
Introduction of Control Unit and its Design

Control Unit is the part of the computer’s central processing unit (CPU), which directs the

operation of the processor. It was included as part of the Von Neumann Architecture by John

von Neumann. It is the responsibility of the Control Unit to tell the computer’s memory,

arithmetic/logic unit and input and output devices how to respond to the instructions that have

been sent to the processor. It fetches internal instructions of the programs from the main

memory to the processor instruction register, and based on this register contents, the control

unit generates a control signal that supervises the execution of these instructions.

A control unit works by receiving input information to which it converts into control signals,

which are then sent to the central processor. The computer’s processor then tells the attached

hardware what operations to perform. The functions that a control unit performs are dependent

on the type of CPU because the architecture of CPU varies from manufacturer to manufacturer.

Examples of devices that require a CU are:

 Control Processing Units(CPUs)

 Graphics Processing Units(GPUs)

https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/

Microprogram control unit

Computer Organization | Instruction Formats (Zero, One, Two and Three Address Instruction)

Computer perform task on the basis of instruction provided. A instruction in computer

comprises of groups called fields. These field contains different information as for computers

every thing is in 0 and 1 so each field has different significance on the basis of which a CPU

decide what so perform. The most common fields are:

 Operation field which specifies the operation to be performed like addition.

 Address field which contain the location of operand, i.e., register or memory location.

 Mode field which specifies how operand is to be founded.

A instruction is of various length depending upon the number of addresses it contain. Generally

CPU organization are of three types on the basis of number of address fields:

1. Single Accumulator organization

2. General register organization

3. Stack organization

In first organization operation is done involving a special register called accumulator. In second

on multiple registers are used for the computation purpose. In third organization the work on

stack basis operation due to which it does not contain any address field. It is not necessary that

only a single organization is applied a blend of various organization is mostly what we see

generally.

On the basis of number of address instruction are classified as:

Note that we will use X = (A+B)*(C+D) expression to showcase the procedure.

1. Zero Address Instructions –

A stack based computer do not use address field in instruction.To evaluate a expression

first it is converted to revere Polish Notation i.e. Post fix Notation.

Expression: X = (A+B)*(C+D)

Postfixed : X = AB+CD+*

TOP means top of stack

M[X] is any memory location

PUSH A TOP = A

PUSH B TOP = B

ADD

TOP = A+B

PUSH C TOP = C

PUSH D TOP = D

ADD

TOP = C+D

MUL

TOP = (C+D)*(A+B)

POP X M[X] = TOP

2. One Address Instructions –

This use a implied ACCUMULATOR register for data manipulation.One operand is in

accumulator and other is in register or memory location.Implied means that the CPU

already know that one operand is in accumulator so there is no need to specify it.

Expression: X = (A+B)*(C+D)

AC is accumulator

M[] is any memory location

M[T] is temporary location

LOAD A AC = M[A]

ADD B AC = AC + M[B]

STORE T M[T] = AC

LOAD C AC = M[C]

ADD D AC = AC + M[D]

MUL T AC = AC * M[T]

STORE X M[X] = AC

3. Two Address Instructions –

This is common in commercial computers.Here two address can be specified in the

instruction.Unlike earlier in one address instruction the result was stored in accumulator

here result cab be stored at different location rather than just accumulator, but require more

number of bit to represent address.

Here destination address can also contain operand.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

MOV R1, A R1 = M[A]

ADD R1, B R1 = R1 + M[B]

MOV R2, C R2 = C

ADD R2, D R2 = R2 + D

MUL R1, R2 R1 = R1 * R2

MOV X, R1 M[X] = R1

4. Three Address Instructions –

This has three address field to specify a register or a memory location. Program created are

much short in size but number of bits per instruction increase. These instructions make

creation of program much easier but it does not mean that program will run much faster

because now instruction only contain more information but each micro operation

(changing content of register, loading address in address bus etc.) will be performed in one

cycle only.

Expression: X = (A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

ADD R1, A, B R1 = M[A] + M[B]

ADD R2, C, D R2 = M[C] + M[D]

MUL X, R1, R2 M[X] = R1 * R2

Instruction cycle

The instruction cycle (also known as the fetch–decode–execute cycle or simply the fetch-

execute cycle) is the cycle which the central processing unit (CPU) follows from boot-up until

the computer has shut down in order to process instructions. It is composed of three main

stages: the fetch stage, the decode stage, and the execute stage.

This is a simple diagram illustrating the individual stages of the fetch-decode-execute cycle.

In simpler CPUs, the instruction cycle is executed sequentially, each instruction being

processed before the next one is started. In most modern CPUs, the instruction cycles are

instead executed concurrently, and often in parallel, through an instruction pipeline: the next

instruction starts being processed before the previous instruction has finished, which is possible

because the cycle is broken up into separate.

