Fourier Series

Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonard Euler, expressed
the problem of the vibratory motion of a stretched string through partial differential equations that had
no solutions in terms of “‘elementary functions.”  Their resolution of this difficulty was to introduce
infinite series of sine and cosine functions that satisfied the equations. In the early nineteenth century,
Joseph Fourier, while studying the problem of heat flow, developed a cohesive theory of such series.
Consequently, they were named after him. Fourier series and Fourier integrals are investigated in this
and the next chapter. As you explore the ideas, notice the similarities and differences with the chapters
on infinite series and improper integrals.

PERIODIC FUNCTIONS

A function f(x) is said to have a period T or to be periodic with period T if for all x, f(x + T) = f(x),
where T is a positive constant. The least value of T > 0 is called the least period or simply the period of

J).

EXAMPLE 1. The function sinx has periods 27, 47, 67, ..., since sin(x + 27), sin (x + 47), sin (x + 67), ... all
equal sinx. However, 27 is the least period or the period of sin x.

EXAMPLE 2. The period of sinnx or cosnx, where n is a positive integer, is 27/n.

EXAMPLE 3. The period of tanx is 7.

EXAMPLE 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figures 13-1(a), (b), and (c) below.
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FOURIER SERIES

Let f(x) be defined in the interval (—L, L) and outside of this interval by f(x + 2L) = f(x), i.e., f(x)
is 2L-periodic. It is through this avenue that a new function on an infinite set of real numbers is created
from the image on (—L, L). The Fourier series or Fourier expansion corresponding to f(x) is given by

+ Z(a cos 1 4 b, sin %) ()

where the Fourier coefficients a, and b, are

1 L
a, = ZJ ) cos ? dx

n=0,1,2,... ©)
L
b, = %J_L £(x)sin % dx

ORTHOGONALITY CONDITIONS FOR THE SINE AND COSINE FUNCTIONS

Notice that the Fourier coefficients are integrals. These are obtained by starting with the series, (1),
and employing the following properties called orthogonality conditions:

L
(a) cos@cosnldx_Oﬂm;énandLlfm—n
) L L
L mmx niwx
(b) sstde‘c_OlfrnyénandLlfm—n 3)
-L
L
() mex m” 0. Where m and n can assume any positive integer values.
-L

An explanation for calling these orthogonality conditions is given on Page 342. Their application in
determining the Fourier coefficients is illustrated in the following pair of examples and then demon-
strated in detail in Problem 13.4.

EXAMPLE 1. To determine the Fourier coefficient ), integrate both sides of the Fourier series (/), i.e.,
o0

L i L ay L
JiLj(x) dx = L? dx + J Z{a,, cos T+ b, sin —} dx

=L =1

L L
. ) ) 1 .
sin ELV dx =0, [ cos HLLY dx = 0, therefore, ay = ij{ﬂf(x) dx

L
a
?0 dx = ayL, [ I,

L
Now [
J-i

J—-L

EXAMPLE 2. To determine @, multiply both sides of (/) by cos f " and then integrate. Using the orthogonality
1
conditions (3), and (3)., we obtain a; = L[ f(x)cos Q dx. Now see Problem 13.4.

If L = 7, the series (/) and the coefficients (2) or (3) are particularly simple. The function in this
case has the period 2.

DIRICHLET CONDITIONS
Suppose that

(1) f(x) is defined except possibly at a finite number of points in (—L, L)
(2) f(x) is periodic outside (—L, L) with period 2L



338 FOURIER SERIES [CHAP. 13

(3) f(x) and f'(x) are piecewise continuous in (—L, L).

Then the series (/) with Fourier coefficients converges to

(a) f(x)if x is a point of continuity
@ [0 H/6=0

Here f(x + 0) and f(x — 0) are the right- and left-hand limits of f(x) at x and represent hm f(x+e¢)and
lll’(I)l f(x —e), respectively. For a proof see Problems 13.18 through 13.23.

if x is a point of discontinuity

The conditions (1), (2), and (3) imposed on f(x) are sufficient but not necessary, and are generally
satisfied in practice. There are at present no known necessary and sufficient conditions for convergence
of Fourier series. It is of interest that continuity of f(x) does not alone ensure convergence of a Fourier
series.

