in write mode then the data from memory data register (MDR)

will go to the respective cell which is addressed by the memory address register
(MAR).

3. With the help of the select line the data will get selected where the read and write
operations will take place.

Comparison between 2D & 2.5D Organizations –
1. In 2D organization hardware is fixed but in 2.5D hardware changes.
2. 2D Organization requires more no. of Gates while 2.5D requires less no. of Gates.
3. 2D is more complex in comparison to the 2.5D Organization.
4. Error correction is not possible in the 2D organization but In 2.5D error correction is

easy.
5. 2D is more difficult to fabricate in comparison to the 2.5D organization.

Cache Memory

Cache Memory is a special very high-speed memory. It is used to speed up and
synchronizing with high-speed CPU. Cache memory is costlier than main memory or
disk memory but economical than CPU registers. Cache memory is an extremely fast
memory type that acts as a buffer between RAM and the CPU. It holds frequently
requested data and instructions so that they are immediately available to the CPU when
needed.
Cache memory is used to reduce the average time to access data from the Main
memory. The cache is a smaller and faster memory which stores copies of the data
from frequently used main memory locations. There are various different independent
caches in a CPU, which store instructions and data.

Levels of memory:
 Level 1 or Register –

It is a type of memory in which data is stored and accepted that are immediately stored in
CPU. Most commonly used register is accumulator, Program counter, address register etc.

 Level 2 or Cache memory –
It is the fastest memory which has faster access time where data is temporarily stored for
faster access.

 Level 3 or Main Memory –
It is memory on which computer works currently. It is small in size and once power is off
data no longer stays in this memory.

 Level 4 or Secondary Memory –
It is external memory which is not as fast as main memory but data stays permanently in
this memory.

Cache Performance:
When the processor needs to read or write a location in main memory, it first checks for
a corresponding entry in the cache.
 If the processor finds that the memory location is in the cache, a cache hit has occurred

and data is read from cache

 If the processor does not find the memory location in the cache, a cache miss has
occurred. For a cache miss, the cache allocates a new entry and copies in data from main
memory, then the request is fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity
called Hit ratio.
Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, higher associativity,
reduce miss rate, reduce miss penalty, and reduce Reduce the time to hit in the cache.

Cache Mapping:
There are three different types of mapping used for the purpose of cache memory which
are as follows: Direct mapping, Associative mapping, and Set-Associative mapping.
These are explained below.

1. Direct Mapping –
The simplest technique, known as direct mapping, maps each block of main memory into
only one possible cache line. or
In Direct mapping, assigne each memory block to a specific line in the cache. If a line is
previously taken up by a memory block when a new block needs to be loaded, the old
block is trashed. An address space is split into two parts index field and a tag field. The
cache is used to store the tag field whereas the rest is stored in the main memory. Direct
mapping`s performance is directly proportional to the Hit ratio.

2. i = j modulo m

3. where

4. i=cache line number

5. j= main memory block number

m=number of lines in the cache

For purposes of cache access, each main memory address can be viewed as
consisting of three fields. The least significant w bits identify a unique word or byte
within a block of main memory. In most contemporary machines, the address is at
the byte level. The remaining s bits specify one of the 2s blocks of main memory.
The cache logic interprets these s bits as a tag of s-r bits (most significant portion)
and a line field of r bits. This latter field identifies one of the m=2r lines of the
cache.

6. Associative Mapping –
In this type of mapping, the associative memory is used to store content and addresses of
the memory word. Any block can go into any line of the cache. This means that the word id
bits are used to identify which word in the block is needed, but the tag becomes all of the
remaining bits. This enables the placement of any word at any place in the cache memory.
It is considered to be the fastest and the most flexible mapping form.

7. Set-associative Mapping –
This form of mapping is an enhanced form of direct mapping where the drawbacks of
direct mapping are removed. Set associative addresses the problem of possible thrashing
in the direct mapping method. It does this by saying that instead of having exactly one line
that a block can map to in the cache, we will group a few lines together creating a set.
Then a block in memory can map to any one of the lines of a specific set..Set-associative
mapping allows that each word that is present in the cache can have two or more words in
the main memory for the same index address. Set associative cache mapping combines
the best of direct and associative cache mapping techniques.

