Introduction of Control Unit and its Design

Control Unit is the part of the computer’s central processing unit (CPU), which directs the
operation of the processor. It was included as part of the Von Neumann Architecture by John
von Neumann. It is the responsibility of the Control Unit to tell the computer’s memory,
arithmetic/logic unit and input and output devices how to respond to the instructions that have
been sent to the processor. It fetches internal instructions of the programs from the main
memory to the processor instruction register, and based on this register contents, the control
unit generates a control signal that supervises the execution of these instructions.

A control unit works by receiving input information to which it converts into control signals,
which are then sent to the central processor. The computer’s processor then tells the attached
hardware what operations to perform. The functions that a control unit performs are dependent
on the type of CPU because the architecture of CPU varies from manufacturer to manufacturer.
Examples of devices that require a CU are:

« Control Processing Units(CPUSs)
« Graphics Processing Units(GPUs)

l Control signals
Within CPU Control
—_— —_— - Bus
Flags Control signals from
. P Control bus

Clock —— o

Control signals to

Control bus

Block Diagram of the Control Unit

l Coerdnsd =iy e

Ay L [et |
- e

Eoues

=EBgs ol skgnabs BeeT

o T

e

ol iyl Sefp el S Rl
Doyl Pacis

Slock Dragrarm ol the Cantool Unit

https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/

//_

\ » To execute the instructions, the
: processor must have some means of
generating control signals needed in
the proper sequence.
« Computer designers use a wide

variety of technology to solve this
problem.

» This approach fall into two categories:
« i. Hardwired Control

e ii. Microprogrammed control

Hardwir _ontrol

/

The control units use fixed logic circuits to interpret instructions and
generate control signals from them

The fixed logic circuit block includes combinational circuit that generates th
. required control outputs for decoding and encoding functions.

1 1 i

L] .,

Fig. 3.10 Typical hardwired control unit

n deender decodes the instruction loaded in the Ir

Hardwired control

AL

~ e« Each steps in this sequence is
completed in one clock cycle.
» A counter may be used to keep the
track of the control steps.

» In the hardwired control, the control
unit use fixed logic circuits to interpret
instructions and generate control
signals from them.

 The required control signals are
determined by the following
information.

Contd.,

—— 1) contents of the control step counter
~« 2) contents of the instruction register
» 3) contents of the condition code flags

» 4) External input signals such as MFC
and interrupt request.

Flarcdsararaecd O aorrvbecrd

I_] P

-~

PR P P 8 e g
ok

kg |7

Stear oernerE b

]

=i

'J';-*— '|‘2+. .. _+"I."_.

=0k

il

BAR

o
[N oy Wy |

B —

S

I

Cawmereel sigEnaml=

Snanas aradd
P S L= 1 g]

Block Diagram of Microprogarmmed Control Memory ™

» Hold the microinstruction read from control memory

» Allows the execution of the microoperations specified by the control word
simultaneously with the generation of the next microinstruction

1 4) Control Data Register (=(Pi59/ine Register))

¢ Example(RISC Architecture Concept)

Figure 7.1 Microprogrammed control organization.

Extemal Next -
input ~>| address
generator
(sequencer)

Control
address

register

Control
memory
(ROM)

Control
data
register

0 RISC({Reduced Instruction Set Computer) system use hardwired control rather
than microprogrammed control

Control
word

Next-address information

Computer Systen Acchitectue

Microprogram control unit

Chap. 7 Microprogrammed Control

Dept. of Info. Of Computer

¢ Microinstruction : (Control Word in Control Memory)

0 The instruction store in control memory is called microinstruction (specifies one
or more microoperations)
® Microprogram
01 Microprogram is a sequence of microinstruction just like as program is a
sequence of program. It is two type as follow:
» Dynamic microprogramming : (Control Memory = RAM)
0 RAM can be used for writing (fo change a writable control memory)
0 Microprogram is loaded initially from an auxiliary memory such as a magnetic disk
» Static microprogramming : (Control Memory = ROM)
0 Control words in ROM are made pemanent during the hardware production.

