
 

 

 

 Sorting & Order Statistics 
 
 

 

  Shell Sort: 
 

Shell Sort is mainly a variation of Insertion Sort. In insertion sort, we move elements 
only one position ahead. When an element has to be moved far ahead, many 
movements are involved. The idea of shell Sort is to allow exchange of far items. In 
shell Sort, we make the array h-sorted for a large value of h. We keep reducing the 
value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h’th 
element is sorted. 
 

Shell sort is a highly efficient sorting algorithm and is based on insertion sort  algorithm. 
This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to 
the far right and has to be moved to the far left. 
This algorithm uses insertion sort on a widely spread elements, first to sort them and 
then sorts the less widely spaced elements. This spacing is termed as interval. This 
interval is calculated based on Knuth's formula as − 
 
Knuth's Formula 
h = h * 3 + 1 
where −h is interval with initial value 1 
 

This algorithm is quite efficient for medium-sized data sets as its average and worst-
case complexity of this algorithm depends on the gap sequence the best known is Ο(n), 
where n is the number of items. And the worst case space complexity is O(n). 
 

  How Shell Sort Works? 
 

Let us consider the following example to have an idea of how shell sort works. We take 
the same array we have used in our previous examples. For our example and ease of 
understanding, we take the interval of 4. Make a virtual sub-list of all values located at 
the interval of 4 positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10, 
44} 
 

 
 
 

We compare values in each sub-list and swap them (if necessary) in the original array. 
After this step, the new array should look like this – 

 

 
 

 



 

 

Then, we take interval of 1 and this gap generates two sub-lists - {14, 27, 35, 42}, {19, 
10, 33, 44} 
 

 
 

We compare and swap the values, if required, in the original array. After this step, the 
array should look like this – 
 

 
 
Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion 
sort to sort the array. 
Following is the step-by-step depiction – 
 

 
 
 
 
 
 



 

 

 
We see that it required only four swaps to sort the rest of the array.
Algorithm 
Following is the algorithm for 
Step 1 − Initialize the value of 
Step 2 − Divide the list into smaller sub
Step 3 − Sort these sub-
Step 3 − Repeat until complete list is sorted
 

 

Merge Sort: 
 
Merge Sort is a Divide and Conquer
calls itself for the two halves and then merges the two sorted halves.
function is used for merging 
assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub
arrays into one. See following C implementation for details.
 
MergeSort(arr[], l,  r) 
 
If r > l 
     1. Find the middle point to divide the array into two halves:  
             middle m = (l+r)/2
     2. Call mergeSort for first half:   
             Call mergeSort(arr, l, m)
     3. Call mergeSort for second half:
             Call mergeSort(arr, m+1, r)
     4. Merge the two halves sorted in step 2 and 3:
             Call merge(arr, l, m, r)
 
The following diagram shows the complete merge sort process for an example array 
{38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that
array is recursively divided in two halves till the size becomes 1. Once the size 
becomes 1, the merge processes comes into action and starts merging arrays back till 
the complete array is merged.
 
 

 
 

 
 
 

We see that it required only four swaps to sort the rest of the array.

Following is the algorithm for shell sort. 
− Initialize the value of h 
− Divide the list into smaller sub-list of equal interval h 

-lists using insertion sort 
− Repeat until complete list is sorted. 

Divide and Conquer algorithm. It divides input array in two halves, 
calls itself for the two halves and then merges the two sorted halves.

is used for merging two halves. The merge(arr, l, m, r) is key process that 
assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub
arrays into one. See following C implementation for details. 

 

Find the middle point to divide the array into two halves:   
middle m = (l+r)/2 

Call mergeSort for first half:    
Call mergeSort(arr, l, m) 

Call mergeSort for second half: 
Call mergeSort(arr, m+1, r) 

Merge the two halves sorted in step 2 and 3: 
Call merge(arr, l, m, r) 

shows the complete merge sort process for an example array 
{38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that
array is recursively divided in two halves till the size becomes 1. Once the size 
becomes 1, the merge processes comes into action and starts merging arrays back till 
the complete array is merged. 

