
Chapter 2
Recombination Fraction

Recombination fraction (also called recombination frequency) between two loci
is defined as the ratio of the number of recombined gametes to the total number
of gametes produced. Recombination fraction, denoted by r throughout the book,
however, has a domain of 0 � r � 0:5, with r D 0 indicating perfect linkage and
r D 0:5 meaning complete independence of the two loci. In most situations, gametes
are not directly observable. Therefore, special mating designs are required to infer
the number of recombined gametes. When a designed mating experiment cannot be
carried out, data collected from pedigrees can be used for estimating recombination
fractions. However, inferring the number of recombined gametes in pedigrees is
much more complicated than that in designed mating experiments. This book only
deals with designed mating experiments.

2.1 Mating Designs

Two mating designs are commonly used in linkage study, the backcross (BC) design
and the F2 design. Both designs require two inbred lines, which differ in both the
phenotypic values of traits (if marker-trait association study is to be performed)
and allele frequencies of marker loci used for constructing the linkage map. We
will use two marker loci as an example to show the mating designs and methods for
estimating recombination fraction. The BC design is demonstrated in Fig. 2.1. Let A
and B be the two loci under investigation. Let A1 and A2 be the two alleles at locus
A and B1 and B2 be the two alleles at locus B. Let P1 and P2 be the two parents that
initiate the line cross. Since both parents are inbred, we can describe the two-locus
genotype for P1 and P2 by A1B1

A1B1
and A2B2

A2B2
, respectively. The hybrid progeny of cross

between P1 and P2 is denoted by F1 whose genotype is A1B1

A2B2
. The horizontal line in

the F1 genotype separates the two parental gametes, i.e., A1B1 is the gamete from P1

and A2B2 is the gamete from P2. The F1 hybrid crosses back to one of the parents
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P2
(A2B2//A2B2)

Fig. 2.1 The backcross (BC)
mating design. The BC
progeny generated by F1 � P1

is called BC1, whereas the BC
population generated by
F1 � P2 is called BC0

1

Table 2.1 Count data of
two-locus genotypes
collected from a BC1 family

Genotype Count Frequency Type
A1B1

A1B1
n11

1
2
.1 � r/ Parental

A1B2

A1B1
n12

1
2
r Recombinant

A2B1

A1B1
n21

1
2
r Recombinant

A2B2

A1B1
n22

1
2
.1 � r/ Parental

to generate multiple BC progeny, which will be used for linkage study. The BC
population is a segregating population. Linkage analysis can only be conducted in
such a segregating population. A segregating population is defined as a population
that contains individuals with different genotypes. The two parental populations and
the F1 hybrid population are not segregating populations because individuals within
each of the three populations are genetically identical. The BC progeny generated
by F1 � P1 is called BC1, whereas the BC population generated by F1 � P2 is
called BC0

1.
We now use BC1 progeny as an example to demonstrate the BC analysis.

The gametes generated by the P1 parent are all of the same type A1B1. However,
the F1 hybrid can generate four different gametes and thus four distinguished
genotypes. Let r be the recombination fraction between loci A and B. Let nij be

the number of gametes of type Ai Bj or the number of genotype of Ai Bj

A1B1
kind for

i; j D 1; 2. The four genotypes and their frequencies are given in Table 2.1. This
table provides the data for the maximum likelihood estimation of recombination
fraction. The maximum likelihood method will be described later.

The F2 mating design requires mating of the hybrid with itself, called selfing
and denoted by the symbol ˝ (see Fig. 2.2 for the F2 design). When selfing
is impossible, e.g., in animals and self-incompatible plants, intercross between
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(A1B1//A1B1)
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(A1B1//A2B2)

F2
(A1B1//A1B1) (A1B1//A1B2) (A1B1//A2B1) (A1B1//A2B2)
(A1B2//A1B1) (A1B2//A1B2) (A1B2//A2B1) (A1B2//A2B2)
(A2B1//A1B1) (A2B1//A1B2) (A2B1//A2B1) (A2B1//A2B2)
(A2B2//A1B1) (A2B2//A1B2) (A2B2//A2B1) (A2B2//A2B2)

P2
(A2B2//A2B2)