User Program

Machine Instruction

|
|
|
l |

Microprogram
Microinstruction
Microoperation
Computer Systen Amhitecture Chap. 7 mcroprogrammed Control Dept. of Info. Of Computer
Micro programmed Control Organization -

¢ Microprogrammed control Organization :(Fig. 7-1)
1 1) Control Memory

» Computer Memory employs a micro programmed control unit
which have two separate memory

0 Main Memory : for storing user program (Machine
instruction/data)

0 Control Memory : for storing microprogram
(Microinstruction)
1 2) Control Address Register

» Specify the address of the microinstruction3) Sequencer (=
Next Address Generator)

» Determine the address sequence that is read from control
memory

» Next address of the next microinstruction can be specified

several way depending on the sequencer input : p. 217, [1, 2,
3, and 4]

Camputer Systen Achitecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Block Diagram of Microprogarmmed Control Memory ™

1 4) Control Data Register (=lPig—)eIine Register))

» Hold the microinstruction read from control memory

» Allows the execution of the microoperations specified by the control word
simultaneously with the generation of the next microinstruction

¢ Example(RISC Architecture Concept)

[RISC({Reduced Instruction Set Computer) system use hardwired control rather
than microprogrammed control

Figure 7-1 Microprogrammed control organization,

Extemnal —| Next- s
input address 4 pi Control Control |, Control
generator address L, memory [_, data word
(sequencer) register (ROM) register
Next-address information
Canputer System Amhitecture Chap. 7 Microprogrammed Control Dept. of Info. Of Computer

Microprogrammed Control Unit of a Basic Computer:

External ——p Control word

Control address

[EQISIE

Next - address information

Microprogrammed Control vs
Hardwired Control

It is a Mmicrapgragrarmn in It i=s the sequential circuit
contirod store that generates that generates control
cantrad sagnalks. signals_

Speaed of opeaeration is low, Speaed of ageration is higho
because it involves memory

access

Changes in contral behaviar Changess in caontrod unit
can be impiemensed easily behavior can e

By madifying the impdermentect anly by
mMilcroinstruction iIn the regessgrning the entire unit.

Ccontrad store.

Microprogrammed control Hardwired control

It is the mucroprogram m control stoge thas It 1s the seqguential circust that
generaies coafrol signals senerates conltrol sagnals
Spead of eperation is Jow, Beeasse ot nvolves Speed of operatice 15 high
BOSEROTY A0CESS. ‘
Changes m control behavaor can be CEanges i control unat behaveor cam |
mplemented easily by medifying the be tmplementad only by redesigning
microinstniction in the control stoge the catire unit

Comparison between Hardwired and 5
Microprogrammed Control Unit

S MNo | Aditate | Hardwired Micropeoge srrensd

1 Soeedt Fanz Sow

2 Coal o Ve Oheeg
AL R as Bt MR

3 Mrglerseriatcn SecuunThl ovoud PYograsyeg
pErTach

4 Fac bty Not teatie accwe

s Aty 10 Dasio Do EaxLe
Sompinx raincicon

& Ui procexs Corrgicates Salsraic

7 Dododag ama Coovphax Eawy
Lpanong ogc

) fochcator NISC 2 GG

] Contrcd meensory riosarel Pyosom

10 GHE aaa Lean D

Computer Organization | Instruction Formats (Zero, One, Two and Three Address Instruction)

Computer perform task on the basis of instruction provided. A instruction in computer
comprises of groups called fields. These field contains different information as for computers
every thing is in 0 and 1 so each field has different significance on the basis of which a CPU
decide what so perform. The most common fields are:

« Operation field which specifies the operation to be performed like addition.

« Address field which contain the location of operand, i.e., register or memory location.

« Mode field which specifies how operand is to be founded.
A instruction is of various length depending upon the number of addresses it contain. Generally
CPU organization are of three types on the basis of number of address fields:

1. Single Accumulator organization

2. General register organization

3. Stack organization
In first organization operation is done involving a special register called accumulator. In second
on multiple registers are used for the computation purpose. In third organization the work on
stack basis operation due to which it does not contain any address field. It is not necessary that
only a single organization is applied a blend of various organization is mostly what we see
generally.