We see that it required only four swaps to sort the rest of the array. 

algorithm. It divides input array in two halves, 
calls itself for the two halves and then merges the two sorted halves. The merge() 

two halves. The merge(arr, l, m, r) is key process that 
assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two sorted sub-

shows the complete merge sort process for an example array 
{38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the 
array is recursively divided in two halves till the size becomes 1. Once the size 
becomes 1, the merge processes comes into action and starts merging arrays back till 

 



 

 

It is a great way to develop confidence in building recursive algorithms. 

 
Divide and Conquer Strategy: 
 
Using the Divide and Conquer technique, we divide a problem into sub problems. When 
the solution to each subproblem is ready, we 'combine' the results from the 
subproblems to solve the main problem. 
Suppose we had to sort an array A. A subproblem would be to sort a sub-section of 
this array starting at index p and ending at index r, denoted as A[p..r]. 
 
Divide 
  
If q is the half-way point between p and r, then we can split the subarray A[p..r] into 
two arrays A[p..q] and A[q+1, r]. 
  
Conquer 
  
In the conquer step, we try to sort both the subarrays A[p..q] and A[q+1, r]. If we 
haven't yet reached the base case, we again divide both these subarrays and try to 
sort them. 
  
Combine 
  
When the conquer step reaches the base step and we get two sorted subarrays A[p..q] 
and A[q+1, r] for array A[p..r], we combine the results by creating a sorted array 
A[p..r] from two sorted subarrays A[p..q] and A[q+1, r] 
  
 
 



 

 

Min heap 95 85 Max heap 65 55 

75 35 65 55 15 35 25 75 

25 45 45 85 

15 95 

The Merge Sort Algorithm: 
 
The Merge Sort function repeatedly divides the array into two halves until we reach a 
stage where we try to perform Merge Sort on a subarray of size 1 i.e.   p == r. 
  
After that, the merge function comes into play and combines the sorted arrays into 
larger arrays until the whole array is merged. 
MergeSort(A, p, r) 
 

    If p > r  
        return; 
    q = (p+r)/2; 
    mergeSort(A, p, q) 
    mergeSort(A, q+1, r) 
    merge(A, p, q, r) 
 

Heap Sort: 
 

Heap is a data structure, which permits one to insert elements into a set and also to 
find the largest element efficiently. A data structure, which provides these two 
operations, is called a priority queue. 

 
Max and Min Heap data structures: 

 
A max heap is an almost complete binary tree such that the value of each node is 
greater than or equal to those in its children. 

 

 
A min heap is an almost complete binary tree such that the value of each node is less 
than or equal to those in its children. Figure 2.1 shows the maximum and minimum 
heap tree. 

 
 

Representation of Heap Tree: 

 
Since heap is a complete binary tree, a heap tree can be efficiently represented using 
one dimensional array. This provides a very convenient way of figuring out where 
children belong to. 

 
 The root of the tree is in location 1. 

 The left child of an element stored at location i can be found in location 2*i. 

 The right child of an element stored at location i can be found in location 

2*i + 1. 

 The parent of an element stored at location i can be found at location 
floor(i/2). 

 

 



 

 

30 x[8] 
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For example let us consider the following elements arranged in the form of array as 
follows: 

 

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] 

65 45 60 40 25 50 55 30 

 

The elements of the array can be thought of as lying in a tree structure. A heap tree 
represented using a single array looks as follows: 

 

 
 

 

Operations on heap tree: 
 

The major operations required to be performed on a heap tree: 
 

1. Insertion, 

2. Deletion and 

3. Merging. 

 
Insertion into a heap tree: 

 

This operation is used to insert a node into an existing heap tree satisfying the 
properties of heap tree. Using repeated insertions of data, starting from an empty 
heap tree, one can build up a heap tree. 

