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56 DIFFERENTIAL EQUATIONS
Definition of the Laplace Transform
Let f(x) be defined for 0 < x < o and let s denote an arbitrary real vari-

able. The Laplace transform of f(x), designated by either & { f(x)} or F(s),
is

L0} = Fs)= [e™ f(x)dx 8.1)
0

for all values of s for which the improper integral converges. Conver-
gence occurs when the limit

R
lim [e™ f(x)dx (8.2)
R—oo 0

exists. If this limit does not exist, the improper integral diverges and f(x)
has no Laplace transform. When evaluating the integral in Equation 8.1,
the variable s is treated as a constant because the integration is with re-
spect to x.

The Laplace transforms for a number of elementary functions are
given in Appendix A.

Properties of Laplace Transforms
Property 8.1 (Linearity). If £{f(x)} = F(s) and £{g(x)} = G(s), then
for any two constants ¢, and c,
Llc f(x) +c,80} =, L{f(0} + c,£{g)} (8.3)
=, F(5) + c,G(s)
Property 8.2. If £{ f(x)} = F(s), then for any constant a
L{e“f(x)} = F(s — a) (84)

Property 8.3. If £{ f(x)} = F(s), then for any positive integer n
dn
ds”

2" f(0))= (D" —[F(s)] (8.5)
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Property 8.4. If £{f(x)} = F(s) and if liII(l) f® exists, then
x—

X
x>0
513{1 f(x)} = [ F@yar (8.6)
x s
Property 8.5. If £{ f(x)} = F(s), then
i 1
se{j f(t)dt} == F(s) 8.7)
0 S

Property 8.6. If f(x) is periodic with period o, that is, f(x + ®) =f(x), then

[ fx)dx
Lif(0)}= 01_7 (3.8)

Functions of Other Independent Variables

For consistency only, the definition of the Laplace transform and its prop-
erties, Equations 8.1 through 8.8, are presented for functions of x. They
are equally applicable for functions of any independent variable and are
generated by replacing the variable x in the above equations by any vari-
able of interest. In particular, the counter part of Equation 8.1 for the
Laplace transform of a function of ¢ is

L)) = F(s)=[ ™ f(ode
0

Definition of the Inverse Laplace Transform

An inverse Laplace transform of F(s) designated by £ 1{F(s)}, is an-
other function f(x) having the property that £{f(x)} = F(s).

The simplest technique for identifying inverse Laplace transforms is
to recognize them, either from memory or from a table such as in the Ap-
pendix. If F(s) is not in a recognizable form, then occasionally it can be
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transformed into such a form by algebraic manipulation. Observe from
the Appendix that almost all Laplace transforms are quotients. The rec-
ommended procedure is to first convert the denominator to a form that
appears in the Appendix and then the numerator.

Manipulating Denominators

The method of completing the square converts a quadratic polynomial
into the sum of squares, a form that appears in many of the denominators
in the Appendix. In particular, for the quadratic

2 b
as“+bs+c =a|s”+—s|+c

=a(s+k)>+h*

where k =b/2a and h=+/c—(b*/4a).

The method of partial fractions transforms a function of the form
a(s)/b(s), where both a(s) and b(s) are polynomials in s, into the sum of
other fractions such that the denominator of each new fraction is either a
first-degree or a quadratic polynomial raised to some power. The method
requires only that the degree of a(s) be less than the degree of b(s) (if this
is not the case, first perform long division, and consider the remainder
term) and b(s) be factored into the product of distinct linear and quadrat-
ic polynomials raised to various powers.

The method is carried out as follows. To each factor of b(s) of the
form (s — a)™, assign a sum of m fractions, of the form

A A, A

m

+ St
s—a (s—a) (s—a)"

To each factor of b(s) of the form (s> + bs + )P, assign a sum of p frac-
tions, of the form

Bis+C, . Bys+C, . B,s+C,
s2+bs+c (s +bs+c)? (s> +bs+c)’
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Here A, Bj, and C, (i=1,2,...,m; j, k=12,..., p) are constants which still
must be determined.

Set the original fraction a(s)/b(s) equal to the sum of the new frac-
tions just constructed. Clear the resulting equation of fractions and then
equate coefficients of like powers of s, thereby obtaining a set of simul-
taneous linear equations in the unknown constants A, Bj, and C,. Final-
ly, solve these equations for A, Bj, and C,.