Fig. 2.2 The F2 mating
design

Table 2.2 The 16 possible
genotypes and their observed
counts in an F2 family

A1B1 A1B2 A2B1 A2B2

A1B1
A1B1

A1B1
; n11

A1B1

A1B2
; n12

A1B1

A2B1
; n13

A1B1

A2B2
; n14

A1B2
A1B2

A1B1
; n21

A1B2

A1B2
; n22

A1B2

A2B1
; n23

A1B2

A2B2
; n24

A2B1
A2B1

A1B1
; n31

A2B1

A1B2
; n32

A2B1

A2B1
; n33

A2B1

A2B2
; n34

A2B2
A2B2

A1B1
; n41

A2B2

A1B2
; n42

A2B2

A2B1
; n43

A2B2

A2B2
; n44

different F1 individuals initiated from the same cross is required. The progeny
of selfing F1 or intercross between two F1 hybrids is called an F2 progeny.
An F2 family consists of multiple F2 progeny. The F2 family represents another
segregating population for linkage analysis. Recall that an F1 hybrid can generate
four possible gametes for loci A and B jointly. Therefore, selfing of F1 can
generate 16 possible genotypes, as illustrated in Table 2.2. Let nij be the number of
individuals combining the i th gamete from one parent and the j th gamete from the
other parent, for i; j D 1; : : : ; 4. The frequencies of all the 16 possible genotypes
are listed in Table 2.3. This table is the basis from which the maximum likelihood
estimation of recombination fraction will be derived.

2.2 Maximum Likelihood Estimation of Recombination
Fraction

In a BC design, the four types of gametes are distinguishable. Therefore, the
recombination fraction can be directly calculated by taking the ratio of the number
of recombinants to the total number of gametes. We use BC1 as an example to
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demonstrate the method. The count data are given in Table 2.1. Let np D n11 C n22

be the number of individuals carrying the parental gametes and nr D n12 C n21 be
the number of recombinants. The estimated recombination fraction between loci A
and B is simply

Or D n12 C n21

n11 C n12 C n21 C n22

D nr

nr C np

: (2.1)

We use a hat above r to indicate estimation of r . The true value of recombination
fraction is not known, but if the sample size is infinitely large, the estimated r will
approach to the true value, meaning that the estimation is unbiased.

We now prove that Or is the maximum likelihood estimate (MLE) of r . We
introduce the ML method because it provides a significance test on the hypothesis
that r D 0:5. To construct the likelihood function, we need a probability model, a
sample of data and a parameter. The probability model is the binomial distribution,
the data are the counts of the two possible genotypes, and the parameter is r .
The binomial probability of the data given the parameter is

Pr.nr ; npjr/ D nŠ

nr ŠnpŠ

�
1

2

�nr Cnp

rnr .1 � r/np ; (2.2)

where n D nr Cnp is the sample size. The value of r for 0 � r � 0:5 that maximizes
the probability is the MLE of r . Two issues need to be emphasized here for any
maximum likelihood analysis, including this one. First, the probability involves a
factor that does not depend on the parameter,

const D nŠ

nr ŠnpŠ

�
1

2

�n

: (2.3)

It is a constant with respect to the parameter r . This constant is irrelevant to the
ML analysis and thus should be ignored. Secondly, the r value that maximizes
a monotonic function of the probability also maximizes this probability. For
computational convenience, we can maximize the logarithm of the probability.
Therefore, it is the log likelihood function that is maximized in the ML analysis.
The log likelihood function is defined as

L.r/ D nr ln r C np ln.1 � r/: (2.4)

To find the MLE of r , we need to find the derivative of L.r/ with respect to r ,

d

dr
L.r/ D nr

r
� np

1 � r
: (2.5)
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Letting d
dr

L.r/ D 0 and solving for r , we have

Or D nr

nr C np

: (2.6)

which is identical to that given in (2.1).

2.3 Standard Error and Significance Test

A parameter is a fixed but unknown quantity. The estimate of the parameter,
however, is a variable because it varies from one sample to another. As the sample
size increases, the estimate will approach to the true value of the parameter, provided
that the estimate is unbiased. The deviation of the estimate from the true parameter
can be measured by the standard error of the estimate. In this section, we will learn a
method to calculate the standard error of Or . To calculate the standard error, we need
the second derivative of the log likelihood function with respect to r and obtain
a quantity called information, from which the variance of the estimated r can be
approximated. Let us call the first derivative of L.r/ with respect to r the score
function, denoted by S.r/,