 
Let us consider the heap (max) tree. The principle of insertion is that, first we have 
to adjoin the data in the complete binary tree. Next, we have to compare it with the 
data in its parent; if the value is greater than that at parent then interchange the 
values. This will continue between two nodes on path from the newly inserted node  
to the root node till we get a parent whose value is greater than its child or we 
reached the root. 

 
For illustration, 35 is added as the right child of 80. Its value is compared with its 
parent’s value, and to be a max heap, parent’s value greater than child’s value is 
satisfied, hence interchange as well as further comparisons are no more required. 

 

As another illustration, let us consider the case of insertion 90 into the resultant heap 
tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it 



 

 

40 

80 

40 35

 

requires interchange. Next, 90 is compared with 80, another interchange takes place. 
Now, our process stops here, as 90 is now in root node. T
comparisons and interchanges have taken places are shown by 

 

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:
 

Max_heap_insert (a, n)
{ 

//inserts the value in a[n] into the heap which is
integer i, n; 
i = n; 
item = a[n] ; 

while ( (i > 1) and (a[ 
{ 

a[i] = a[   
i =  i/2  ; 

} 

a[i] = item ; 
return true ; 

} 

 
 

Example: 
 

Form a heap by using the above algorithm
70. 

1. Insert 40: 

 

 

2. Insert 80: 

 
 

 
40 

 
 
 

3. Insert 35: 
 

 

 

4. Insert 90: 
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35 

requires interchange. Next, 90 is compared with 80, another interchange takes place. 
Now, our process stops here, as 90 is now in root node. The path on which these 
comparisons and interchanges have taken places are shown by dashed line

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

(a, n) 

//inserts the value in a[n] into the heap which is stored at a[1] to a[n

while ( (i > 1) and (a[  i/2  ] < item ) do 

  i/2   ] ; // move the parent 
 

Form a heap by using the above algorithm for the given data 40, 80, 35, 90, 45, 50,
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requires interchange. Next, 90 is compared with 80, another interchange takes place. 
he path on which these 

dashed line. 

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows: 

stored at a[1] to a[n-1] 

// move the parent down  

for the given data 40, 80, 35, 90, 45, 50, 



 

 

90 

80 35

40 45 

5. Insert 45: 
 

 
 

6. Insert 50: 

 
 

 

 
 
 
 

7. Insert 70: 

 
 
 
 

 
 
 

Deletion of a node from heap tree:
 

Any node can be deleted from a heap tree. But from the application point of view, 
deleting the root node has some special importance. The principle of deletion is as 
follows: 

 

 Read the root node into a temporary storage 
 Replace the root node by the last node in the heap tree. 

tree as stated 
 Let newly modified root node be the current node. Compare its 

value with the value of its two child. 
is the largest. I
current

 Make X as the current
 Continue re
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Deletion of a node from heap tree: 

Any node can be deleted from a heap tree. But from the application point of view, 
deleting the root node has some special importance. The principle of deletion is as 

Read the root node into a temporary storage say, ITEM. 
Replace the root node by the last node in the heap tree. 

 below: 
Let newly modified root node be the current node. Compare its 
value with the value of its two child. Let X be the child whose value 
is the largest. Interchange the value of X with the value of the 
current node. 
Make X as the current node. 
Continue re-heap, if the current node is not an empty

90 

80 70 

40 45 35 50

 35  

35
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80 50 

40 45 35 

70 

 50  

 70  

Any node can be deleted from a heap tree. But from the application point of view, 
deleting the root node has some special importance. The principle of deletion is as 

 
Replace the root node by the last node in the heap tree. Then re-heap the 

Let newly modified root node be the current node. Compare its 
X be the child whose value 

nterchange the value of X with the value of the 

empty node. 