Manipulating Numerators
A factor s — a in the numerator may be written in terms of the factor s —
b, where both a and b are constants, through the identity s —a= (s — b) +

(b— a). The multiplicative constant g in the numerator may be written ex-
plicitly in terms of the multiplicative constant b through the identity

a
a—;(b)

Both identities generate recognizable inverse Laplace transforms when
they are combined with:

Property 8.7 (Linearity). If the inverse Laplace transforms of two func-
tions F(s) and G(s) exist, then for any constants ¢, and c,,

LMo F(5)+0,G(9)} =c; L7 {F ()} + e, L7 {G(s))

Convolutions

The convolution of two functions f(x) and g(x) is

F) %80 = [ fB)g(x—)dt
0 (8.9)

Theorem 8.1. f(x) * g(x) = g(x) * f(x).

Theorem 8.2. (Convolution Theorem). If £{f(x)} = F(s) and £{g(x)}
= G(s), then £{f(x) * g(x)} =L{f(x)} £{g(0} = F(s)G(s)
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You Need to Know /

The inverse Laplace transform of a product is
computed using a convolution.

LUF(s)G(s)} =f(x)*g(x) =g(x)*f(x)  (8.10)

If one of the two convolutions in Equation 8.10 is simpler to calculate,
then that convolution is chosen when determining the inverse Laplace
transform of a product.

Unit Step Function

The unit step function u(x) is defined as

_ 0 x<0
u(x)= 1 x=20

As an immediate consequence of the definition, we have for any num-
ber ¢,

_ {0 x<c
ulx—c)=

1 x2¢

The graph of u(x — ¢) is given in Figure 8-1.

u{x-c)
A

Figure 8-1
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Theorem 8.3. L{u(x—c)}= l.‘3_‘”.
§

Translations

Given a function f(x) defined for x = 0, the function

0 x<c
flx—¢c) xzc

u(x—c)f(x—c)={

represents a shift, or translation, of the function f(x) by ¢ units in the pos-
itive x-direction. For example, if f(x) is given graphically by Figure 8-2,
then u(x — ¢)f(x — ¢) is given graphically by Figure 8-3.

fix )

/\_//"

Figure 8-2

wix=e)flx=¢)

(\/"

.
Ll
i

Figure 8-3
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Theorem 8.4. If F(s) = £{f(x)}, then
Flu(x—c)f(x—c)}=e “F(s)

Conversely,

0 x<c
flx—¢) x2c¢

LU CF(s) = u(x—c) f(x—c) = {

Solved Problems
Solved Problem 8.1 Find $£{e*}.

Using Equation 8.1, we obtain

oo R
F(s)= je‘”‘e“"dx = lim Je(“_s)xdx
0 0

R—oo

=R
. e(a—s)x x ] e(a—s)R -1
= lim =lim| —
Roel a—§ 0 R—>o9 a—=s

x=

=L(fors> a)
—-a

Note that when s < g, the improper integral diverges. (See also entry 7 in
the Appendix.)

Solved Problem 8.2 Find & {xe*}.
This problem can be done three ways.

(a) Using entry 14 of the Appendix with n =2 and a = 4, we have
directly that

dxy _
Fxe )= —(s 27

(b) Set flix) = x. Using Property 8.2 with a =4 and entry 2 of the Ap-
pendix, we have
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1
Fl)=2{f(x)) = £x} = 7z

and
_
(s—4)°

(c) Set f(x) = ¢*. Using Property 8.3 with n = 1 and the results of
Problem 8.1, or alternatively, entry 7 of the Appendix witha =4

Pl x)=F(s—4)=

we find that
. 1
F(9)=2{f(x)=%(e™) =
s—4
and
Fixe™y=—F'(s)= —i( ! ) S 5
ds\s—4) (s—4)
Solved Problem 8.3 Use partial fractions to decompose L
(s—2)(s+1)