S.r/ D d

dr
L.r/ D nr

r
� np

1 � r
: (2.7)

The second derivative of L.r/ with respect to r is called the Hessian matrix, denoted
by H.r/,

H.r/ D d

dr
S.r/ D d2

dr2
L.r/ D np

.1 � r/2
� nr

r2
: (2.8)

Although H.r/ is a single variable, we still call it a matrix because in subsequent
chapters we will deal with multiple dimension of parameters, in which case H.r/ is
a matrix. From H.r/, we can find the information of r , which is

I.r/ D �EŒH.r/� D E.nr /

r2
� E.np/

.1 � r/2
: (2.9)

The symbol E represents expectation of the data given the parameter value. Here, the
data are referred to nr and np , not n, which is the sample size (a constant). Suppose
that we know the true parameter r , what is the expected number of recombinants
if we sample n individuals? This expected number is E.nr / D r n. The expected
number of the parental types is E.np/ D .1 � r/n. Therefore, the information is

I.r/ D �EŒH.r/� D rn

r2
� .1 � r/n

.1 � r/2
D n

r.1 � r/
: (2.10)
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The variance of the estimated r takes the inverse of the information, with the true
parameter replaced by Or ,

var.Or/ � I �1.Or/ D Or.1 � Or/

n
: (2.11)

Therefore, the standard error of Or is

se.Or/ D
p
var.Or/ D

r Or.1 � Or/

n
: (2.12)

The standard error is inversely proportional to the square root of the sample size and
thus approaches zero as n becomes infinitely large.

When we report the estimated recombination fraction, we also need to report
the estimation error in a form like Or ˙ se.Or/. In addition to the sample size, the
estimation error is also a function of the recombination fraction, with the maximum
error occurring at r D 1

2
, i.e., when the two loci are unlinked. To achieve the

same precision of estimation, it requires a larger sample to estimate a recombination
fraction between two loosely linked loci than between two closely linked loci.

Because of the sampling error, even two unlinked loci may look like being
linked as the estimated r may be superficially smaller than 0.5. How small an Or
is sufficiently small so that we can claim that the two loci are linked in the same
chromosome? This requires a significance test.

The null hypothesis for such a test is denoted by H0 W r D 1
2
. Verbally, H0 is

stated that the two loci are not linked. The alternative hypothesis is HA W r < 1=2,
i.e., the two loci are linked on the same chromosome. When the sample size is
sufficiently large, we can always use the z-test to decide which hypothesis should
be accepted. Here, we will use the usual likelihood ratio test statistic to declare
the statistical significance of Or . Let L.r/jrDOr D L.Or/ be the log likelihood function
evaluated at the MLE of r using (2.4). Let L.r/jrD 1

2
D L.1=2/ be the log likelihood

function evaluated under the null hypothesis. The likelihood ratio test statistic is
defined as

� D �2ŒL.1=2/ � L.Or/�: (2.13)

where

L.Or/ D nr ln Or C np ln.1 � Or/: (2.14)

and

L.1=2/ D �n ln 2 D �0:6931n: (2.15)

If the null hypothesis is true, � will approximately follow a chi-square distribution
with one degree of freedom. Therefore, if � > �2

1;1�˛ , we will claim that the two loci
are linked, where �2

1;1�˛ is the .1 � ˛/ � 100 percentile of the central �2
1 distribution

and ˛ is the type I error determined by the investigator. In human linkage studies,
people often use LOD (log of odds) score instead. The relationship between LOD
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and � is

LOD D �

2 ln.10/
� 0:2171�: (2.16)

Conventionally, LOD > 3 is used as a criterion to declare a significant linkage. This
converts to a likelihood ratio criterion of � > 3 � ln.100/ D 13:81551. The LOD
criterion has an intuitive interpretation. An LOD of k means that the alternative
model (linkage) is 10k times more likely than the null model.

2.4 Fisher’s Scoring Algorithm for Estimating r

The F2 mating design is demonstrated in Fig. 2.2. The ML analysis described for
the BC1 mating design is straightforward. The MLE of r has an explicit form. In
fact, there is no need to invoke the ML analysis for the BC design other than to
demonstrate the basic principle of the ML analysis. To estimate r using an F2

design, the likelihood function is constructed using the same probability model
(multinomial distribution), but finding the MLE of r is complicated. Therefore, we
will resort to some special maximization algorithms. The algorithm we will learn is
the Fisher’s scoring algorithm (Fisher 1946).