50 



 

 

After Deletion of node with data 99 Deleting the node with data 99 

12 24 27 
26 12 24 27 

42 26 29 35 
42  57  29 35 
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The algorithm for the above is as follows: 
 

delmax (a, n, x) 
// delete the maximum from the heap a[n] and store it in x 
{ 

if (n = 0) then 
{ 

write (“heap is empty”); 
return false; 

} 
x = a[1]; a[1] = a[n]; 
adjust (a, 1, n-1); 
return true; 

} 
 

adjust (a, i, n) 
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a 
single heap, 1 < i < n. No node has an address greater than n or less than 1. // 
{ 

j = 2 *i ; 
item = a[i] ; 
while (j < n) do 
{ 

if ((j < n) and (a (j) < a (j + 1)) then j  j + 1; 
// compare left and right child and let j be the larger child 

if (item > a (j)) then break; 
// a position for item is found 

else a[  j / 2  ] = a[j] // move the larger child up a level 
j = 2 * j; 

} 

a [  j / 2  ] = item; 

} 
 

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 

26 and this node with data 26 is removed from the tree. Next 26 at root node is 
compared with its two child 45 and 63. As 63 is greater, they are interchanged. Now, 
26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are 
interchanged. Now, 26 appear as the leave node, hence re-heap is completed. This is 
shown in figure 2.3. 

 

 

 
 
 
 
 
 



 

 

Resultant max heap after merging H1 and H2 92 59 45 38 

19 13 92 80 

67 93 

96 

H2: min heap 

+ 
H1: max heap 

96 93 92 45 38 

80 19 67 59 

13 92 

 

Merging two heap trees: 
 

Consider, two heap trees H1 and H2. Merging the tree H2 with H1 means to include 
all the node from H2 to H1. H2 may be min heap or max heap and the resultant tree 
will be min heap if H1 is min heap else it will be max heap. 

 
Merging operation consists of two steps: Continue steps 1 and 2 while H2 is not 
empty: 

 

1. Delete the root node, say x, from H2. Re-heap H2. 

2. Insert the node x into H1 satisfying the property of H1. 
 

 

 
Applications of heap tree: 

 
They are two main applications of heap trees known: 

 

1. Sorting (Heap sort) and 

2. Priority queue implementation. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

A heap sort algorithm works by first organizing the data to be sorted into a special 
type of binary tree called a heap. Any kind of data can be sorted either in ascending 
order or in descending order using heap tree. It does this with the following steps: 

 

1. Build a heap tree with the given set of data. 

2. a. Remove the top most item (the largest) and replace it with the last 
element in the heap. 

b. Re-heapify the complete binary tree. 

c. Place the deleted node in the output. 

3. Continue step 2 until the heap tree is empty. 

 
Algorithm: 

 

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non- 
decreasing order. First transform the elements into a heap. 

 
heapsort(a, n) 
{ 

heapify(a, n); 

for i = n to 2 by – 1 do 
{ 

temp = a[I]; 
a[i] = a[1]; 
a[1] = t; 
adjust (a, 1, i – 1); 

} 
} 

 

heapify (a, n) 
//Readjust the elements in a[n] to form a heap. 
{ 

for i   n/2  to 1 by – 1 do adjust (a, i, n); 

} 
 

adjust (a, i, n) 
// The complete binary trees with roots a(2*i) and a(2*i+1) are combined 
// with a(i) to form a single heap, 1<i<n. No node has an address greater 
// than n or less than 1. 
{ 

j = 2 *i ; 
item = a[i] ; 
while (j < n) do 
{ 

if ((j < n) and (a (j) < a (j + 1)) then j  j + 1; 
// compare left and right child and let j be the larger child 

if (item > a (j)) then break; 
// a position for item is found 

else a[  j / 2  ] = a[j] // move the larger child up a level 
j = 2 * j; 

} 
a [  j / 2  ] = item; 

} 

 
 
 
 



 

 

 

Time Complexity: 
 

Each ‘n’ insertion operations takes O(log k), where ‘k’ is the number of elements in 
the heap at the time. Likewise, each of the ‘n’ remove operations also runs in time 
O(log k), where ‘k’ is the number of elements in the heap at the time. Since we 
always have k ≤ n, each such operation runs in O(log n) time in the worst case. 

 
Thus, for n elements it takes O(n log n) time, so the priority queue sorting algorithm 
runs in O(n log n) time when we use a heap to implement the priority queue. 

