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1. Introduction

The analysis of human gene mapping data has generated many challenging
computational problems. The challenges arise because in most gene-mapping
studies the DNA sequence of each individual is only measured imperfectly. For
some individuals, these measurements are the result of genotyping assays at
specific loci or chromosomal regions. For other individuals, there might be even
greater uncertainty: their DNA sequence might only be measured indirectly through
information obtained on the genotypes of their relatives. In either situation, there
can be a very large number of DNA sequences compatible with observed data, and
identifying the most likely DNA sequence configuration(s) might require many
individuals to be considered jointly.

2. Analysis of human pedigrees

To survey algorithmic challenges in gene mapping, we will focus on the analysis of
pedigree data. These data are often used in linkage studies of discrete or quantitative
traits, in the construction of genetic linkage maps (see Article 54, Sex-specific
maps and consequences for linkage mapping, Volume 1), in quality assessments
for genotyping data, or to identify individual haplotypes. Maximum likelihood
can solve these and other problems related to the analysis of pedigree data, and
many algorithms have been developed to calculate likelihoods for human pedigrees.
Briefly, the likelihood of interest can be written as:
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This likelihood involves a nested summation over the set of possible haplo-
genotypes, Gi , for each individual. The likelihood of each possible configuration
is a product with factors denoting (1) the probability of observed phenotypes
conditional on each individual haplo-genotype, P (Xi |Gi); (2) the probability of
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founder haplo-genotypes, P(Gfounder); and (3) the probability of offspring haplo-
genotypes conditional on parental haplo-genotypes, P (Go|Gf , Gm), calculated for
all parent-offspring triples.

Direct evaluation of this nested sum is only possible in the simplest of cases,
involving a very small number of loci and individuals. The number of summation
terms to be evaluated increases exponentially with both the number of individuals
in the pedigree (which add extra levels to the nested sum) and the number of
markers being considered (which increase the number of possible haplo-genotypes
for each individual).

In early gene-mapping studies, investigators painstakingly evaluated likelihoods
for each pedigree examined, using careful algebra to factor the calculation and
identify repeated terms. Gene mapping was a new field, laboratory methods were
rudimentary allowing the use of only small amounts of data, and this laborious
approach was adequate.

3. The Elston–Stewart and related algorithms

Elston and Stewart (1971) developed the first general algorithm for rapid pedigree
likelihood calculation. They showed that the likelihood could be updated gradually,
one nuclear family at a time. Each update required iterating over possible genotypes
for individuals in the nuclear family, resulting in a relatively small nested sum.
Their strategy proved highly effective, and their algorithm is still the method
of choice for the analysis of large, noninbred pedigrees. Their method was later
implemented in LIPED, the first widely available automated software for pedigree
likelihood calculation (Ott, 1976), which played a crucial role in enabling the
gene-mapping revolution.

Many improvements to the basic algorithm have been proposed. For example,
Cannings et al . (1978) showed how the method could – in theory – be applied to
complex pedigrees, even with inbreeding. Lange and Boehnke (1983) showed that
the likelihood could be updated one individual, rather than one nuclear family at a
time, and that different sequences of updates could produce dramatically different
computing time and memory requirements. With these improved formulations,
the complexity of calculating likelihoods for most noninbred pedigrees increases
linearly with the number of individuals in a family, and likelihoods can be
calculated for very large pedigrees, including hundreds of individuals. Another
important enhancement was the development of algorithms for identifying sets of
haplo-genotypes for each individual compatible with the observed genotypes for
each family (Lange and Goradia, 1987).

In parallel to these algorithmic improvements, more sophisticated computer
implementations of the Elston–Stewart algorithm were developed. The LINKAGE
computer package (Lathrop et al ., 1984; Lathrop et al ., 1985) enabled geneticists
to analyze multiple marker loci jointly. Together with the discovery of highly
polymorphic VNTR and microsatellite markers, LINKAGE enabled the localization
of genes for many Mendelian disorders through multilocus linkage analysis in
relatively large pedigrees.
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In the 1990s, further enhancements to the Elston–Stewart algorithm were dis-
covered. Cottingham et al . (1993) used improved software engineering techniques,
such as caching and replacement of floating point with integer operations, to speed
up LINKAGE by about one order of magnitude. O’Connell and Weeks (1995)
showed that combining alleles that do not appear in an individual’s descendants in a
single meta-allele could dramatically reduce the number of distinct haplo-genotypes
and further speed up calculation.

Despite these enhancements, the complexity of likelihood calculations using the
Elston–Stewart algorithm grows exponentially with the number of marker loci
considered. State-of-the-art implementations of the Elston–Stewart algorithm in
the VITESSE (O’Connell and Weeks, 1995) and FASTLINK (Cottingham et al .,
1993) computer packages cannot handle more than 5–10 marker loci at a time. The
ability of geneticists to rapidly collect data for hundreds of microsatellite markers
and the interest in complex disease gene mapping using large collections of small
pedigrees shifted the focus to a different collection of algorithms.

4. The Lander–Green and related algorithms

Lander and Green (1987) proposed a very different strategy for pedigree likelihood
calculations. Their approach is based on the use of inheritance vectors, which
summarize inheritance at specific genomic location. They showed that the
probability of observed genotypic or phenotypic data can be calculated for any
particular inheritance vector and that, in the absence of genetic interference,
inheritance vectors form a Markov Chain along the chromosome. Using a Hidden
Markov Model, they proposed an algorithm for the calculation of pedigree
likelihoods whose complexity increased only linearly with the number of markers.
The algorithm is suitable for very large numbers of markers, but limited to relatively
small pedigrees because the number of possible inheritance vectors increases
exponentially with pedigree size.