Let us look at the genotype table (Table 2.2) and the table of genotype counts
and frequencies (Table 2.3) for the F2 design. If we were able to observe all the
16 possible genotypes, the same ML analysis used in the BC design would apply
here to the F2 design. Unfortunately, some of the genotypes listed in Table 2.2 are
not distinguishable from others. For example, genotypes A1B1

A1B2
and A1B2

A1B1
are not

distinguishable. These two genotypes appear to be the same because they both
carry an A1B1 gamete and an A1B2 gamete. However, the origins of the two
gametes are different for the two genotypes. Furthermore, the four genotypes in
the minor diagonal of Table 2.2 actually represent four different linkage phases
of the same observed genotype (double heterozygote). If we consider the origins
of the alleles, there are four possible genotypes for each locus. However, the two
configurations of the heterozygote are not distinguishable. Therefore, there are only
three observable genotypes for each locus, making a total of nine observable joint

Table 2.3 The counts (in parentheses) and frequencies of the 16 possible genotypes
in an F2 family

A1B1 A1B2 A2B1 A2B2

A1B1 .n11/
1
4
.1 � r/2 .n12/ 1

4
r.1 � r/ .n13/

1
4
r.1 � r/ .n14/ 1

4
.1 � r/2

A1B2 .n21/
1
4
r.1 � r/ .n22/ 1

4
r2 .n23/

1
4
r2 .n24/ 1

4
r.1 � r/

A2B1 .n31/
1
4
r.1 � r/ .n32/ 1

4
r2 .n33/

1
4
r2 .n34/ 1

4
r.1 � r/

A2B2 .n41/
1
4
.1 � r/2 .n42/ 1

4
r.1 � r/ .n43/

1
4
r.1 � r/ .n44/ 1

4
.1 � r/2
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Table 2.4 The nine observed genotypes and their counts in an F2

population

B1B1 B1B2 B2B2

A1A1 A1A1B1B1 .m11/ A1A1B1B2 .m12/ A1A1B2B2 .m13/

A1A2 A1A2B1B1 .m21/ A1A2B1B2 .m22/ A1A2B2B2 .m23/

A2A2 A2A2B1B1 .m31/ A2A2B1B2 .m32/ A2A2B2B2 .m33/

two-locus genotypes, as shown in Table 2.4. Let mij be the counts of the joint
genotype combining the i th genotype of locus A and the j th genotype of locus
B, for i; j D 1; : : : ; 3. These counts are the data from which a likelihood function
can be constructed.

Before we construct the likelihood function, we need to find the probability for
each of the nine observed genotypes. These probabilities are listed in Table 2.5.
The count data in the second column and the frequencies in the third column of
Table 2.5 are what we need to construct the log likelihood function, which is

L.r/ D
3X

iD1

3X
j D1

mij ln.qij /

D Œ2.m11 C m33/ C m12 C m21 C m23 C m32� ln.1 � r/

C Œ2.m13 C m31/ C m12 C m21 C m23 C m32� ln.r/

C m22 lnŒr2 C .1 � r/2�: (2.17)

The derivative of L.r/ with respect to r is

S.r/ D d

dr
L.r/

D �2.m11 C m33/

1 � r
C .m12 C m21 C m23 C m32/.1 � 2r/

r.1 � r/

�2m22.1 � 2r/

1 � 2r C 2r2
C 2.m13 C m31/

r
: (2.18)

The MLE of r is obtained by setting S.r/ D 0 and solving for r . Unfortunately,
there is no explicit solution for r . Therefore, an iterative algorithm is resorted to
solve for r . Before introducing the Fisher’s scoring algorithm (Fisher 1946), we
first try the Newton method, which also requires the second derivative of L.r/ with
respect to r ,
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Table 2.5 Frequencies of the nine observed genotypes in an F2 population

Genotype Count Probability

A1A1B1B1 D A1B1

A1B1
m11 D n11 q11 D 1

4
.1 � r/2

A1A1B1B2 D A1B1

A1B2
;

A1B2

A1B1
m12 D n12 C n21 q12 D 1

2
r.1 � r/

A1A1B2B2 D A1B2

A1B2
m13 D n22 q13 D 1

4
r2

A1A2B1B1 D A1B1

A2B1
;