 

 
Priority queue implementation using heap tree: 

 

Priority queue can be implemented using circular array, linked list etc. Another 
simplified implementation is possible using heap tree; the heap, however, can be 
represented using an array. This implementation is therefore free from the 
complexities of circular array and linked list but getting the advantages of 
simplicities of array. 

 
As heap trees allow the duplicity of data in it. Elements associated with their priority 
values are to be stored in from of heap tree, which can be formed based on their 
priority values. The top priority element that has to be processed first is at the root; 
so it can be deleted and heap can be rebuilt to get the next element to be 
processed, and so on. 

 

As an illustration, consider the following processes with their priorities: 
 

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Priority 5 4 3 4 5 5 3 2 1 5 

 
These processes enter the system in the order as listed above at time 0, say. 
Assume that a process having higher priority value will be serviced first. The heap 
tree can be formed considering the process priority values. The order of servicing 
the process is successive deletion of roots from the heap. 

 
 

Quick Sort: 
 
The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the 
first most efficient sorting algorithms. It is an example of a class of algorithms that work 
by “divide and conquer” technique. 
 
The quick sort algorithm partitions the original array by rearranging it into two groups. 
The first group contains those elements less than some arbitrary chosen value taken 
from the set, and the second group contains those elements greater than or equal to the 
chosen value. The chosen value is known as the pivot element. Once the array has been 
rearranged in this way with respect to the pivot, the same partitioning procedure is 
recursively applied to each of the two subsets. When all the subsets have been 
partitioned and rearranged, the original array is sorted. 
 
The function partition() makes use of two pointers up and down which are moved toward 
each other in the following fashion: 
 

1. Repeatedly increase the pointer ‘up’ until a[up] >= pivot. 
 

2. Repeatedly decrease the pointer ‘down’ until a[down] <= pivot. 
 

3. If down > up, interchange a[down] with a[up] 
 



 

 

4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If 
‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and place 
pivot element in ‘down’ pointer position. 
 

The program uses a recursive function quicksort(). The algorithm of quick sort function 
sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’. 
 

1. It terminates when the condition low >= high is satisfied. This condition will 
be satisfied only when the array is completely sorted. 

 
2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it 

calls the partition function to find the proper position j of the element x[low] 
i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . . . x[j-1] 
and x[j+1], x[j+2], . . . x[high]. 

 
3. It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . . .  

x[j-1] between positions low and j-1 (where j is returned by the partition function). 
 

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high] 
between positions j+1 and high. 

 

The time complexity of quick sort algorithm is of O(n log n). 
 

 

Algorithm 
 
Sorts the elements a[p], . . . . . ,a[q] which reside in the global array a[n] into 
ascending order. The a[n + 1] is considered to be defined and must be greater than all 
elements in a[n]; a[n + 1] = + 
 

quicksort (p, q)  
{ 
if ( p < q ) then 
{ 
call j = PARTITION(a, p, q+1); // j is the position of the partitioning element 
call quicksort(p, j – 1); 
call quicksort(j + 1 , q); 
} 
} 
 

partition(a, m, p) 
{ 

v = a[m]; up = m; down = p; // a[m] is the partition element 
Do  
{    
Repeat  
up = up + 1;  
until (a[up] > v);  
    

 

repeat 
down = down – 1; 
until (a[down] < v);  
if (up < down) then call interchange(a, up, down); } while (up > 
down); 
 

a[m] = a[down]; 
a[down] = v; 
return (down); 
} 
              



 

 

interchange(a, up, down)  
{ 
p = a[up]; 
a[up] = a[down]; 
a[down] = p; 
} 
 

 

Example: 
 

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of 
an element larger than pivot. Move the ‘down’ pointer from right to left in search of an 
element smaller than pivot. If such elements are found, the elements are swapped. 
 

This process continues till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer 
crosses ‘down’ pointer, the position for pivot is found and interchange pivot and element 
at ‘down’ position. 
 

