4.4 OSCILLATORY EQUATIONS
In this section, we shall study the equation
u” +a(t)u=0, (4.4.1)

where a(t) is a real-valued and continuous function on ¢y < ¢ <ee. If all the
nontrivial solutions of (4.4.1) have an infinite number of zeros on
to <t < oo, then (4.4.1) is referred to as an oscillatory equation and these
nontrivial solutions are termed oscillatory solutions. For any equation, if
some solutions are oscillatory and the remaining are nonoscillatory, then
the equ.;ation is called nonoscillatory.

Example 4.4.1 (i) Consider the equation u” + m”u = 0, where m is a real
constant. This is an oscillatory equation because all its nontrivial solutions
cos mt, sin mt are oscillatory.

(ii) The equation
v’ -u"+u -u=0 (4.4.2)

is nonoscillatory because one of its nontrivial solutions, namely, e’, is not
oscillatory.

To derive some of the oscillatory properties of the solutions of second
order linear differential equations, we need the following basic result
which is a special case of the Sturm comparison theorem.

. Theorem 4.4.1 If all the nontrivial solutions of (4.4.1) are oscillatory,
b(t) is continuous, and b(t) > a(?), ty < t < =, then all the nontrivial solutions
of '

v +b@)=0 | (4.4.3)

are oscillatory. On the other hand, if some nontrivial solutions of equation
- (4.4.3) are nonoscillatory and b(f) 2 a(t), then some nontrivial solutions of
(4.4.1) must be nonoscillatory.

Proof Let u(#) and v(t) be the nontrivial solutions of (4.4.1) and (4.4.3),
respectively. Multiplying (4.4.3) by u, (4.4.1) by v, and subtracting, we get
uv” —vu” + (b(t) — a(t))uv =0,
that is,
dv’ - vu) + (b)) - a(t))uv =0. ‘ | . - (4.4.4)

Let t; and £, be any two consecutive zeros of u(f) and assume that
to <ty <ty and that u(t) = 0 on the interval {; <t <fy (see Fig. 4.4.1). By
integrating equation (4.4.4) from t; to ¢y, we obtain

UtV () — vl (tg) — u(E )V (tr) + V(R (E2)

_*'J-ztlz [b(s)—a_(s),]u(é)‘%‘(_sl):ldf‘éo- L ; (4.4.5‘)_»
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Fig. 4.4.1 Graph of function u. /

Since f; a.nd t, are two consecutive zeros of u(f), we have =0,
u(ty) = 0 with u’(ty) > 0, u'() < 0. Therefore, from equation (44.5), we ob-
tain
, .
vt (1) — v(E)u'(f2) + Lf [b(s) — a(s)lu(s)v(s) ds = 0. (4.4.6)

We claim that v(f) has a zero on [¢y, to]. Suppose this is not true. Then,
v(t) does not change its sign on [ty, t,]. Since u'(ty) > 0, u'(ty) <0 and u(t),
b(t) —a(t) are nonnegative on &y <t <l equation (4.4.6) leads to a con-
tradiction. Hence, v(£) changes its sign in the interval [¢4, t,]. This implies
that v(¢) has a zero in the interval [ty, to). This shows that between any ‘
two consecutive zeros of u(t) there is a zero of v(f). The second part of our

assertion follows if an argument similar to that for the first part is used.
|

Remark 4.4.1 From the proof just given, we can infer that, if the solu-
tions u(f) and v(#) of (4.4.1) and (4.4.3), respectively, have a common zero
at ¢ = ¢,, the solution v(f) must have a zero in the interval t; <t <% (see

Fig. 4.4.2).

We now prove this statement. Since v(t1) =0, from (4.4.6), we have

v(ta)u'(t2) = _[:: [b(s) — a(s)lu(s)v(s) ds.

Ifv(t) is poéitive (or negative) for 411 ¢ in the interval ¢, <t <{y, then this
equation leads to a contradiction because b(¢) —a(f) 2 0, u(t)=20 on
(£, t5], and u'(tg) < 0. Hence, v(t) must change its sign on f; < t < ty. Thus,
the result follows. | '

Corollary 4.4.1 The nontrivial solutions of
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Fig. 4.4.2 Graph of functions © and v.

u”’+(1+06@)u=0,
where ¢(t) = 0 as t = o, are oscillatory.