Execution of a complete instruction

Microinstruction Sequencing:

A micro-program control unit can be viewed as consisting of two parts:

1. The control memory that stores the microinstructions.

2. Sequencing circuit that controls the generation of the next address.

A micro-program sequencer attached to a control memory inputs certain bits of the

microinstruction, from which it determines the next address for control memory. A typical

sequencer provides the following address-sequencing capabilities:

1. Increment the present address for control memory.

2. Branches to an address as specified by the address field of the micro instruction.

3. Branches to a given address if a specified status bit is equal to 1.

4. Transfer control to a new address as specified by an external source (Instruction

Register).

5. Has a facility for subroutine calls and returns.

Depending on the current microinstruction condition flags, and the contents of the instruction

register, a control memory address must be generated for the next micro instruction.

There are three general techniques based on the format of the address information in the

microinstruction:

1. Two Address Field.

2. Single Address Field.

3. Variable Format

Two Address Field:

The simplest approach is to provide two address field in each microinstruction and multiplexer

is provided to select:

 Address from the second address field.

 Starting address based on the OPcode field in the current instruction.

The address selection signals are provided by a branch logic module whose input consists of

control unit flags plus bits from the control partition of the micro instruction.

Single Address Field:

Two-address approach is simple but it requires more bits in the microinstruction. With a

simpler approach, we can have a single address field in the micro instruction with the following

options for the next address.

 Address Field.

 Based on OPcode in instruction register.

 Next Sequential Address.

The address selection signals determine which option is selected. This approach reduces the

number of address field to one. In most cases (in case of sequential execution) the address field

will not be used. Thus the microinstruction encoding does not efficiently utilize the entire

microinstruction.

Variable Format:

In this approach, there are two entirely different microinstruction formats. One bit designates

which format is being used. In this first format, the remaining bits are used to activate control

signals. In the second format, some bits drive the branch logic module, and the remaining bits

provide the address. With the first format, the next address is either the next sequential address

or an address derived from the instruction register. With the second format, either a conditional

or unconditional branch is specified.

Horizontal Microprogramming

In horizontal microprogramming, each bit is identified specifically with a single control point,

which indicates that the corresponding micro-operation is to be executed. Since each

microinstruction is capable enough to control several resources simultaneously, it has the

potential advantage of more efficient hardware utilization and in addition, it requires smaller

number of microinstructions per microprogram. It allows higher degree of parallelism with a

minimum amount of encoding and separate control fields. However, developing microprograms

that use resources optimally or efficiently is a complex task. Horizontal microprogramming

offers great flexibility because each control bit is independent of each other. It has greater

length so it typically contains more information than vertical microinstructions.

Vertical Microprogramming

Vertical microprogramming employs a variable format and higher degree of encoding, as

opposed to horizontal microprogramming. It not only shortens the length of the

microinstruction, but also prevents the increasing memory capacity from directly affecting the

microinstruction length. Each vertical microinstruction generally represents a single micro-

operation. A code is used for each micro-operation to be performed and the decoder translates

the code into individual control signals. Because only the micro-operation to be performed is

specified, the microinstruction fields are fully utilized. Plus vertical microprograms are easier to

write than their horizontal counterparts. Vertical microinstruction resembles the conventional

machine language format comprising one operation and a few operands. It is consequently easy

to use for microprogramming. It generally consists of four to six fields that require

approximately 16 to 32 bits per instruction.

Difference between Horizontal and Vertical Microprogramming

Encoding

Vertical microprogramming employs a variable format and a higher degree of encoding, as

opposed to horizontal microprogramming. In vertical microprogramming, the control bits are

encoded with each code being used for each action to be performed and an instruction decoder

decodes the code into multiple control signals. On the contrary, horizontal microprogramming

involves horizontal microinstructions that use no encoding at all. They represent each control

bit in the datapath assigned with a separate bit in the microinstruction format. Every bit in the

control field is attached to a control line.

Sequence

Horizontal microprogramming generally follows a sequential approach to specify the next

microinstruction in a microprogram, similar to conventional machine language format. Each bit

is identified specifically with a single control point, which indicates that the corresponding

micro-operation is to be executed. Special conditional and unconditional branch

microinstructions are then required to break the sequence. Vertical microprogramming may use

a relatively addressing scheme in which a few bits are required to specify a relative forward or a

backward jump. This requires address computation at every step.

Design

– Vertical microprograms have a better code density which is beneficial for the size of the

control store. Vertical microinstruction resembles the conventional machine language format

comprising one operation and a few operands. Each vertical microinstruction represents a single

micro-operation, while operands may specify the data sink and source. Horizontal

http://www.differencebetween.net/object/auto-object/difference-between-certified-pre-owned-and-used/
http://www.differencebetween.net/technology/difference-between-forward-and-redirect/
http://www.differencebetween.net/technology/difference-between-while-and-do-while-loop/

microprograms, on the other hand, generally represent multiple micro-operations that are

executed at the same time. In extreme cases, each horizontal microinstruction controls several

hardware resources simultaneously.