On the basis of number of address instruction are classified as:
Note that we will use X = (A+B)*(C+D) expression to showcase the procedure.

1. Zero Address Instructions —

A stack based computer do not use address field in instruction.To evaluate a expression
first it is converted to revere Polish Notation i.e. Post fix Notation.

Expression: X = (A+B)*(C+D)
Postfixed : X = AB+CD+*
TOP means top of stack

M[X] is any memory location

PUSH A TOP=A
PUSH B TOP=B
ADD TOP = A+B
PUSH C TOP=C
PUSH D TOP=D
ADD TOP = C+D
MUL TOP = (C+D)*(A+B)
POP X M[X] = TOP

2. One Address Instructions —
This use a implied ACCUMULATOR register for data manipulation.One operand is in
accumulator and other is in register or memory location.Implied means that the CPU
already know that one operand is in accumulator so there is no need to specify it.

Expression: X = (A+B)*(C+D)
AC is accumulator

M([] is any memory location
M[T] is temporary location

LOAD A AC = M[A]
ADD B AC = AC + M[B]
STORE T M[T] = AC
LOAD C AC = M[C]
ADD D AC = AC + M[D]
MUL T AC = AC * M[T]
STORE X M[X] = AC

3. Two Address Instructions —
This is common in commercial computers.Here two address can be specified in the
instruction.Unlike earlier in one address instruction the result was stored in accumulator
here result cab be stored at different location rather than just accumulator, but require more
number of bit to represent address.

Here destination address can also contain operand.
Expression: X = (A+B)*(C+D)
R1, R2 are registers

M[] is any memory location

MOV R1, A R1 = M[A]

ADD R1, B R1=R1 + M[B]
MOV R2, C R2=C
ADD R2, D R2=R2+D
MUL R1, R2 R1=R1*R2
MOV X, R1 M[X] = R1

4. Three Address Instructions —
This has three address field to specify a register or a memory location. Program created are
much short in size but number of bits per instruction increase. These instructions make
creation of program much easier but it does not mean that program will run much faster
because now instruction only contain more information but each micro operation
(changing content of register, loading address in address bus etc.) will be performed in one
cycle only.

Expression: X = (A+B)*(C+D)
R1, R2 are registers

M[] is any memory location

ADD R1, A B R1 = M[A] + M[B]

ADD R2,C, D R2 = M[C] + M[D]

MUL X, R1,R2 M[X] = R1*R2

Hardware vs. Micro-programmed C\ON

* Microinstructions are fetched, decoded, and executed
in the same manner as regular instructions.

» This extra level of instruction interpretation is what
makes microprogrammed control slower than
hardwired control.

« The advantages of microprogrammed control are that it
can support very complicated instructions and only the
microprogram needs to be changed if the instruction
set changes (or an error is found).

23

Instruction cycle

Computer Instruction Cycle

Fetch Cycle Execution Cycle

START Fetch N.ext Executie HALT
Instruction Instruction

The instruction cycle (also known as the fetch—decode—execute cycle or simply the fetch-
execute cycle) is the cycle which the central processing unit (CPU) follows from boot-up until
the computer has shut down in order to process instructions. It is composed of three main
stages: the fetch stage, the decode stage, and the execute stage.

This is a simple diagram illustrating the individual stages of the fetch-decode-execute cycle.

In simpler CPUs, the instruction cycle is executed sequentially, each instruction being
processed before the next one is started. In most modern CPUs, the instruction cycles are
instead executed concurrently, and often in parallel, through an instruction pipeline: the next
instruction starts being processed before the previous instruction has finished, which is possible
because the cycle is broken up into separate.