Proof Since lim ¢(¢) =0, for sufficiently large ¢,, we have

t— oo
|0(t)| <€ fort =i,
that is, —€ < ¢(¢) < €. Therefore,
i—eSl+¢(t)S1+e.
Choose € = % Then, we have
1+0()21 fort>t,

Since all the nontrivial solutions of u” + (1/2)u =0 are oscillatory, the
result follows from Theorem 4.4.1. @

Corollary 4.4.2 The nontrivial solutions of
w+ @R =0 A
are oscillatory if ¢(z) 2 m?2> 0 for all ¢.

Proof Since all the nontrivial solutions of u” + m?u =0 ar i
= e tory,
the result follows from Theorem 4.4.1. B oscillatory.

Qorollary 4.4.3 If lim co(t) = e monotonically, then al] the nontrivial

: ‘ e
solutions of (4.4.1) are oscillatory. -

Proof From the hypothesis, it is clear that .a(t") >g >0 for all ¢ greater
than some £,. Since all the nontrivial solutions of 1" + gy = 0, £ >0, are

oscillatory, the result follows from Theorem 4.4.1. 1
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Corollary 4.4.4 Any nontrivial solution of the equation
u’+k@)u=0 (4.4.7)

in the interval @ < < b cannot vanish more than once in this interval if
k() <0 for all £ € (a, b). ;

Proof Suppose there is a nontrivial solution u(t) of (4.4.7) which vanishes
more than once in the interval a<t<b, say, at t=¢, and t=t,
(@ <ty <ty <b). If 02 k() for all ¢ € (a, b), then, by Theorem 4.4.1, every
nontrivial solution of #” = 0 will vanish at least once in the closed interval
ty<t <ty This is impossible. Hence, any nontrivial solution of (4.4.7)
cannot vanish more than once in the interval a <£ < b. 1

Remark 4.4.2 The amplitude of the oscillations of (4.4.1) under certain
conditions on a(¢) will never increase, as the following theorem shows. By
Rolls’ theorem, it is clear that between any two consecutive zeros of a
solution there exists a zero of its derivative.

Theorem 4.4.2 Suppose a(t) is continuously differentiable and a(¢) > 0,
a'(t) 20 on 0 £¢ <o, Then, if u(¢) is a nontrivial solution of (4.4.1) and #,
and ¢, are two consecutive zeros of its derivative,

[u(ta)| < [u(t)l. (4.4.8)
Proof Multiplying (4.4.1) by 2u’(¢) and integrating from #; to ¢, we get

uwty) — w2ty + 2 f:’ a(t) u(t) dt = 0.

Since ¢; and £, are two consecutive zeros of ©'(t), we have

L.

J’: au@)u'(t) dt = 0.
Integrating this equation by parts, we obtain
et 2 2 9
altau(ty) - altu’(ty) = |, wea'®) dt. @49)

Since u'(t) does not change its sign in £; < £ <t,, the solution u(¢) is strictly
monotonic in this interval. When a’(t) = 0 for ¢; <t <¢,, inequality (4.4.8)
clearly holds. Therefore, we may assume that a’(£) # 0 for t1<t<t, We
Now claim that (4.4.8) is true. Suppose this is not so. Then, we have

- UR(t) > ul(ey). (4.4.10)
Also..

¥

T P ho o
J,, @) de < (@t - attu’ey).
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Therefore, from relation (4.4.9), we get

a(t)(u?(ts) - u*(t)) < 0.
This contradicts inequality (4.4.10). Thus, we conclude that
u’(ty) < u%(t;), and hence the result follows. § .

Remark 4.4.3 The equation u” + (1/(4t*))u = 0 is nonoscillatory since its
nontrivial solution u(¢) = £2 is nonoscillatory. But the following theorem

shows that the equation
1+¢
412

1s oscillatory.

u” + u=10, >0,

Theorem 4.4.3 If a(t) > (1 + €)/(4t%), € > 0, for all £ > ¢,, then all the non-
trivial solutions of (4.4.1) are oscillatory.

Proof We know that all the nontrivial solutions of the equation

u’ +m?u=0, m? >0, (4.4.11)
where m > 0 is a real constant, are oscillatory. By letting ¢; = €’ in (4.4.11),
we obtain

2
t%i—tg + tlj—z +miu =0.
1 :

The substitution u = v/, reduces this equation to
dv 1+4m?
dty = 4

This equation is oscillatory because the transformations we have just

considered do not affect the zeros of (4.4.11). Therefore, by Theorem 4.4.1,
all the nontrivial solutions of (4.4.1) are oscillatory if
1+4m® 1+c¢

a(t) 2 2 a2 e>0. 1

v=0.