ODD AND EVEN FUNCTIONS

A function f(x) is called odd if f(—x) = —f(x). Thus, x°, x° —3x> + 2x, sinx, tan 3x are odd
functions.

A function f(x) is called even if f(—x) =f(x). Thus, x* 2x° —4x* + 5, cosx, " + ¢~ are even
functions.

The functions portrayed graphically in Figures 13-1(a) and 13-1(b) are odd and even respectively,
but that of Fig. 13-1(c) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present. In the
Fourier series corresponding to an even function, only cosine terms (and possibly a constant which we
shall consider a cosine term) can be present.

HALF RANGE FOURIER SINE OR COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or only cosine terms are
present, respectively. When a half range series corresponding to a given function is desired, the function
is generally defined in the interval (0, L) [which is half of the interval (—L, L), thus accounting for the
name half range] and then the function is specified as odd or even, so that it is clearly defined in the other
half of the interval, namely, (—L, 0). In such case, we have

2 L
a,=0, b,= —J f(x)sin "X gx for half range sine series
L) L @

2 (F X
b,=0, a,= Z_[o f(x) cos ? dx for half range cosine series

PARSEVAL’S IDENTITY

If a, and b, are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the Dirichlet
conditions.

Then lJL (f(x)y dx = 4@ + i(a2 +b7) )
L _L - 2 g n n

(See Problem 13.13.)



CHAP. 13] FOURIER SERIES 343

Solved Problems

FOURIER SERIES

13.1. Graph each of the following functions.

3 0<x<S5 .
(@) f(x)= Period = 10
-3 -5<x<0

10|
~— Period —~

f feo— —— - —— ——
3

[}

T T T T T 3 T T T T T x
-25 -20 -15 -10 -5 of 3 5 10 15 20 25
-— - —_—— PR —_—— ———— -

Fig. 13-3

Since the period is 10, that portion of the graph in —5 < x < 5 (indicated heavy in Fig. 13-3 above) is
extended periodically outside this range (indicated dashed). Note that f(x) is not defined at
x=0,5,-5,10,-10, 15, —15, and so on. These values are the discontinuities of f(x).

sinx 0<x=nm .
) f(x) = Period = 27
0 rm<x<2m
J(x) Period
\\ // AN il \\\ i
AW, Vi A / I v X
-3 -2 - 0 k4 2 3 4
Fig. 13-4
Refer to Fig. 13-4 above. Note that f(x) is defined for all x and is continuous everywhere.
0 0Zx<2
(o) fx)=31 2=<x<4 Period=6
0 4<x<6
S
[«—— Period —
- _——— -—= —_— —-— -
1
4 x
[ ™ T -1 T R T ] =¥ T T
-2 -0 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Fig. 13-5

Refer to Fig. 13-5 above. Note that f(x) is defined for all x and is discontinuous at x = £2, +4, 8,
+10, 14, ....
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L ko L k
13.2. Prove[ sin ’”dx:J cos X dx=0 ifk=123 ...
L L _L L
Lo kmx L kmx |* L L
J_LSIHTdX7_ECOS 17 7L7_ECOSk”+ECOS(_kﬂ)7O
ok L . kux|" L
JiL cos % dx = o sin % ., = sin ki — = sin(—km) =0

L L
13.3. Prove (a) J_L cos myLTx cos ELY dx = J_L sin mzx sin ? dx = { 2 Z i Z

nwx
L

where m and n can assume any of the values 1,2,3,....

dx=0

L
(b) J sin ? cos
-L

(a) From trigonometry: cosAcosB = %{cos(A — B) +cos(4+ B)}, sindsinB = %{cos(A — B) — cos
(4 + B)}.
Then, if m # n, by Problem 13.2,

L L
. 1 — 2 )
J_L cos ? cos ? dy — EJ_L{COS (m Ln)rm 4 cos (m +Ln)7rx} dx— 0

Similarly, if m # n,

L L
. . 1 — ¢ .
J_L sin niizx sin —mzx dx = EJ_L:cos (m Ln)nh — cos (m —&-Ln)rr‘c} dx=0

If m = n, we have

L L
mmx nmwx 1 2nmwx
— —dx == 1 ——)dx=1L
‘[71‘005 2 cos i3 X 2([71‘( ~+ cos 7 ) X