A2B1

A1B1
m21 D n13 C n31 q21 D 1

2
r.1 � r/

A1A2B1B2 D A1B1

A2B2
;

A1B2

A2B1
m22 D n14 C n23C q22 D 1

2
Œr2 C .1 � r/2�

A2B1

A1B2
;

A2B2

A1B1
n32 C n41

A1A2B2B2 D A1B2

A2B2
;

A2B2

A1B2
m23 D n24 C n42 q23 D 1

2
r.1 � r/

A2A2B1B1 D A2B1

A2B1
m31 D n33 q31 D 1

4
r2

A2A2B1B2 D A2B1

A2B2
;

A2B2

A2B1
m32 D n34 C n43 q32 D 1

2
r.1 � r/

A2A2B2B2 D A2B2

A2B2
m33 D n44 q33 D 1

4
.1 � r/2

H.r/ D d

dr
S.r/ D d2

dr2
L.r/

D � 2.m11 C m33/

.1 � r/2
� .m12 C m21 C m23 C m32/.1 � 2r C 2r2/

r2.1 � r/2

C 8m22r.1 � r/

.1 � 2r C 2r2/2
� 2.m13 C m31/

r2
: (2.19)

The Newton method starts with an initial value of r , denoted by r.t/ for t D 0, and
update the value by

r.tC1/ D r.t/ � S.r.t//

H.r.t//
: (2.20)

The iteration process stops if

jr.tC1/ � r.t/j � �; (2.21)

where � is a small positive number, say 10�8.
The derivation of the Newton method is very simple. It uses the Taylor series

expansion to approximate the score function. Let r.0/ be the initial value of r .
The score function S.r/ can be approximated in the neighborhood of r.0/ by

S.r/ D S.r.0// C d

dr
S.r.0//.r � r.0// C 1

2Š

d2

dr2
S.r.0//.r � r.0//2 C � � �

� S.r.0// C d

dr
S.r.0//.r � r.0//: (2.22)
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The approximation is due to ignorance of the higher order terms of the Taylor series.
Recall that H.r.0// D d

dr
S.r.0// and thus

S.r/ � S.r.0// C H.r.0//.r � r.0//: (2.23)

Letting S.r/ D 0 and solving for r , we get

r D r.0/ � S.r.0//

H.r.0//
: (2.24)

We have moved from r.0/ to r , one step closer to the true solution. Let r D r.tC1/

and r.0/ D r.t/. The Newton’s equation of iteration (2.20) is obtained by substituting
r and r.0/ into (2.24).

The Newton method does not behave well when r is close to zero or 0.5 for
the reason that H �1.r/ can be easily overflowed. The Fisher’s scoring method is a
modified version of the Newton method for avoiding the overflow problem. As such,
the method behaves well in all range of the parameter in the legal domain 0 � r � 1

2
.

In the Fisher’s scoring method, the second derivative involved in the iteration is
simply replaced by the so-called expectation of the second derivative. The iteration
equation becomes

r.tC1/ D r.t/ � S.r.t//

EŒH.r.t//�
; (2.25)

where

EŒH.r.t//� D � 2nŒ1 � 3r.t/ C 3.r.t//2�

r.t/.1 � r.t//Œ1 � 2r.t/ C 2.r.t//2�
: (2.26)

Let I.r.t// D �EŒH.r.t//� be the Fisher’s information. The iteration process can be
rewritten as

r.tC1/ D r.t/ C I �1.r.t//S.r.t//: (2.27)

Assume that the iteration converges at the t C 1 iteration. The MLE of r is
Or D r.tC1/. The method provides an automatic way to calculate the variance of
the estimate,

var.Or/ � I �1.Or/ D Or.1 � Or/.1 � 2 Or C 2 Or2/

2n.1 � 3 Or C 3 Or2/
; (2.28)

where n D P3
iD1

P3
j D1 mij is the sample size. Note that when Or ! 0; Or2 becomes

negligible and 1 � 2 Or � 1–3 Or , leading to 1–2 Or C 2 Or2 � 1–3 Or C 3 Or2. Therefore,

var.Or/ � Or.1 � Or/

2n
: (2.29)

Comparing this variance with the one in the BC design shown in (2.11), we can see
that the variance has been reduced by half. Therefore, using the F2 design is more
efficient than the BC design.
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2.5 EM Algorithm for Estimating r

