MA/M.Sc. (SEMESTER-IV) (Orthogonal Polynomials)

Determinacy of £ in the Bounded Case

Definition

A polynomial q(x), not identically zero, is called *quasi-orthogonal polynomial of order n+1* if and only if it is of degree at most n+1 and

$$\pounds [\mathbf{x}^k q(\mathbf{x})] = 0$$
 for $k = 0, 1, \dots, n-1$.

Note that according to this definition $P_n(x)$ and $P_{n+1}(x)$ are both quasi-orthogonal polynomial of order n+1.

Theorem

(i) q(x) is a quasi-orthogonal polynomial of order n+1 if and only if there are constants A and B, not both zero, such that

$$q(x) = AP_{n+1}(x) + BP_n(x)$$

(ii) For each number z_0 , there is a quasi-orthogonal polynomial of order n+1, q(x), such that $q(z_0) = 0$. This q(x) is uniquely determined up to an arbitrary non-zero factor, and its degree is n+1 if and only if $P_n(z_0) \neq 0$.

Proof

Let

$$q(x) = AP_{n+1}(x) + BP_n(x)$$

then

$$\pounds \left[\mathbf{x}^{k} q(x) \right] = \pounds \left[\mathbf{A} \mathbf{x}^{k} P_{n+1}(x) + B \mathbf{x}^{k} P_{n}(x) \right], \qquad k = 0, 1, \dots, n-1$$
$$= A \pounds \left[\mathbf{x}^{k} P_{n+1}(x) \right] + B \pounds \left[\mathbf{x}^{k} P_{n+1}(x) \right]$$
$$= 0 \qquad \text{if} \quad |\mathbf{A}| + |\mathbf{B}| \neq 0$$

Hence q(x) is a quasi-orthogonal polynomial of order n+1.

Conversely, let q(x) is a quasi-orthogonal polynomial of order n+1, so we can write

$$q(x) = \sum_{k=0}^{n+1} c_k P_k(x)$$

where $c_k = \left\{ \pounds \left[\mathbf{P}_k^2(x) \right] \right\}^{-1} \pounds \left[\mathbf{q}(x) \mathbf{P}_k(x) \right] = 0 \text{ for } 0 \le k \le n-1.$

Hence

$$q(x) = AP_{n+1}(x) + BP_n(x).$$

(ii) Let z_0 be a zero of $P_n(x)$ or $P_{n+1}(x)$. Now

$$q(x) = AP_{n+1}(x) + BP_n(x)$$

where A and B are not both zero.

- If $P_n(z_0) = 0$ choose constant $A = 0, B \neq 0$.
- Then $q(z_0) = 0$.

Similarly for if $P_{n+1}(z_0) = 0$.

If $P_n(z_0) \neq 0 \implies B = 0, A \neq 0.$

So $q(x) = AP_{n+1}(x)$

Hence q(x) is a polynomial of degree n+1. Since $q(z_0) = 0 \implies P_{n+1}(z_0) = 0$. So z_0 is a zero of $P_{n+1}(x)$ Hence it cannot be a zero $P_n(x)$ i.e. $P_n(z_0) \neq 0$.

Theorem

The zeros of a real quasi-orthogonal are all real and simple. At most one of these lies outside the open interval, (ξ_1, η_1) .

Proof

If q(x) is an orthogonal polynomial there is nothing to prove. Let $q(x) = AP_{n+1}(x) + BP_n(x)$ where A and B are real and different from zero. Let $x_{n+1,i}$, $i = 1, \dots, n+1$, be the zeros of $P_{n+1}(x)$. Then

$$q(x_{n+1,i}) = BP_n(x_{n+1,i})$$

As *i* will vary from i = 1, ..., n+1 $P_n(x)$ will change sign, so q(x) will change sign as *i* varies from 1 to n+1. So q(x) has n real zeros separating the n+1 zeros of $P_{n+1}(x)$. Since q(x) is real, its remaining one zero must be real and must lie outside $[x_{n+1,1}, x_{n+1,n+1}]$

Theorem

Let x_0 be any real number which is not a zero of $P_n(x)$. Let q(x) denote a real quasiorthogonal polynomial of order and degree n+1 which vanishes at x_0 . If Λ_{n0} denotes the quadrature coefficient which corresponds to $\pi(x_0) = 1$.

$$\Lambda_{n0} = \min \left\{ \left\| \pi(x) \right\|^2 \right\}$$

where the minimum is computed as $\pi(x)$ ranges over all polynomials of degree at most n such that $\pi(x_0) = 1$.