L 1 (- 2
J sin mex sin oy dx = —J 1 —cos X dx=1L
. L L 2)., L

Note that if m = n these integrals are equal to 2L and 0 respectively.
(b) We have sin Acos B = %{sin(A — B) +sin(4 + B)}. Then by Problem 13.2, if m # n,

J L mnx nwx 1 J Lo m-mnx . (m+nnx
sin —— cos — dx = = sin + sin
—L L L L

17 5| dx=0

If m =n,

L L
. x 1 .2

J sm@cos@dxzfj. sin X dx=0

—L L L L

The results of parts () and (b) remain valid even when the limits of integration —L, L are replaced
by ¢, ¢ + 2L, respectively.

[e¢]
13.4. If the series 4 + Z(an cos % + b, sin ?) converges uniformly to f(x) in (—L, L), show that
forn=1,2,3, ..fl,:l

L

1t nwx 1 . nmx a
(a) a, = Z‘[iLf(X) COS T dx, (b) bn = Zl[iLf(X) sin T dx, (C) A= ? .
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(a) Multiplying

fx)=A4+ Z(a,, cos Zx + b, sin ?) @)

n=1

by cos MY and integrating from —L to L, using Problem 13.3, we have

—L

L
Z{ ,,J cosﬂcosn%dx—i—b J_Lcos?sm%dx}

L L
J f(x)cos MY dx = 4 J cos X i

a, L if m#0

1 L X
Thus am:—[ f(x)cos%dx ifm=1,2,3,...
L

L)_

() Multiplying (/) by sin ? and integrating from —L to L, using Problem 13.3, we have

00 L L
mmx niwx . mMAX . NmEX
+ E {anLLsmTco dx +b, J Lsme —dx}

L
Thus b,,,:—J Fsin ™ g itm=1,2,3,...
) L
(¢) Integrating of (/) from —L to L, using Problem 13.2, gives

oL 1 L
JiLf(x) dx =2AL or A= iJ,Lf(x) dx

1 L
Putting m = 0 in the result of part (a), we find aq = ZJ f(x)dx and so 4 = %.
-L

The above results also hold when the integration limits —L, L are replaced by ¢, ¢ + 2L.

Note that in all parts above, interchange of summation and integration is valid because the series is
assumed to converge uniformly to f(x) in (—L, L). Even when this assumption is not warranted, the
coefficients a,, and b,, as obtained above are called Fourier coefficients corresponding to f(x), and the
corresponding series with these values of a,, and b,, is called the Fourier series corresponding to f(x).
An important problem in this case is to investigate conditions under which this series actually converges
to f(x). Sufficient conditions for this convergence are the Dirichlet conditions established in Problems

13.18 through 13.23.

13.5. (a) Find the Fourier coefficients corresponding to the function
' 0 -5<x<0 .
f(x)—{3 0<x<5 Period = 10

(b) Write the corresponding Fourier series.
(¢) How should f(x) be defined at x = —5, x = 0, and x = 5 in order that the Fourier series will

converge to f(x) for —=5 < x £ 5?

The graph of f(x) is shown in Fig. 13-6.
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Sx) |

~— Period -

_———— __g_ _———-
t

Fig. 13-6

(a) Period =2L =10 and L =5. Choose the interval ¢ to ¢+ 2L as —5 to 5, so that ¢ = —5. Then

1 c+2L . 1 5
a, =—j f(x)cos%dx:—J f(x)cos?dx
-5

L), 5
[ . > ¢ 3P .
=3 {'[75(0) cos ? dx + ‘L (3) cos ? dx} = EL cos ? dx
3™\ 2o iraso
S\nm 5 )0 "
S 077> 3 5
Ifn_O,an_aO:—[ cos X gy =2 [ dx =3
0 5 5 Jo
1 c+2L x 1 5 X
b, = Z[ F(x)sin % dx = gLf(x) sin ? dx
0 5 . 5 .
= % “75(0) sin ? dx + J0(3) sin ? dx} = %L sin ? dx
3 5 nrx\ | 3(1 — cos nr)
=—|l—-——cos—|| =——
S5\ nm 5 /1 nmw
(b) The corresponding Fourier series is
@-i-i(a cos@-i—b sin @) —z i—“l — cosnr) sin@
2 =\ L " L) 2 g nw 5
—§+§ sin B—Fl sin @—l-l sin @4-
T2 53 5 5 5