The EM algorithm was developed by Dempster et al. (1977) for handling missing
data problems. The algorithm repeatedly executes an E-step and an M-step for
iterations. The E-step stands for expectation and the M-step for maximization.
The problem of estimating recombination fraction in F2 can be formulated as a
missing value problem and thus solved by the EM algorithm. The derivation of
the EM algorithm is quite involved and will be introduced later when we deal
with a simpler problem. We now only give the final equation of the EM iteration.
Recall that the F1 hybrid can produce four possible gametes, two of them are of
parental type (A1B1 and A2B2) and the other two are recombinants (A1B2 and
A2B1). Therefore, an F2 progeny can be classified into one of three categories in
terms of the number of recombinant gametes contained: 0, 1, or 2. From Table 2.3,
we can see that each of the following observed genotypes carries one recombinant
gamete: A1A1B1B2, A1A2B1B1, A1A2B2B2, and A2A2B1B2, and each of the
following observed genotypes carries two recombinant gametes: A1A1B2B2 and
A2A2B1B1. Let n1 D m12 C m21 C m23 C m32 be the number of individuals
of category 1 and n2 D m13 C m31 be the number of individuals of category 2.
The double heterozygote A1A2B1B2 is an ambiguous genotype because it may carry
0 recombinant gamete, ( A1B1

A2B2
; A2B2

A1B1
), or two recombinant gametes, ( A1B2

A2B1
; A2B1

A1B2
). The

number of double heterozygote individuals that carry two recombinant gametes is
n23 C n32. Unfortunately, this number is not observable. If it were, we would be
able to take the ratio of the number of recombinant gametes to the total number of
gametes in the F2 progeny .2n/ to get the estimated recombination fraction right
away,

Or D 1

2n
Œ2.n23 C n32 C n2/ C n1� (2.30)

The EM algorithm takes advantage of this simple expression by substituting the
missing values .n23 C n32/ by its expectation. The expectation, however, requires
knowledge of the parameter, which is what we want to estimate. Therefore,
iterations are required. To calculate the expectation, we need the current value of
r , denoted by r.t/, and the number of double heterozygote individuals (m22). Recall
that the overall proportion of the double heterozygote is 1

2
Œr2 C .1 � r/2�, where

1
2
r2 represents the proportion of individuals carrying two recombinant gametes and

1
2
.1�r/2 represents the proportion of individuals carrying no recombinant gametes.

The conditional expectation of n23 C n32 is

E.n23 C n32/ D .r.t//2

.r.t//2 C .1 � r.t//2
m22 D w.t/m22: (2.31)

The iterative equation may be written as

r.tC1/ D 1

2n
f2ŒE.n23 C n32/ C n2� C .n1/g: (2.32)
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The final equation of the EM iteration becomes

r.tC1/ D 1

2n

�
2.w.t/m22 C m13 C m31/ C .m12 C m21 C m23 C m32/

�
: (2.33)

Calculating E.n23 C n32/ using (2.31) represents the E-step, and updating r.tC1/

using (2.32) represents the M-step of the EM algorithm. The final result of the EM
algorithm is so simple, yet it behaves extremely well with regard to the small number
of iterations required for convergence and the insensitiveness to the initial value of r .
A drawback of the EM algorithm is the difficulty in calculating the standard error
of the estimate. Since the solution is identical to the Fisher’s scoring method, the
variance (square of the standard error) of the estimate given in (2.28) can be used
as the variance of the EM estimate.

To test the hypothesis of no linkage, r D 1
2
, we will use the same likelihood

ratio test statistic, as described in the BC design. The log likelihood value under
the null model, however, needs to be evaluated in a slightly different way, that is,
L. 1

2
/ D P3

iD1

P3
j D1 mij ln.qij /, where qij is a function of r D 1

2
(see Table 2.5).

The log likelihood value under the alternative model is evaluated at r D Or , using
L.Or/ D P3

iD1

P3
j D1 mij ln. Oqij /, where Oqij is a function of r D Or (see Table 2.5).



http://www.springer.com/978-0-387-70806-5


	Chapter2 Recombination Fraction
	2.1 Mating Designs
	2.2 Maximum Likelihood Estimation of Recombination Fraction
	2.3 Standard Error and Significance Test
	2.4 Fisher's Scoring Algorithm for Estimating r
	2.5 EM Algorithm for Estimating r