In this case, the cache consists of a number of sets, each of which consists of a
number of lines. The relationships are

m = v * k

i= j mod v

where

i=cache set number

j=main memory block number

v=number of sets

m=number of lines in the cache number of sets

k=number of lines in each set

Application of Cache Memory –
1. Usually, the cache memory can store a reasonable number of blocks at any given

time, but this number is small compared to the total number of blocks in the main
memory.

2. The correspondence between the main memory blocks and those in the cache is
specified by a mapping function.

Types of Cache –
 Primary Cache –

A primary cache is always located on the processor chip. This cache is small and its
access time is comparable to that of processor registers.

 Secondary Cache –
Secondary cache is placed between the primary cache and the rest of the memory. It
is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also housed on
the processor chip.

Locality of reference –
Since size of cache memory is less as compared to main memory. So to check
which part of main memory should be given priority and loaded in cache is decided
based on locality of reference.
Types of Locality of reference

5. Spatial Locality of reference
This says that there is a chance that element will be present in the close proximity to

the reference point and next time if again searched then more close proximity to the
point of reference.

6. Temporal Locality of reference
In this Least recently used algorithm will be used. Whenever there is page fault
occurs within a word will not only load word in main memory but complete page fault
will be loaded because spatial locality of reference rule says that if you are referring
any word next word will be referred in its register that’s why we load complete page
table so the complete block will be loaded.

 Practice Questions –
Que-1: A computer has a 256 KByte, 4-way set associative, write back data cache
with the block size of 32 Bytes. The processor sends 32-bit addresses to the cache
controller. Each cache tag directory entry contains, in addition, to address tag, 2
valid bits, 1 modified bit and 1 replacement bit. The number of bits in the tag field
of an address is
(A) 11

(B) 14

(C) 16

(D) 27

Answer: (C)

Que-2: Consider the data given in previous question. The size of the cache tag
directory is
(A) 160 Kbits

(B) 136 bits

(C) 40 Kbits

(D) 32 bits

Answer: (A)

Que-3: An 8KB direct-mapped write-back cache is organized as multiple blocks,
each of size 32-bytes. The processor generates 32-bit addresses. The cache
controller maintains the tag information for each cache block comprising of the
following.
1 Valid bit

1 Modified bit

As many bits as the minimum needed to identify the memory block mapped in the
cache. What is the total size of memory needed at the cache controller to store
meta-data (tags) for the cache?

(A) 4864 bits

(B) 6144 bits

(C) 6656 bits

(D) 5376 bits

Answer: (D)

Multilevel Cache Organization

Cache is a random access memory used by the CPU to reduce the average time taken
to access memory.
Multilevel Caches is one of the techniques to improve Cache Performance by reducing
the “MISS PENALTY”. Miss Penalty refers to the extra time required to bring the data
into cache from the Main memory whenever there is a “miss” in cache .
For clear understanding let us consider an example where CPU requires 10 Memory
References for accessing the desired information and consider this scenario in the
following 3 cases of System design :
Case 1 : System Design without Cache Memory

Here the CPU directly communicates with the main memory and no caches are
involved.
In this case, the CPU needs to access the main memory 10 times to access the desired
information.

Case 2 : System Design with Cache Memory

Here the CPU at first checks whether the desired data is present in the Cache Memory
or not i.e. whether there is a “hit” in cache or “miss” in cache. Suppose there are 3
miss in Cache Memory then the Main Memory will be accessed only 3 times. We can
see that here the miss penalty is reduced because the Main Memory is accessed a
lesser number of times than that in the previous case.
Case 3 : System Design with Multilevel Cache Memory

Here the Cache performance is optimized further by introducing multilevel Caches. As
shown in the above figure, we are considering 2 level Cache Design. Suppose there
are 3 miss in the L1 Cache Memory and out of these 3 misses there are 2 miss in the
L2 Cache Memory then the Main Memory will be accessed only 2 times. It is clear that
here the Miss Penalty is reduced considerably than that in the previous case thereby
improving the Performance of Cache Memory.
NOTE :
We can observe from the above 3 cases that we are trying to decrease the number of
Main Memory References and thus decreasing the Miss Penalty in order to improve the
overall System Performance. Also, it is important to note that in the Multilevel Cache
Design, L1 Cache is attached to the CPU and it is small in size but fast. Although, L2
Cache is attached to the Primary Cache i.e. L1 Cache and it is larger in size and slower
but still faster than the Main Memory.
Effective Access Time = Hit rate * Cache access time