(¢) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all points of

— x40 x—0 . . L . .
continuity and to [G+0+/x=0) at points of discontinuity. At x = —5, 0, and 5, which are points

2

of discontinuity, the series converges to (3 + 0)/2 = 3/2 as seen from the graph. If we redefine f(x) as
follows,

3/2 x=-=5

0 —5<x<0

fx)=43/2 x=0 Period = 10
3 O<x<5
3/2 x=5

then the series will converge to f(x) for =5 < x < 5.

13.6. Expand f(x) = x*,0 < x < 27 in a Fourier series if (a) the period is 277, (b) the period is not
specified.

(a) The graph of f(x) with period 27 is shown in Fig. 13-7 below.
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Fig. 13-7
Period =2L =27 and L =n. Choosing ¢ = 0, we have
c+2L 27
a, = lj f(x)cos @ dx 711 x* cos nx dx
L ¢ T Jo
. 2
sin nx —cosnx —sinnx\ ||~ 4
e e A
n n 0 n
27 87T2

Ifn:O,aO:—J Xdx = .
T Jo 3
21

1 c+2L ’ 1
b, = —J f(x)sin @ dx = —J 2 sinnx dx
c 7 Jo

L{( )< Cosnx> (2x )< smnx) (2)<cosnv>}

2
T A

n

0

4 (4 4
Thenf(x)_x :L—i- jcosnx——nsinnx .
3 —\n n

This is valid for 0 < x < 27. At x = 0 and x = 27 the series converges to 27

(b) 1If the period is not specified, the Fourier series cannot be determined uniquely in general

1 1 1
13.7. Using the results of Problem 13.6, prove that — B += Y += e + - %
712 > 4
At x = 0 the Fourier series of Problem 13.6 reduces to — + Z_Z
+47%) = 27°.

By the Dirichlet conditions, the series converges at x = 0 to 2(

4 > 4 > 1
Then %—1— ?:2712, and so ;P:_

n=1

ODD AND EVEN FUNCTIONS, HALF RANGE FOURIER SERIES
13.8. Classify each of the following functions according as they are even, odd, or neither even nor odd

@ /() = pered
W= -2 -3<x<0
From Fig. 13-8 below it is seen that f(—x) =

Period = 6

—f(x), so that the function is odd.

cosx O<x<m .
®) () = { Period = 2
0 T<X<2mw
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S
_____ 2 ——
T T T T x
-6 -3 3 6
—— — 2 e e e -
Fig. 13-8
From Fig. 13-9 below it is seen that the function is neither even nor odd.
S
~~q 1 ~~.
\ N
AN AN
jl2*1 \\ *"7 0 \"[ ﬁ27[ \\ 3n )
A Y AN
\N - ~ .
Fig. 13-9
(¢) f(x)=x(10—x),0 < x < 10, Period = 10.
From Fig. 13-10 below the function is seen to be even.
)
PN
4 A
/ \
\ / \ /
\ / \ 25 /
N ’ \ 1 /
A4 /
i 1 X
-10 o 5 10
Fig. 13-10
13.9. Show that an even function can have no sine terms in its Fourier expansion.
Method 1: No sine terms appear if b, =0,n=1,2,3,.... To show this, let us write
1(* . 1(° _ 1 (- s
b, = ZL f(x)sin ? dx = ZL f(x)sin ? dx+7 JO f(x)sin ? dx
If we make the transformation x = —u in the first integral on the right of (/), we obtain
e . nmx 1t . nmwu 1t . nmu
Z.L S)sin T dx = ZL f(—u) sm(— T) du = _ZL f=wysin 2 du

1 . nmu I . nmx
:—Z'Lf(u)sdeu_—ZJOf(x)sdex

13

)

@

where we have used the fact that for an even function f(—u) = f(u) and in the last step that the dummy
variable of integration u can be replaced by any other symbol, in particular x. Thus, from (/), using (2), we

have



CHAP. 13]

13.10.

13.11.