So far we have considered the cases where, in (4.4.1), a(t) > o« as
t — oo and a(t) » o2 20 as t — . We shall now discuss the case where
a(t) — 0 as t =» < in (4.4.1).

Since a nontrivial solution %2 of u” - 3/(4t%)u = 0, £> 0, is unbounded
as t — o, we may want to know whether a nontrivial solution of (4.4.1)
asymptotically approaches a nontrivial solution of ©”’ =0 if a(t) - 0 as
t — oo, This is indeed so under a certain condition on a(t), as will be evident
from the following result.

Theorem 4.44 If Jl tla(t)] dt <, then, for any solution uy(t) of (4.4.1),
lim u{(¢) exists and the general solution u(f) of (4.4.1) is asymptotic to

{— o0 7
Kt + K, for some constants K; and Kj, not both zero.
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proof Let u1(t) be any solution of

4.4, Fre -
prom (4.4.1), we have (4.4.1) such that uj(tg) = 1, fo € [1, ).

uy =-a(d)u;.

[ntegrating this equation twice between o and ¢ and using the order of
integration, we obtain

w@)=cr+t-, ¢~y s,

where c¢; depends upon £, and -ul(to). Therefore, since #, > 1, we get, for
tZ tOs ;

[ui@®) < (leq + 1)t + 2 J‘; la(s)| |uq(s)| ds.

Hence, for ¢ > £,

|u1( 2] (S)l

<(le 1|+1)+I slags))

Thus, it follows, from Theorem 1.5.6, that
1( ]

<(lesl + 1) exp [I s|a(s)| dsl.

Therefore,

luy(2)]
t

< (ley) + 1) exp [Lo sla(s)| ds] = ¢g < o.
Since ¢; depends upon #, and c; upon c;, we can choose £, such that

1-c, [, tla@)dt>0.

Q
This implies -
t | t
Lo la(s) | |uq(s)] ds < Lﬁ s|a(s)| ds
<1 forallt=t,.
Further, we have
gl P ,
ut) =1 -—J a(s)uq(s) ds.

This relation and the inequality preceding it imply that lim u1(Z) exists

t - oo

and hag 5 nonzero limiting value. Hence, uy(f) is asymptotic to K,z with
1#0 as ¢ — o0, Moreover, since
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uo(t) = uq(t) Lm -l—t% ds
1

is another linearly independent solution of (4.4.1), it' follows that uq(t) ig
asymptotic to 1 as ¢ — «. Hence, the general solution u(f) of (4.4.1) ig
asymptotic to Kyt + Kpast — . 1

NUMBER OF ZEROS
We shall now take up the problem of determining the number of zeros of
a nontrivial solution of the general second order differential equation

(pu’Y +qt)u=0, (4.4.12)

where the functions p(f) and gq(f) are continuous on some interval

a<t<b.
Before we can obtain some of the main results, we need to know the

following transformation.

SLemma 4.4.1 (Priifer’s transformation) Let u(¢) be a nontrivial solution
of (4.4.12) existing on the interval a < ¢ <b. Then, the transformation

p=w?+pu?H¥?>0, ¢=tan™ (5%;) (44.18)
reduces (4.4.12) to |

‘= 1T1t) cos® ¢ + q(t) sin? o, (4.4.14)

p’=—(q() —}%t))p sin ¢ cos ¢. | (4.4.15)

Proof From relations (4.4.13), it can be easily shown that
u=p sin ¢, pu’ =p cos ¢. (4.4.16)

Differentiating (4.4.13) with respect to ¢ and using relations.(4.4.16), we
obtain the differential equations (4.4.14) and (4.4.15). §

Remark 4.4.4 Equation (4.4.14) has only one unknown function, namely,
¢. By solving (4.4.14) and substituting its solution ¢ in (4.4.15), we can

easily determine the function p(z).

Transformation (4.4.13) is particularly useful in studying the zeros of
the nontrivial solution u(t) of (4.4.12) since u(t) =0 for some ¢ € [q, b] if
and only if ¢(f) = 0 mod 7.

Theorem 4.4.5 Let the coefficient functions p(f) >0 and g(?) in (4.4.12)
be continuous on a <t <b and let u() be a nontrivial solution of (4.4.12).