 + Miss rate * Lower level access time

Average access Time For Multilevel Cache:(Tavg)
Tavg = H1 * C1 + (1 – H1) * (H2 * C2 +(1 – H2) *M)

where
H1 is the Hit rate in the L1 caches.
H2 is the Hit rate in the L2 cache.
C1 is the Time to access information in the L1 caches.
C2 is the Miss penalty to transfer information from the L2 cache to an L1 cache.
M is the Miss penalty to transfer information from the main memory to the L2 cache.

Example:
Find the Average memory access time for a processor with a 2 ns clock cycle time, a
miss rate of 0.04 misses per instruction, a miss penalty of 25 clock cycles, and a cache
access time (including hit detection) of 1 clock cycle. Also, assume that the read and
write miss penalties are the same and ignore other write stalls.
Solution:
Average Memory access time(AMAT)= Hit Time + Miss Rate * Miss Penalty.

Hit Time = 1 clock cycle (Hit time = Hit rate * access time) but here Hit time is directly
given so,

Miss rate = 0.04

Miss Penalty= 25 clock cycle (this is time taken by the above level of memory after the
hit)

so, AMAT= 1 + 0.04 * 25
AMAT= 2 clock cycle

according to question 1 clock cycle = 2 ns

AMAT = 4ns

Locality of Reference and Cache Operation in Cache

Memory

Locality of reference refers to a phenomenon in which a computer program tends to
access same set of memory locations for a particular time period. In other
words, Locality of Reference refers to the tendency of the computer program to
access instructions whose addresses are near one another. The property of locality of
reference is mainly shown by loops and subroutine calls in a program.

1. In case of loops in program control processing unit repeatedly refers to the set of
instructions that constitute the loop.

2. In case of subroutine calls, every time the set of instructions are fetched from memory.
3. References to data items also get localized that means same data item is referenced

again and again.

In the above figure, you can see that the CPU wants to read or fetch the data or
instruction. First, it will access the cache memory as it is near to it and provides very
fast access. If the required data or instruction is found, it will be fetched. This situation is
known as a cache hit. But if the required data or instruction is not found in the cache
memory then this situation is known as a cache miss. Now the main memory will be
searched for the required data or instruction that was being searched and if found will
go through one of the two ways:

1. First way is that the CPU should fetch the required data or instruction and use it and that’s
it but what, when the same data or instruction is required again.CPU again has to access
the same main memory location for it and we already know that main memory is the
slowest to access.

2. The second way is to store the data or instruction in the cache memory so that if it is
needed soon again in the near future it could be fetched in a much faster way.

Cache Operation:
It is based on the principle of locality of reference. There are two ways with which data
or instruction is fetched from main memory and get stored in cache memory. These two
ways are the following:

1. Temporal Locality –
Temporal locality means current data or instruction that is being fetched may be needed

soon. So we should store that data or instruction in the cache memory so that we can
avoid again searching in main memory for the same data.

When CPU accesses the current main memory location for reading required data
or instruction, it also gets stored in the cache memory which is based on the fact
that same data or instruction may be needed in near future. This is known as
temporal locality. If some data is referenced, then there is a high probability that it
will be referenced again in the near future.

2. Spatial Locality –
Spatial locality means instruction or data near to the current memory location that is being
fetched, may be needed soon in the near future. This is slightly different from the temporal
locality. Here we are talking about nearly located memory locations while in temporal
locality we were talking about the actual memory location that was being fetched.

Cache Performance:
The performance of the cache is measured in terms of hit ratio. When CPU refers to
memory and find the data or instruction within the Cache Memory, it is known as cache
hit. If the desired data or instruction is not found in the cache memory and CPU refers to
the main memory to find that data or instruction, it is known as a cache miss.
Hit + Miss = Total CPU Reference

Hit Ratio(h) = Hit / (Hit+Miss)

Average access time of any memory system consists of two levels: Cache and Main
Memory. If Tc is time to access cache memory and Tm is the time to access main
memory then we can write:
Tavg = Average time to access memory

Tavg = h * Tc + (1-h)*(Tm + Tc)