Flexibility

– Horizontal microprograms offer improved flexibility because each control bit is independent

of each other. It has greater length so it typically contains more information than vertical

microinstructions. Horizontal microinstructions with 48 or more bits are quite common.

Horizontal microprograms have the potential advantage of utilizing hardware more efficiently

and on top of it, it requires smaller numbers of microinstructions per microprogram. Vertical

microinstructions, on the other hand, are more compact but less flexible than horizontal

microinstructions. The vertical approach is consequently easy to use for microprogramming.

Horizontal vs. Vertical Microprogramming: Comparison Chart

Summary of Horizontal and Vertical Microprogramming

As opposed to horizontal microinstructions, the vertical microinstruction represents single

micro-operations. Horizontal microprograms allow higher degree of parallelism with a

minimum amount of encoding and separate control fields whereas the control bits are encoded

in vertical microprograms. The choice between the two approaches needs to be made carefully.

However, in practical, designers use a combination of horizontal and vertical microinstruction

formats so that the resulting structure is compact yet efficient.

Adressing Modes and Instruction Cycle

The operation field of an instruction specifies the operation to be performed. This operation will

be executed on some data which is stored in computer registers or the main memory. The way

any operand is selected during the program execution is dependent on the addressing mode of

the instruction. The purpose of using addressing modes is as follows:

1. To give the programming versatility to the user.

2. To reduce the number of bits in addressing field of instruction.

Types of Addressing Modes

Below we have discussed different types of addressing modes one by one:

Immediate Mode

In this mode, the operand is specified in the instruction itself. An immediate mode instruction

has an operand field rather than the address field.

For example: ADD 7, which says Add 7 to contents of accumulator. 7 is the operand here.

Register Mode

In this mode the operand is stored in the register and this register is present in CPU. The

instruction has the address of the Register where the operand is stored.

http://www.differencebetween.net/object/comparisons-of-food-items/difference-between-prime-and-choice/

Advantages

 Shorter instructions and faster instruction fetch.

 Faster memory access to the operand(s)

Disadvantages

 Very limited address space

 Using multiple registers helps performance but it complicates the instructions.

Register Indirect Mode

In this mode, the instruction specifies the register whose contents give us the address of

operand which is in memory. Thus, the register contains the address of operand rather than the

operand itself.

Auto Increment/Decrement Mode

In this the register is incremented or decremented after or before its value is used.

Direct Addressing Mode

In this mode, effective address of operand is present in instruction itself.

 Single memory reference to access data.

 No additional calculations to find the effective address of the operand.

For Example: ADD R1, 4000 - In this the 4000 is effective address of operand.

NOTE: Effective Address is the location where operand is present.

Indirect Addressing Mode

In this, the address field of instruction gives the address where the effective address is stored in

memory. This slows down the execution, as this includes multiple memory lookups to find the

operand.

Displacement Addressing Mode

In this the contents of the indexed register is added to the Address part of the instruction, to

obtain the effective address of operand.

EA = A + (R), In this the address field holds two values, A(which is the base value) and R(that

holds the displacement), or vice versa.

Relative Addressing Mode

It is a version of Displacement addressing mode.

In this the contents of PC(Program Counter) is added to address part of instruction to obtain the

effective address.

EA = A + (PC), where EA is effective address and PC is program counter.

The operand is A cells away from the current cell(the one pointed to by PC)

Base Register Addressing Mode

It is again a version of Displacement addressing mode. This can be defined as EA = A + (R),

where A is displacement and R holds pointer to base address.

Stack Addressing Mode

In this mode, operand is at the top of the stack. For example: ADD, this instruction

will POP top two items from the stack, add them, and will then PUSH the result to the top of

the stack.

Instruction Cycle

An instruction cycle, also known as fetch-decode-execute cycle is the basic operational process

of a computer. This process is repeated continuously by CPU from boot up to shut down of

computer.

Following are the steps that occur during an instruction cycle:

1. Fetch the Instruction

The instruction is fetched from memory address that is stored in PC(Program Counter) and

stored in the instruction register IR. At the end of the fetch operation, PC is incremented by 1

and it then points to the next instruction to be executed.

2. Decode the Instruction

The instruction in the IR is executed by the decoder.

3. Read the Effective Address

If the instruction has an indirect address, the effective address is read from the memory.

Otherwise operands are directly read in case of immediate operand instruction.

4. Execute the Instruction

The Control Unit passes the information in the form of control signals to the functional unit of

CPU. The result generated is stored in main memory or sent to an output device.

The cycle is then repeated by fetching the next instruction. Thus in this way the instruction

cycle is repeated continuously.