Suppose u(f) has exactly n (21) zeros at £=£, %3, - . - » ty (1<la<...<ty)
on [a, b]. If ¢(¢) is a function defined by (4.4.13), t?en o(t,) = kn and

/
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o()>kn fort,<t<b

<kn fora<t<t,
wherek=1,2,...,n.

proof Since t=1%1,%,...,¢, are the zeros of u(t), it follows, from the
second relation of (4.4.13), that ¢(¢)=Omodn at =%, (k=1,2,..., n).
Thus, for these values of ¢, from (4.4.14), we have ¢’ = 1/p(¢) > 0. From the
continuity of ¢, this implies that ¢(¢) is increasing in some neighbourhood
of the points t =t, (k=1,2, ..., n). Hence, if ¢(¢) > nn for some te la,bl,
it follows that ¢(¢) > nn for all t e (E, bl. If ¢(F ) < nm, then ¢(f) <nmn for all
t € [a, t). This gives the result. 1

In what follows, we shall discuss the system of differential equations
(prtw’) +q1(®)u =0, (4.4.17)
(pa(u’Y + g2ty = 0, (4.4.18)

where the functions p;(t), pa(t) > 0, qi1(¢), and go(t) are continuous on the
interval a <¢ <b. If the inequalities

| :
;pﬂﬂzpﬂﬂ>0, q1(2) < q2(?) (4.4.19)
hold for all ¢ € [a, b], then (4.4.18) is called a Sturm majorant of (4.4.17)
on'the interval [a, b] and (4.4.17) a Sturm minorant of (4.4.18) on [a, b].
In' addition to (4.4.19), if any one of the two strict inequalities
pi(t) > pa(t) > 0, q(t) # 0, and q1(t) < ga(?) holds at some point ¢ € [a, b], then
(4.4.18) is called a strict Sturm majorant of (4.4.17) on [a, b] and (4.4.17)
a strict Sturm minorant of (4.4.18). :

The following result compares the number of zeros of the nontrivial

solutions of (4.4.17) and (4.4.18).

Theorem 4.4.6 (Sturm’s comparison theorem) Assume that

Q) pi(®), pa@®), qi(t), and ga(f) are continuous on the interval
a<t<b;
(ii) w,(t) and uo(t) are the nontrivial solutions of (4.4.17 ) and (4.4.18),
respectively;
(iti) (4.4.18)is a Sturm majorant of (4.4.17) on [a, b];

(iv) the inequality
pa@)us(a)  pi(a)ui(a) - ‘ -
uo(a) = u1(a) , (4.4.20)

%lolds [if u1(a) = O (or us(a) = 0), then the left (or right) expression of (4.4.20)
18 defined as +oo]; and : '
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(v) uy(t) has exactly n (1) zeros at t =ty,25,...,¢t, 1 <ty<...<¢ )
on (a, b]. ' ' "

Then, the solution uy(t) has at least n-zeros on (a, ¢,].

Proof Define a pair of continuous functions ¢;(¢), do(f) on the interva]
a £t <b by the relations

u 1(t)

US|

¢1(¢) = tan (pl(t)ui (t))’ (4.4.21)
ool Ws(t)

do(t) = tan (p2 O t)) (4.4.22)

for0< ¢;<m, i =1, 2. Thus, from (4.4.20), it is clear that
0 < ¢1(a) < ¢2(a) <T. (4423)
Using the Priifer transformation (4.4.13), it can be easily shown that

, 1 .
01 = ) cos’ 0y +qy(t) sin® ¢, ‘ - (4.4.24)
0g = p:‘(t) cos? &g + q5(7) sin? 0s. (4.4.25)
Now, set
fit, 0 =5 cost 0 +q ) sin®, =12 | (4.4.26)

From the smooth properties on f; and f5, it follows that the solutions
01(2) of equation (4.4.24) through (a, ¢;(a)) and ¢.(t) of equation (4.4.25)
through (a, ¢2(a)) exist, and are unique, on the interval ¢ <¢ <b. Assump-
tion (iii) and relations (4.4.26) yield

filt, 0) <falt,¢) forte [a,b] and all 9.

Hence, from inequality (4.4.23) and the theorem on differential inequality
(see Section 1.5), we obtain

0y(8) < 0s(t) forte [a,bl. | . (4.4.27)

Therefore, ¢;(¢,) = nm implies ¢q(¢,) = nn. Now, the application of Theorem
4.4.5 yields the result. §

Corollary 4.4.5 In addition to the assumptions of Theorem 4.4.6, if
(i) the strict inequality in (4.4:20) holds or (ii) (4.4.18) is a strict Sturm
majorant of (4.4.17) on [a, t,], then' the solution uy(?) has at least n-zeros

on (a, t,).