Execution of a complete instruction

| START OF CYCILE |

-

Aaddress i BT copeed bo R

-

s s el e BO pscerl® T B
(Tl ol ot g T |

Feioh Shage
-

Instrueckion found 3t address
described by MEaER copied
Ex ERhe MIDR

”

IresEruncticerm im DR oopeiead
Lt the CIR

CU decosdes the conbents
T Thes IR el Sk agee

-

TU sends sigmals to relewant
ES PO [g ALLY E soc nbe Shages

ks
| EMND OF CYWCLIE |

Microinstruction Sequencing:

A micro-program control unit can be viewed as consisting of two parts:

1. The control memory that stores the microinstructions.
2. Sequencing circuit that controls the generation of the next address.

A micro-program sequencer attached to a control memory inputs certain bits of the
microinstruction, from which it determines the next address for control memory. A typical
sequencer provides the following address-sequencing capabilities:

1. Increment the present address for control memory.
2. Branches to an address as specified by the address field of the micro instruction.
3. Branches to a given address if a specified status bit is equal to 1.

4. Transfer control to a new address as specified by an external source (Instruction
Register).
5. Has a facility for subroutine calls and returns.

Depending on the current microinstruction condition flags, and the contents of the instruction
register, a control memory address must be generated for the next micro instruction.

There are three general techniques based on the format of the address information in the
microinstruction:

1. Two Address Field.
2. Single Address Field.
3. Variable Format

Two Address Field:

CMAR <

I

Address
decoder

5 Control Address 1 | Address
Buffer onto \ddress ddress 2

Fags 5 er_‘-i:h Address Multiplexer <:
Loge Selection

<

-

AMODOoONmMmoE

The simplest approach is to provide two address field in each microinstruction and multiplexer
Is provided to select:

« Address from the second address field.
« Starting address based on the OPcode field in the current instruction.

The address selection signals are provided by a branch logic module whose input consists of
control unit flags plus bits from the control partition of the micro instruction.

Single Address Field:

Two-address approach is simple but it requires more bits in the microinstruction. With a
simpler approach, we can have a single address field in the micro instruction with the following
options for the next address.

« Address Field.
« Based on OPcode in instruction register.
« Next Sequential Address.

| E—

Address
decoder

U ‘
Incementer
:> Contorl
Memory

guffer Control Address
Register lt
4 S0 T
L O E
& e C
R EN ey e] e
Logic Selection D R
E
R

The address selection signals determine which option is selected. This approach reduces the
number of address field to one. In most cases (in case of sequential execution) the address field

will not be used. Thus the microinstruction encoding does not efficiently utilize the entire
microinstruction.

Variable Format:

e

Address
decoder

U :
Incrementer

Contorl
Memory

Buffer [| I I
Regider
Branch Entire] Address

Cantrol field | feld
field W

Enabie h Gaeand
. function
logic

5

Branch —>

Maultinlexer =
Logic >

Flags ——>

»TmMmOoOoOMMMoO

Fig. 3.41: Branch control logic, variable format
In this approach, there are two entirely different microinstruction formats. One bit designates
which format is being used. In this first format, the remaining bits are used to activate control
signals. In the second format, some bits drive the branch logic module, and the remaining bits
provide the address. With the first format, the next address is either the next sequential address

or an address derived from the instruction register. With the second format, either a conditional
or unconditional branch is specified.

Horizontal Microprogramming

In horizontal microprogramming, each bit is identified specifically with a single control point,
which indicates that the corresponding micro-operation is to be executed. Since each
microinstruction is capable enough to control several resources simultaneously, it has the
potential advantage of more efficient hardware utilization and in addition, it requires smaller
number of microinstructions per microprogram. It allows higher degree of parallelism with a
minimum amount of encoding and separate control fields. However, developing microprograms
that use resources optimally or efficiently is a complex task. Horizontal microprogramming
offers great flexibility because each control bit is independent of each other. It has greater

length so it typically contains more information than vertical microinstructions.

