

MSc. Botany SEM IV

Nutrient Disorders in Plants Macronutrients

Professor Nalini Pandey Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow.

Essential Nutrients

An essential element can be recognized by the following criteria of essentiality given by Arnon and Stout (1939):

- The plant must be unable to grow normally or complete its life cycle in the absence of the element.
- The element is specific or can not be replaced by another element.
- The element plays a direct role in metabolism.

Sixteen elements have been found to be essential.
 Macronutrients (at least 1 mg/g of dry wt., >1ppm)
 -C, H,O, N, P, K, Ca, Mg, S.
 Micronutrients (< 0.1 mg /gm dry wt., <1ppm).
 -Fe, Mn, Cu, Zn, Mo, B and Cl
 Secondary nutrients- Ca, Mg and S.

General Functions

- As constituents of organic structures.
- Enzyme action.
- Charge carriers.
- Osmoregulation.
- Secondary metabolism, growth hormones and signalling molecules.
- Protective role- oxidative stress.
- Regulatory role- genes encoding high affinity transport. Several TF III A-type zinc finger proteins such as SUPERMAN, AtZFP1.
- Role in reproduction.

Nitrogen: NO₃-, NO₂-, NH₄+

- Major structural constituent -amino acids, proteins, nucleotides, nucleic acid, porphyrins and alkaloids.
- **Osmoprotectant -** glycine–betaine, proline.
- Phytosiderophores- nicotianamine derived from Lmethionine functions as the precursor.
- * Alkaloids pharmacological properties.
- Nitric oxide a signal molecule in response to a wide range of external and internal factors.

Phosphorus: PO₄-

- Structural component of biomembranes-Phospholipids, Phosphatidyl ethanolamine, Phosphatidyl choline etc.
- Nucleic acids -phosphates group joins the 5' carbon of one nucleotide to 3'carbon of the next nucleoside by covalent phosphodiester bonds.
- Energy conservation and transfer- pyrophosphate bonds (P~P) (ATP; UDG~P; GDP~P).
- **Regulation of enzymes activity-** nitrate reductase, PEP carboxylase PEP kinase, proton pumping phosphorylase (H+-ATPase).

Potassium

- Turgor driven extension growth of cells.
- Meristematic growth and cambial activity.
- Neutralizes the anionic charges (NH3-, Cl-, SO4-)
 stablization of cytosolic and chloroplastic pH to a slightly alkaline reaction (pH 7 to 8).
- Activator of enzyme- formate-formyl tetrahydrofolate synthetase, succinyl-Co A synthetase. acetic thiokinase, pyruvate kinase and glutathione synthetase.
- Regulation of stomatal opening.

Calcium

- Structural constituent of cell walls- bound to RCOO-group of polyglacturonic acids (pectins).
- Stability to cell membranes -bridge between PO4and COO- of phospholipids and proteins.
- Low cytoplasmic concentration preventinterractions with nutrient ions (PO₄-, Mg²⁺) and inactivation of enzymes.
- High Ca²⁺ in vacuoles- neutralize anions and osmoregulation.
- **Regulatory role-** second messenger.
- Ca protein Calmodulin activates enzymes Ca²⁺ -ATPases, protein kinases in cell signalling.
- Synthesis of actin filaments- cell division cycle
- Pollen-stigma interaction- pollen viability and pollen tube elongation.

Sulphur: SO₄²⁻ \rightarrow S₂²⁻

- Organic sulphate compounds- sulpholipids, phytoalexins, polysaccharides,
- Suphides-amino acids (cysteine and methionine), coenzymes and secondary metabolites
- LMW peptides- glutathione (antioxidant) and thioredoxins (enzyme regulation) phytochelatins, metallothioneins (metal detoxificatiom)
- Inter conversion of $(SH \rightarrow S-S)$ tertiary structure of proteins and regulation of enzyme activities
- Iron-sulphur clusters (Fe-S)- ferredoxin
- Vitamins and coenzymes –biotin, coenzyme A, thiamine pyrophosphate.
- Secondary metabolites glucosinolates (brasicaceae, allin (*Allium* sp)

Magnesium

- **Structural component of chlorophyll-** central Mg atom is coordinated to the nitrogen atoms of the four modified pyrrole rings forming a porphyrin like structure
- Structural integrity of ribosomes and binding of the ribosomal aggregates to t-RNA
- **Ionic balance and stabilization of pH-** high vacuolar concentration for osmoregulation and turgor driven cell growth
- Activator of several enzymes -ATPases, phosphorylases and phosphokinases
- **Phloem loading and unloading of sucrose-** low activity of proton pumping ATPases.