POPULATION GENETICS

Dr. Monisha Banerjee, Professor, Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow.

<u>CONTENTS</u>

- 1. DEFINITION
- 2. BASICS
- 3. TERMS
- 4. HARDY-WEINBERG EQUATION
- 5. DNA POLYMORPHISM IN POPULATION
- 6. CONCLUSION

FOUNDERS OF POPULATION GENETICS

Ronald Fisher

Sewall Wright

J. B. S. Haldane

Population genetics is important because <u>populations</u> evolve (individuals do not)

- **population**: localized group of individuals belonging to same species

Population genetics

genetic structure of a population

Population genetics

genetic structure of a population

group of individuals of the same species that can interbreed

Population genetics

- genetic structure of a population
 - alleles
 - genotypes

group of individuals of the same species that can interbreed

Patterns of genetic variation in populations Changes in genetic structure through time

Describing genetic structure

- genotype frequencies
- allele frequencies

rr = white

Rr = pink

RR = red

Describing genetic structure • genotype frequencies

allele frequencies

200	white	genotype frequencies:
500	pink	200/1000 = 0.2 rr
		500/1000 = 0.5 Rr
300	red	300/1000 = 0.3 RR

total = 1000 flowers

Describing genetic structure • genotype frequencies

allele frequencies

	200	rr = 400 r	
All and the states	500	Rr = 500 r	Trequencies:
		500 R	900/2000 = 0.45 r
	300	RR= 600 R	1100/2000 = 0.55 R

total = 2000 alleles

for a population with genotypes:

calculate:

Genotype frequencies

160 Gg

100 GG

Phenotype frequencies

Allele frequencies

for a population with genotypes:

100 GG

160 Gg

140 gg

calculate:

Genotype frequencies

260 $\begin{cases} 100/400 = 0.25 \text{ GG} \\ 160/400 = 0.40 \text{ Gg} \\ 140/400 = 0.35 \text{ gg} \end{cases}$

0.65

Phenotype frequencies

260/400 = 0.65 green 140/400 = 0.35 brown

Allele frequencies

360/800 = 0.45 G 440/800 = 0.55 g

another way to calculate allele frequencies: Geno

100 GG

140 gg

Genotype frequencies

		-	
0.25 GG		G	0.25
0.40 Gg		G	0.40/2 = 0.20
0.35 gg	\rightarrow	g	0.40/2 = 0.20
		g	0.35

Allele frequencies

360/800 = 0.45 G 440/800 = 0.55 g

> **OR** [0.25 + (0.40)/2] = 0.45 [0.35 + (0.40)/2] = 0.65

Population genetics – Outline

- ✓ What is population genetics?
- Calculate genotype frequencies
 allele frequencies
 - Why is genetic variation important?
 - How does genetic structure change?

Genetic variation in space and time

Frequency of Mdh-1 alleles in snail colonies in two city blocks

Why is genetic variation important? potential for change in genetic structure

- adaptation to environmental change
 - conservation
- divergence of populations
 biodiversity

Why is genetic variation important?

Why is genetic variation important?

Why is genetic variation important?

How does genetic structure change?

How does genetic structure change? changes in allele frequencies and/or genotype frequencies through time

How does genetic structure change? changes in allele frequencies and/or genotype frequencies through time

- mutation
- migration
- natural selection
- genetic drift
- non-random mating

How does genetic structure change?

- mutation
- migration

spontaneous change in DNA

- creates new alleles
- ultimate source of all genetic variation
- natural selection
- genetic drift
- non-random mating

Mutations are the engines of variation

Without new variations, evolution would come to a halt: all individuals would become the same

How does genetic structure change?

- mutation
- migration individuals move into population
- natural selection
- introduces new alleles "gene flow"

- genetic drift
- non-random mating

Out of Africa

Modern humans arose in Africa and replaced other human species across the globe.

How does genetic structure change?

mutation

certain genotypes produce more offspring

migration

- differences in survival or reproduction differences in "fitness"
- natural selection

- leads to adaptation • genetic drift
- non-random mating

Natural Selection

- Natural Selection refers to unequal success in terms of reproduction (a.k.a. survival of the fittest)
- Adaptations are inherited characteristics that enhance an organism's ability to survive and reproduce in a certain environment

Natural selection

Resistance to antibacterial soap

Generation 1:

1.00 not resistant 0.00 resistant

Natural selection

Resistance to antibacterial soap

Generation 1:

1.00 not resistant 0.00 resistant

Resistance to antibacterial soap

Generation 1:

1.00 not resistant 0.00 resistant

Generation 2:

0.96 not resistant 0.04 resistant

Resistance to antibacterial soap

Generation 1: 1.00 not resistant 0.00 resistant

Generation 2: 0.96 not resistant

0.04 resistant

Generation 3: 0

0.76 not resistant 0.24 resistant

Resistance to antibacterial soap

- Generation 1: 1.00 not resistant 0.00 resistant
- Generation 2: 0.96 not resistant
 - 0.04 resistant
- Generation 3: 0.76 not resistant
 - 0.24 resistant
- Generation 4: 0.12 not resistant
 - 0.88 resistant