Let us consider the following example with 13 elements to analyze quick sort: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks 
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7.5.1. Recursive program for Quick Sort: 
 

# include<stdio.h> 
# include<conio.h> 

 

void quicksort(int, int); 
int partition(int, int); 
void interchange(int, int); 
int array[25]; 
 

int main() 
{ 
int num, i = 0; 
clrscr(); 
printf( "Enter the number of elements: " ); 
scanf( "%d", &num); 
printf( "Enter the elements: " ); 
for(i=0; i < num; i++) 
scanf( "%d", &array[i] ); 
quicksort(0, num -1); 
printf( "\nThe elements after sorting are: " ); 
 
                



 

 

for(i=0; i < num; i++)  
printf("%d ", array[i]); 
return 0; 
} 
 

void quicksort(int low, int high) 
{ 
int pivotpos; 
if( low < high ) 
{ 
pivotpos = partition(low, high + 1); 
quicksort(low, pivotpos - 1); 
quicksort(pivotpos + 1, high); 
} 
} 
 

int partition(int low, int high) 
{ 
int pivot = array[low]; 
int up = low, down = high; 
 

do 
{ 
do 
up = up + 1; 
while(array[up] < pivot ); 
 

do  
down = down - 1; 
while(array[down] > pivot); 
 

if(up < down)  
interchange(up, down); 
 
} while(up < down); array[low] = 
array[down]; array[down] = pivot; 
return down;  
} 
 

void interchange(int i, int j)  
{ 
int temp; 
temp = array[i]; 
array[i] = array[j]; 
array[j] = temp; 
} 
 
 
Comparing different Sorting Algorithms: 
 
ShellSort:  
 
The shell sort is by far the fastest of the class of sorting algorithms. It is more than 5 
times faster than the bubble sort and a little over twice as fast as the insertion sort, its 
closest competitor. 
 
HeapSort:  
 
It is the slowest of the sorting algorithms but unlike merge and quick sort it does not 
require massive recursion or multiple arrays to work 
 
 
 



 

 

Merge Sort:  
 
The merge sort is slightly faster than the heap sort for larger sets, but it requires twice 
the memory of the heap sort because of the second array. 
 
Quick Sort: 
 
The quick sort is an in-place, divide-and-conquer, massively recursive sot. It can be said 
as the faster version of the merge sort. The efficiency of the algorithm is majorly 
impacted by which element is chosen as the pivot point. The worst-case efficiency of the 
quick sort is when the list is sorted and left most element is chosen as the pivot. As long 
as the pivot point is chosen randomly, the quick sort has an algorithmic complexity of 
O(nlog n). 
 

BASIS FOR 
COMPARISON QUICK SORT MERGE SORT 

The partition of 
elements in the array 

The splitting of a array of elements is in 
any ratio, not necessarily divided into 
half. 

The splitting of a array of elements is in 
any ratio, not necessarily divided into 
half. 

Worst case complexity O(n2) O(nlogn) 

Works well on It works well on smaller array It operates fine on any size of array 

Speed of execution 

It work faster than other sorting 
algorithms for small data set like 
Selection sort etc 

It has a consistent speed on any size of 
data 

Additional storage 
space requirement Less(In-place) More(not In-place) 

Efficiency Inefficient for larger arrays More efficient 

Sorting method Internal External 

Stability Not Stable Stable 

Preferred for for Arrays for Linked Lists 

Locality of reference good poor 

 

Linear Time Sorting: 

Merge Sort and Heap Sort achieve this upper bound in the worst case, and Quick Sort achieves this 
on Average Case. 

Merge Sort, Quick Sort and Heap Sort algorithm share an interesting property: the sorted order 
they determined is based only on comparisons between the input elements. We call such a sorting 
algorithm "Comparison Sort". 

There is some algorithm that runs faster and takes linear time such as Counting Sort, Radix Sort, 
and Bucket Sort but they require the special assumption about the input sequence to sort. 

Counting Sort and Radix Sort assumes that the input consists of an integer in a small range. 

Bucket Sort assumes that a random process that distributes elements uniformly over the interval 
generates the input.  