"

—— .
e A
Mmoo Jn munnnda.u

ml%t ‘_, _-:l e
B J s
LB
S
,'!’ ity R

b
‘uhi'ﬁ: o Cll-b-l"i..'il'unﬁ_-’

Vertical Microprogramming

Vertical microprogramming employs a variable format and higher degree of encoding, as
opposed to horizontal microprogramming. It not only shortens the length of the
microinstruction, but also prevents the increasing memory capacity from directly affecting the

microinstruction length. Each vertical microinstruction generally represents a single micro-

operation. A code is used for each micro-operation to be performed and the decoder translates
the code into individual control signals. Because only the micro-operation to be performed is
specified, the microinstruction fields are fully utilized. Plus vertical microprograms are easier to
write than their horizontal counterparts. Vertical microinstruction resembles the conventional
machine language format comprising one operation and a few operands. It is consequently easy
to use for microprogramming. It generally consists of four to six fields that require

approximately 16 to 32 bits per instruction.

Difference between Horizontal and Vertical Microprogramming

Encoding

Vertical microprogramming employs a variable format and a higher degree of encoding, as
opposed to horizontal microprogramming. In vertical microprogramming, the control bits are
encoded with each code being used for each action to be performed and an instruction decoder
decodes the code into multiple control signals. On the contrary, horizontal microprogramming
involves horizontal microinstructions that use no encoding at all. They represent each control
bit in the datapath assigned with a separate bit in the microinstruction format. Every bit in the

control field is attached to a control line.
Sequence

Horizontal microprogramming generally follows a sequential approach to specify the next
microinstruction in a microprogram, similar to conventional machine language format. Each bit
Is identified specifically with a single control point, which indicates that the corresponding
micro-operation is to be executed. Special conditional and unconditional branch
microinstructions are then required to break the sequence. Vertical microprogramming may use
a relatively addressing scheme in which a few bits are required to specify a relative forward or a

backward jump. This requires address computation at every step.
Design

— Vertical microprograms have a better code density which is beneficial for the size of the
control store. Vertical microinstruction resembles the conventional machine language format
comprising one operation and a few operands. Each vertical microinstruction represents a single

micro-operation, while operands may specify the data sink and source. Horizontal

http://www.differencebetween.net/object/auto-object/difference-between-certified-pre-owned-and-used/
http://www.differencebetween.net/technology/difference-between-forward-and-redirect/
http://www.differencebetween.net/technology/difference-between-while-and-do-while-loop/

microprograms, on the other hand, generally represent multiple micro-operations that are
executed at the same time. In extreme cases, each horizontal microinstruction controls several
hardware resources simultaneously.

Flexibility

— Horizontal microprograms offer improved flexibility because each control bit is independent
of each other. It has greater length so it typically contains more information than vertical
microinstructions. Horizontal microinstructions with 48 or more bits are quite common.
Horizontal microprograms have the potential advantage of utilizing hardware more efficiently
and on top of it, it requires smaller numbers of microinstructions per microprogram. Vertical
microinstructions, on the other hand, are more compact but less flexible than horizontal

microinstructions. The vertical approach is consequently easy to use for microprogramming.

Horizontal vs. Vertical Microprogramming: Comparison Chart

Horizontal

VS

Vertical Microprogramming

Comparison Chart

Horizontal
Microprogramming

Horizontal microprogram-
ming involves horizontal mi-
croinstructions that use no
encoding at all.

Horizontal microprogram-
ming generally follows a se-
quential approach to specify
the next microinstruction in
a microprogram.

Horizontal microprograms
generally represent multiple
micro-operations that are
executed at the same time.

Horizontal microprograms
offer improved flexibility
because each control bit is
independent of each other.

Vertical
Microprogramming

The control bits are encoded
in vertical microprogram-
ming.

Vertical microprogramming
may use a relatively address-
ing scheme.

Each vertical microinstruc-
tion represents a single mi-
cro-operation, while oper-
ands may specify the data
sink and source.

Vertical microinstructions
are more compact but less
flexible than horizontal
microinstructions are easier

to write.
Difference
Between.net

Summary of Horizontal and Vertical Microprogramming

As opposed to horizontal microinstructions, the vertical microinstruction represents single
micro-operations. Horizontal microprograms allow higher degree of parallelism with a
minimum amount of encoding and separate control fields whereas the control bits are encoded

in vertical microprograms. The choice between the two approaches needs to be made carefully.