Natural selection can cause populations to diverge

Variation in Disease Alleles between Populations

Allele/Disease	Population Variation (allele frequency)
β ^s allele of β-globin gene (sickle cell anemia)	1/20 in African Americans <1/200 in Hispanic Americans
Cystic fibrosis	1/40-50 in European Americans very low in Asian and African Americans
Tay-Sachs disease	1/60 in Ashkenazi Jews <1/6,000 in other groups
Myotonic dystrophy	1/50,000 in Europeans non-existent in Africans 1/950 in regions of Quebec

Selection on sickle-cell allele

aa – abnormal ß hemoglobin very low sickle-cell anemia

AA – normal ß hemoglobin vulnerable to malaria

intermed. fitness

Aa – both ß hemoglobins resistant to malaria

high fitness

Selection favors heterozygotes (Aa).

Both alleles maintained in population (a at low level).

How does genetic structure change?

- mutation
- migration

genetic change by chance alone

natural selection

- sampling error
 - misrepresentation
 - small populations

- genetic drift
- non-random mating

Genetic drift

Before: $8 \text{ RR} \rightarrow 0.50 \text{ R}$ $8 \text{ rr} \rightarrow 0.50 \text{ r}$

After: $2 \text{ RR} \rightarrow 0.25 \text{ R}$ $6 \text{ rr} \rightarrow 0.75 \text{ r}$

How does genetic structure change?

- mutation
- migration
- natural selection
- genetic drift

cause changes in allele frequencies

non-random mating

How does genetic structure change?

- mutation
- migration

• genetic drift

- natural selection
- mating combines alleles into genotypes
 - non-random mating
 non-random
 allele combinations
- non-random mating

A A A A	A a A		
	f(A) p 0.8	f(a) q 0.2	
A 0.8	AA (p²) 0.8 x 0.8	Aa (pq) 0.8 x 0.2	f(
a 0.2	aA (qp) 0.2 x 0.8	aa (q²) 0.2 x 0.2	genot f(AA) f(Aa) f(aa)

aa x aa A x AA

aa AA

allele frequencies: f(A) p= 0.8 f(a) q= 0.2

genotype frequencies: $f(AA) p^2 = 0.8 \times 0.8 = 0.64$ $f(Aa) 2pq= 2(0.8 \times 0.2) = 0.32$ $f(aa) q^2 = 0.2 \times 0.2 = 0.04$

Conditions for Hardy Weinberg Equilibrium

- 1. Population size must be very large (infinite)
- 2. Mating is random
- 3. No gene flow: migration of alleles into or out of the population does not occur.
- 4. No mutations to alter the gene pool
- 5. No selection: no selective force favors one individual over another.

What is the distribution of genotypes?

The Hardy-Weinberg equilibrium

Hardy-Weinberg equilibrium

genotype frequency

Population achieves Hardy-Weinberg equilibrium after one generation

DNA POLYMORPHISM IN POPULATIONS

How are genomes of individuals different?

Most of the differences take the form of substitutions at a single base. Single Nucleotide Polymorphism (SNP)

Variation is the splice of life

- If : 1. Any two genomes are roughly 99.9% identical and
- 2. A genome is 3.2 billion base pairs long

Then:

- Every two genomes have 3.2 million differences (SNPs)
- (remember also that each individual has two genomes)

How many SNPs are there in human populations?

Table 1 • Occurrence of SNPs in the human population and their representation in the current collection				
Minimal allele frequency	Expected SNP number (millions)	Expected SNP frequency (bp)	Expected % in collection	
1%	11.0	290	11–12	
5%	71	450	15–17	
10%	5.3	600	18–20	
20%	3.3	960	21–25	
30%	2.0	1,570	23–27	
40%	0.97	3,280	24–28	

(based upon the classical neutral theory of population genetics)

How are the frequencies of SNPs distributed?

Identified 35,989 SNPs in a sample of 20 copies of chromosome 21.

A locus is a region on the chromosomes

An allele is a variation at a locus

For example in the same locus we may have:

Allele 1: GTTTCTGATTTTTTGATGTCTTCATCCATCACTGTCCTTGTCAAATAGTTT......G Allele 2: GTTTCTGATTTTTTGATGTCTTCAGCCATCACTGTCCTTGTCAAATAGTTT......

allele frequency is the proportion of a certain allele within a population.

	Genotype Frequency (%)			Allele Frequency	
Population	MM	MN	NN	М	N
U.S. whites	29.16	49.38	21.26	0.540	0.460
U.S. blacks	28.42	49.64	21.94	0.532	0.468
U.S. Indians	60.00	35.12	4.88	0.776	0.224
Eskimos (Greenland)	83.48	15.64	0.88	0.913	0.087
Ainus (Japan)	17.86	50.20	31.94	0.430	0.570
Aborigines (Australia)	3.00	29.60	67.40	0.178	0.822

People from different continents often carry identical DNA sequences

Percentage of human genetic variation within and between populations.

An average population from anywhere in the world includes 85% of all human variation at autosomal loci and 81% of all human variation in mtDNA sequences. Differences among populations from the same continent contribute another 6% of variation; only 9 to 13% of genetic variation differentiates populations from different continents