As with the Elston–Stewart algorithm, many enhancements were later discov-
ered, and progressively more powerful computer implementations contributed to the
success of countless gene-mapping studies. One important enhancement resulted
from the observation that there are many redundancies within inheritance vector
space so that inheritance vectors can be grouped to speed up calculation. Over the
years, progressively more sophisticated strategies were developed for identifying
these redundancies, first focusing on symmetries resulting from the transmission of
alleles from single founders (Kruglyak et al ., 1996), then founder couples (Gudb-
jartsson et al ., 2000), and later from other individuals in the pedigree (Markianos
et al ., 2001; Abecasis et al ., 2002). Another important series of improvements
focused on the manipulation of transition matrices, used for the calculation of
conditional inheritance vector distributions at neighboring locations, a key step
in the Markov Chain. Two distinct approaches have proved very successful at
speeding up this step of the calculation: either a divide-and-conquer algorithm
(Idury and Elston, 1997) or Fast Fourier Transform (Kruglyak and Lander, 1998)
can reduce the computational cost of generating these conditional distributions by
several orders of magnitude.
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Popular implementations of the Lander–Green algorithm include the computer
packages GENEHUNTER (Kruglyak et al ., 1996; Markianos et al ., 2001),
ALLEGRO (Gudbjartsson et al ., 2000), and MERLIN (Abecasis et al ., 2002).
All these packages can handle very large numbers of markers and allow the
estimation of individual haplotypes or the analysis of quantitative and discrete traits,
providing parametric and nonparametric linkage tests. They also provide more
specialized algorithms including, for example, algorithms that estimate information
content along the genome. Relative information content can highlight areas where
genotyping additional markers would provide the greatest information gain (see
Article 53, Information content in gene mapping, Volume 1). In addition to these
standard features, the newer packages can generate simulated datasets (commonly
used for calculating empirical significance levels), carry out more accurate linkage
tests (Kong and Cox, 1997; Sham et al ., 2002), and even identify likely genotyping
errors (Abecasis et al ., 2004).

Although current implementations of the Lander–Green algorithm can comfort-
ably handle hundreds and even thousands of genetic markers, advances in laboratory
technology are already highlighting a need for even more powerful methods. The
shift to SNP (single-nucleotide polymorphism) markers and very large scale geno-
typing has generated datasets with hundreds of thousands of markers measured per
individual, with substantial amounts of linkage disequilibrium between neighboring
markers (see Article 50, Gene mapping and the transition from STRPs to SNPs,
Volume 1). It is likely that further enhancements to gene-mapping algorithms will
be forthcoming to allow the analysis of these new datasets.

5. Markov-chain Monte-Carlo algorithms

While the Elston–Stewart and related algorithms can handle a small number of
markers in very large noninbred pedigrees and the Lander–Green and related
algorithms can handle very large numbers of markers in small pedigrees, neither
approach can handle a large number of markers in a large pedigree. Very large
pedigrees arise in many interesting settings, most often in the study of isolated
populations (see Article 51, Choices in gene mapping: populations and family
structures, Volume 1). It is often desirable to analyze multiple genetic markers in
these pedigrees to clarify inheritance patterns when genotype data are not available
for individuals in the early generations. The analysis of these most challenging
datasets has motivated the development of Monte-Carlo-based methods, which try
to identify the most important terms in the pedigree likelihood but avoid summing
over all possible terms.

A variety of Monte-Carlo approaches have been employed successfully in linkage
analysis, including Simulated Annealing (Sobel and Lange, 1996, implemented in
the SIMWALK2 computer program), the Gibbs sampler (Heath, 1997, implemented
in the LOKI computer program), and Sequential Imputation (Irwin et al ., 1994).
In addition to the ability to handle very large datasets, these software packages
often provide capabilities not currently available in packages based on the
Elston–Stewart or Lander–Green algorithms. For example, LOKI (Heath, 1997)
can model the contributions of multiple susceptibility loci simultaneously and
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SIMWALK2 (Sobel and Lange, 1996; Sobel et al ., 2002) can model genotyping
error explicitly.

6. Outlook for the future

While this is an incomplete account of all the algorithms developed for the linkage
analysis of human pedigrees, we have attempted to emphasize those algorithms and
developments that entered widespread use through the availability of easy-to-use
computer programs. We have certainly missed some packages and ideas that deserve
credit, as well as some research paths and strategies that were tried along the way
but never become popular in practice. Currently, one promising avenue appears to
be the use of Bayesian Networks (Jensen, 1996). These allow complex likelihoods
to be evaluated gradually, and provide for a more flexible updating scheme than the
Lander–Green or Elston–Stewart algorithms, which conduct updates considering
either all individuals (for one locus) or all loci (for one or more individuals) at
a time.

The past 20–30 years have produced many algorithmic advances in the analysis
of human pedigrees, and these have enabled geneticists to extract the full benefits of
new laboratory methods that allow the collection of increasing amounts of genetic
information on increasing samples of individuals. Whereas initial methods focused
on the analysis of single genetic markers and simple Mendelian traits, more modern
methods can analyze very large numbers of genetic markers and individuals and
have led to some promising results in the analysis of even complex traits such as
diabetes, asthma, and psychiatric disorders. It is tempting to speculate that, with the
increasing emphasis on genetic association studies and fine-mapping data (Cardon
and Abecasis, 2003), the next decade will produce similar advances in algorithms
for the estimation and analysis of haplotypes . . . , but we will leave that story for
the 2nd edition!
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