However, in practical, designers use a combination of horizontal and vertical microinstruction

formats so that the resulting structure is compact yet efficient.

Adressing Modes and Instruction Cycle

The operation field of an instruction specifies the operation to be performed. This operation will
be executed on some data which is stored in computer registers or the main memory. The way
any operand is selected during the program execution is dependent on the addressing mode of
the instruction. The purpose of using addressing modes is as follows:

1. To give the programming versatility to the user.
2. To reduce the number of bits in addressing field of instruction.

Types of Addressing Modes

Below we have discussed different types of addressing modes one by one:

Immediate Mode

In this mode, the operand is specified in the instruction itself. An immediate mode instruction
has an operand field rather than the address field.

For example: ADD 7, which says Add 7 to contents of accumulator. 7 is the operand here.

Register Mode

In this mode the operand is stored in the register and this register is present in CPU. The
instruction has the address of the Register where the operand is stored.

http://www.differencebetween.net/object/comparisons-of-food-items/difference-between-prime-and-choice/

Instruction

Opcode Register Address R

v& Register, in CPU

Operand

Advantages

« Shorter instructions and faster instruction fetch.
« [Faster memory access to the operand(s)

Disadvantages

« Very limited address space
« Using multiple registers helps performance but it complicates the instructions.

Register Indirect Mode

In this mode, the instruction specifies the register whose contents give us the address of
operand which is in memory. Thus, the register contains the address of operand rather than the
operand itself.

Instruction Memory

liegi’sten Address R

l g—> Operond
Register, in CPU

Pointer to
Operand

<

Auto Increment/Decrement Mode

In this the register is incremented or decremented after or before its value is used.

Direct Addressing Mode

In this mode, effective address of operand is present in instruction itself.

« Single memory reference to access data.

« No additional calculations to find the effective address of the operand.

Instruction
o s L=

For Example: ADD R1, 4000 - In this the 4000 is effective address of operand.
NOTE: Effective Address is the location where operand is present.

Indirect Addressing Mode

In this, the address field of instruction gives the address where the effective address is stored in
memory. This slows down the execution, as this includes multiple memory lookups to find the

operand.

Instruction
Address A

| Pointer o
Oi o

Memory

Displacement Addressing Mode

In this the contents of the indexed reqgister is added to the Address part of the instruction, to
obtain the effective address of operand.

EA = A + (R), In this the address field holds two values, A(which is the base value) and R(that
holds the displacement), or vice versa.

Instruction

_ Memory
I Operand

Register, in CPU

Pointer to

Relative Addressing Mode

It is a version of Displacement addressing mode.

In this the contents of PC(Program Counter) is added to address part of instruction to obtain the
effective address.

EA = A + (PC), where EA is effective address and PC is program counter.

The operand is A cells away from the current cell(the one pointed to by PC)

Base Register Addressing Mode

It is again a version of Displacement addressing mode. This can be defined as EA = A + (R),
where A is displacement and R holds pointer to base address.

Stack Addressing Mode

In this mode, operand is at the top of the stack. For example: ADD, this instruction
will POP top two items from the stack, add them, and will then PUSH the result to the top of
the stack.

Instruction Cycle

An instruction cycle, also known as fetch-decode-execute cycle is the basic operational process
of a computer. This process is repeated continuously by CPU from boot up to shut down of

computer.
Following are the steps that occur during an instruction cycle:

1. Fetch the Instruction

The instruction is fetched from memory address that is stored in PC(Program Counter) and
stored in the instruction reqister IR. At the end of the fetch operation, PC is incremented by 1
and it then points to the next instruction to be executed.

2. Decode the Instruction

The instruction in the IR is executed by the decoder.

3. Read the Effective Address

If the instruction has an indirect address, the effective address is read from the memory.
Otherwise operands are directly read in case of immediate operand instruction.

4. Execute the Instruction

The Control Unit passes the information in the form of control signals to the functional unit of
CPU. The result generated is stored in main memory or sent to an output device.

The cycle is then repeated by fetching the next instruction. Thus in this way the instruction
cycle is repeated continuously.