Proofof (i) Suppose the strict inequality in (4.4.20) holds. Then, we have
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9,(@) < do(a). Let da() be any solution of (4.4.25) with the initial condition

5,(a) = 1(a)- Then, §,(a) <¢o(a), and hence, from the uniqueness of the
solutions of (4.4.25), it follows that

Baft) < 0a(t) forte [a, b].
Thus, the analogue of inequality (4.4.27) yields
01(t) < 9a(8) < dalt),
and therefore ¢o(¢,) > nm. Hence, uy(t) has n-zeros on (a, t,).

Proof of (ii) Suppose (4.4.18) is a strict Sturm majorant of (4.4.17). Now,
in (4.4.20) either the strict inequality or equality holds. The strict in-
equality has already been covered [see proof of (i)]. We now consider the
case when the equality in (4.4.20) holds and, at some point ¢ € [a, ¢,], either

pit) >p2(8) >0,  q() =0,
or
q1(t) <qa(t)
also holds. From (4.4.25), we have
05= = cos” 2 + q1(9) sin® 0 + (8,
D1(?)

where

1 1 2 _ .9
”(t)_(p2(t) pl(t)) cos™ O + (q2(f) — qi(2)) sin® ¢s.

Clearly, u(¢) > 0. We claim that uy(t) has n-zeros on (q, tn). Suppose this is
not true. Then, from our preceding discussion, it follows that 01(8) = do(2)

for t€ [a, t,]. Therefore, ¢1(t) = ¢5(¢), and hence p(t) =0 for ¢ € [a, t,]. This
Implies

1 1 )
(=) cos® 0y + (go - % ¢y =0.
Py Pl) cos” ¢z + (g2 — q1) SIn” O

Since sin o _ - ' .
o(t) =0 only at the zeros of uy(t), it follows that ¢ (&) = go(t) fo
te [a,¢,), and also that ) 22(t) for

1 1. o
(p2 Pl) cos® ¢p = 0.

Eflirefore, (1/ps — 1/p;) > 0 at some ¢ € [a, t,] implies cog2 Oo(t) = 0, that is
2=0. Moreover, if q1(t) < go(t) does not hold at any point ¢ € [a ’t ] theni
**nly

by(t) >DPo(t) >0, go(t) # 0, holds at some ¢ and, hence, holds on some sub-

i
Oterva] of la, t,). But uj = 0, and consequently ( P2u3) =0, on this subin ter
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val. This clearly contradicts the fact that q,(¢) # 0 on this interval. Thus,
our claim is true. Hence, the assertion of the corollary follows. §

Corollary 4.4.6 (Sturm’s separation theorem) Let assumpti?ns (i), (ii),
and (iii) of Theorem 4.4.6 hold. Then, if u,(t) vanishes at a pair of pointg
t; and £, (85 > t) of [a, b, uy(t) has at least one zero on [¢, £5).

The proof of the corollary is direct and left as an exercise. _
In particular, if p; = p; and g, = g5, and u;(¢) and uy(t) are two linearly

independent solutions of (4.4.17) [= (4.4.18)], then we have the following
assertion.

/Corollary 4.4.7 The zeros of two linearly independent solutions u,(¢) and

ug(?) of (4.4.17) interlace, that is, between two consecutive zeros of one
solution there lies a zero of the other solution.

Proof Let ¢; and ¢, be the two consecutive zeros of u(t). Since u4(t) and
uq(t) are the solutions of (4.4.17), we have

~(p1u1)’ +qquy =0, (P1ug)’ +qquy = 0.

Multiplying the first equation by u, and the second by 1, and then sub-
tracting, we get ~

(P1(uiug — uqug)) =0,

Integrating this equation from ¢; to ¢,, we obtain
(P1(uius — ugup))y? = 0.

But u4(¢,) = 0 and u,(¢;) = 0. Therefore,
P1(tuita)us(ts) = pr(t)ui(t)uq(ty).

Since ¢, and ¢, are the two consecutive zeros of u,(#), ui(t1) and uj(t,) have
opposite signs. Hence, from p;(¢) > 0 for ¢ € [q, b], it follows that Uy(t;) and
uy(?o) must have opposite signs. Therefore, u9(f) must vanish at least once

between ¢, and ¢,. Finally, by interchanging the roles of 1, and u,, we see
that their zeros interlace. 1
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