To the linear factors s — 2 and s + 1, we associate respectively the
fractions A/(s — 2) and B/(s + 1). We set

s+3 _ A + B
(s—=2)(s+1) s—2 s+1

and, upon clearing fractions, obtain

s+3=A(s+1)+B(s—2) (8.11)
To find A and B, we substitute s = —1 and s =2 into 8.11, we immediate-
ly obtain A = 5/3 and B =—-2/3. Thus,

s+3  _5/3 2/3
(s—=2)(s+1) s—-2 s+1

_ +3
. $ 1 S— .
Solved Problem 8.4 Find { (s—2)(s+ 1)}
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No function of this form appears in the Appendix. Using the results
of Problem 8.3 and Property 8.7, we obtain

g1 _ s+3 =§§g-1 {L}_ggg-l {L}
(s—2)(s+1)] 3 s—=2) 3 s+1

"3 73
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Laplace Transforms of Derivatives

Denote £{y(x)} by ¥(s). Then under very broad conditions, the Laplace
transform of the nth-derivative (n = 1,2,3,...) of y(x) is

n = nY _ ol 0-_n—2 »0-_
¥ d,: s Y(s)—s (y_(z) s (y_(i) ©.1)
dx =y (0) -y (0)
If the initial conditions on y(x) at x =0 are given by
Y0)=co,y' (0)=cp,....y" (O)=¢,, 9.2)

65
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then (9.1) can be rewritten as

dxn

For the special cases of n =1 and n =2, Equation 9.3 simplifies to

${d y} =5"Y(5)—cos" "~ T — i —Cpas — 0oy (9.3)

Ly’ (x)} =5Y(s)— ¢y (9.4)

Ly (x)) =57Y(8) - cos — ¢ (9.5)

* Note!

Laplace transforms convert differential equations
into algebraic equations.

Solutions of Linear Differential Equations
with Constant Coefficients

Laplace transforms are used to solve initial-value problems given by the
nth-order linear differential equation with constant coefficients
n n-1

b,,%+bn_l%+---+b,%+b0y=g(x) 9.6)
together with the initial conditions specified in Equation 9.2. First, take
the Laplace transform of both sides of Equation 9.6, thereby obtaining an
algebraic equation for Y(s). Then solve for Y(s) algebraically, and final-
ly take inverse Laplace transforms to obtain y(x) = £-1{ Y(s)].

Unlike previous methods, where first the
differential equation is solved and then the
initial conditions are applied to evaluate
the arbitrary constants, the Laplace trans-
form method solves the entire initial-value
problem in one step. There are two excep-
tions: when no initial conditions are speci-
fied and when the initial conditions are not
at x = 0. In these situations, ¢, through ¢,
in Equations 9.2 and 9.3 remain arbitrary
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and the solution to differential equation 9.6 is found in terms of these con-
stants. They are then evaluated separately when appropriate subsidiary
conditions are provided.

Solutions of Linear Systems

Laplace transforms are useful for solving systems of linear differential
equations; that is, sets of two or more differential equations with an equal
number of unknown functions. If all of the coefficients are constants, then
the method of solution is a straightforward generalization of the one de-
scribed above. Laplace transforms are taken of each differential equation
in the system; the transforms of the unknown functions are determined
algebraically from the resulting set of simultaneous equations; inverse
transforms for the unknown functions are calculated with the help of the
Appendix.

Solved Problems
Solved Problem 9.1 Solve y’—5y=¢*; y(0) = 0.

Taking the Laplace transform of both sides of this differential equation
and using Property 8.1, we find that L{y"}-5Z{y}= ${e’*}. Then, us-
ing the Appendix and Equation 9.4 with ¢, = 0, we obtain

1 . 1
[sY(s)—0]-5Y(s)= P from which Y(s)= —(s — 5)2

Finally, taking the inverse Laplace transform of Y(s), we obtain

Y00 =7 (¥(s)) = gg-l{(s _15)2 } 5

(see Appendix, entry 14).

Solved Problem 9.2 Solve the system
y'+z+y=0
Z, + yl - 0;
y0)=0, ¥ (0)=0, z(0)=1
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Denote £{y(x)} and £{z(x)} by Y(s) and Z(s) respectively. Then,
taking the Laplace transforms of both differential equations, we obtain

[s2Y(s)—(0)s —(0)]+ Z(s)+ Y(5) =0
[sZ(s)—1]+[sY(s)—0]=0

or

(s> +DY(s)+Z(5)=0

Y(s)+ Z(s) = 1
S

Solving this last system for Y(s) and Z(s), we find that

1 1 1
Y(S)=——3 Z(S)=—+—3
A S 5

Thus, taking inverse transforms, we conclude that

1 > 1 >
y(x) i 2(x) 5*