Proof

Suppose $y_{np} = x_0$ and write $B_{np} = \Lambda_{n0}$. If $\pi(x)$ has degree not exceeding n and $\pi(x_0) = 1$, then $\pounds [\pi(x)|^2] \ge B_{np} |\pi(x_0)|^2 = \Lambda_{n0}$. Hence $\Lambda_{n0} = \min \pounds [|\pi(x)|^2]$. Now the polynomial

$$\rho(x) = \frac{q(x)}{(x - x_0)q'(x_0)}$$

is of degree n and $\rho(x)$ will vanish at y_{ni} for $i \neq p$ and $\rho(x_0) = 1$. That is,

$$\mathfrak{t}[\rho^2(x)] = \Lambda_{n0}.$$

Corollary

$$\Lambda_{n0} = \left\{ \sum_{k=0}^{n} p_k^2(x_0) \right\}^{-1}$$

where $p_k(x)$ denotes the kth orthonormal polynomial.

Proof

$$\Lambda_{n0} = [K_n(x_0, x_0)]^{-1} = \left\{ \sum_{k=0}^n \overline{p_k(x_0)} p_k(x_0) \right\}^{-1}$$
$$= \left\{ \sum_{k=0}^n p_k(\overline{x_0}) p_k(x_0) \right\}^{-1}$$
$$= \left\{ \sum_{k=0}^n p_k^2(x_0) \right\}^{-1}.$$

Theorem

Let ϕ be any representative of £. The for any real number x_0 ,

$$\phi(x_0) - \phi(-\infty) \le \left\{ \sum_{k=0}^{\infty} p_k^2(x_0) \right\}^{-1} \quad \text{if } -\infty < x_0 \le \xi_1$$
$$\phi(+\infty) - \phi(x_0) \le \left\{ \sum_{k=0}^{\infty} p_k^2(x_0) \right\}^{-1} \quad \text{if } \eta_1 < x_0 \le +\infty$$

Proof

Suppose that $-\infty < x_0 \le \xi_1$ and let q(x) be a real quasi-orthogonal polynomial of order and degree n+1 that has x_0 as a zero. Now

$$\Lambda_{n0} = \pounds \left[\rho^2(x) \right] = \int_{-\infty}^{\infty} \rho^2(x) d\varphi(x) \ge \int_{-\infty}^{x_0} \rho^2(x) d\varphi(x)$$

Since q(x) has no zero smaller than ξ_1 other than x_0 . It follows that

 $\rho^2(x) > \rho^2(x_0) = 1$ for $x < x_0$, hence

$$\Lambda_{n0} \ge \int_{-\infty}^{x_0} d\varphi(x) = \varphi(x_0) - \varphi(-\infty).$$

Since $\Lambda_{n0} = \left\{ \sum_{k=0}^{n} p_{k}^{2}(x_{0}) \right\}^{-1}$, we have

$$\varphi(x_0) - \varphi(-\infty) \le \left\{ \sum_{k=0}^n p_k^2(x_0) \right\}^{-1} \text{ for } x_0 \le \xi_1.$$

The remaining case is proved in the same way.

Theorem

Let [a,b] be a compact interval and let ϕ_1 and ϕ_2 be functions of bounded variation on [a,b] such that

$$\int_{a}^{b} x^{n} d\phi_{1}(x) = \int_{a}^{b} x^{n} d\phi_{2}(x), \qquad n = 0, 1, 2, \dots$$

Then there exist a constant C such that $\phi_1(x) - \phi_2(x) = C$ at all $x \in [a,b]$ at which both are continuous.

Proof

Let

$$\phi(x) = \phi_1(x) - \phi_2(x)$$

So that ϕ is of bounded variation on [a,b] and

$$\int_{a}^{b} x^{n} d\phi(x) = \int_{a}^{b} x^{n} d\phi_{1}(x) - \int_{a}^{b} x^{n} d\phi_{2}(x) = 0 .$$

Hence

$$\int_{a}^{b} \pi(x) d\phi(x) = 0 \text{ for every polynomial } \pi(x).$$

Now if f is any continuous function on [a,b], then by Weierstrass approximation theorem f can be approximated by polynomials. Hence we have

$$\int_{a}^{b} f(x) d\phi(x) = 0 \; .$$

Taking f(x) = 1, we have $\phi(b) - \phi(a) = 0$.

Now for any t, a < t < b which is point of continuity of ϕ , define

$$f(x) = \{ \begin{array}{cc} x & a \le x \le t \\ t & t < x \le b \end{array}$$

Then f is continuous on [a,b] and we have

$$0 = \int_{a}^{b} f d\phi(x) = \int_{a}^{t} x d\phi(x) + \int_{t}^{b} t d\phi(x)$$

$$= t\phi(t) - a\phi(a) - \int_{a}^{t} \phi(x)dx + t\phi(b) - t\phi(t)$$
$$= (t-a)\phi(a) - \int_{a}^{t} \phi(x)dx .$$

Hence

$$\Phi(t) = \int_{a}^{t} \phi(x) dx = (t-a)\phi(a)$$

Since is ϕ continuous at *t*, $\Phi'(t)$ exist and we have

$$\Phi'(t) = \phi(t) = \phi(a)$$

so

$$\phi_1(t) - \phi_2(t) = \phi(a) \, .$$

Note : These notes were taught and given to the students in the class.