FOURIER SERIES 349

L
by, 1[ f(\)sm—dv—l- Jf(x)sm—dx_o

nnx>
L

l’lJTX)
/)

o0
Method 2: Assume f(x)=—= + Z(a,, cos X T + b, sin

n=1

f(—x) = % + i(a,, cos

n=1

nIx
Th —— — bysi
en 7 N Sin

If f(x) is even, f(—x) = f(x).

- + Z(an COS

n=1

Hence,

+b sin T) ?0 i::(a,,cos

— b, sin nnx)
L

and so

a nmwx
E b, sin 7 =
|

00
, a nmx
e, f(x)= 304— Za,,cos 7
=1

and no sine terms appear.
In a similar manner we can show that an odd function has no cosine terms (or constant term) in its
Fourier expansion.

. 2 (- nwx
If f(x) is even, show that (a) a, = 7 f(x)cos - dx, (b) b,=0.
0

1 L
a, = ZJLL

Letting x = —u,

(a) _f(x)cos?dx:lj f(r)cos—dx+ Jf(v)cos—dx

L

1

ZJ f(x)cos—dv_ Jf( u)cos(

TTU 1t nmu
)du - ZL f(w)cos = du

since by definition of an even function f(—u) Then

=/ (w).
L

a, = 1J fu )cos—du—f— J f(x)cos—d 77J. f(x)cos?dx
0

(b) This follows by Method 1 of Problem 13.9.

Expand f(x) =sinx, 0 < x < 7, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence, we
extend the definition of f(x) so that it becomes even (dashed part of Fig. 13-11 below). With this extension,
f(x) is then defined in an interval of length 2. Taking the period as 27, we have 2L = 27 so that L = 7.

S
-~ ~ T~ -~
N s AN ’ AN g N7
A4 \ 7/ \ Vs \
¥ Y I Y *
27 - o T 2
Fig. 13-11

By Problem 13.10, b, = 0 and

2 (- 2.
a”:zJ f(x)cos?dx:—J sin x cos nx dx
0 TJo
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1(r 1 1) - Dx]|"
:—J {sin(x + nx) + sin(x — nx)} = — —COS("+ )x | cosln — 1)x
7 Jo b4 n+1 n—1 0
_1fl—cos(n+Dm cos(m—Dm—1] 1[I+cosnw 1+ cosnrw
T n+1 n—1 T n+1 n—1
=2(1
_ A teosmm) e,
w(n® —1)
2 T ) 2 si 2 T
Forn=1, a; _7J smxcosxdx:fsm il
7 Jo T 2 |
2 (" 2 T
Forn=0, aoZ*J sinxdx = —(—cosx)| =—
TJo b3 0
2 2 (1 +cosnm)
Then f(x):;—;;ﬁ cos nx

2 4(0052x cos4x COS6X+ )

“r At te

13.12. Expand f(x) = x,0 < x < 2, in a half range (@) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 13-12
below. This is sometimes called the odd extension of f(x). Then 2L =4, L = 2.

Jx)
7/ / /
/ / /
7/ 7 7/
£ T © T £ x
. /44 T // T /4 T P
/ / /7 /
/ 7/ / /7
Fig. 13-12
Thus a, =0 and
2 (F . nmx 2% . nmx
b” = zJO_f(X)Sln T dx = EJO X S T dx
-2 niwx -4 . aax\)|F -
= {(,\)(E cos T) - (1)<W sin T)} o — cos nw
Then flx)= ij cos n sin X
e “~ nm 2
A (ain T L g 2 g 3
B A T R TR B

(b) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 13-13 below. This is
the even extension of f(x). Then 2L =4, L =2.
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Sx)
N\ 7\ \ 7\
7 N\ / N\ N / AN
/7 \N s \ \N 7
T \T/ T T N T x
-6 -4 -2 o 2 4 6
Fig. 13-13

Thus b, =0,
2

2 (F 2 X
a, :ZJ f(x)cos % dx = z[oxcos ? dx

2
{(x)(;sm—) (1)( zwsmztx>}

0
4
=——(cosnm — 1) If n£0
n*mw

2
If n:O,a(J:J xXdx =2.
0

nmwx
Th =1 -1 —_—
en f) =1+ Z (cos nm — 1)cos 5
—1—i cosﬁ-i—lcosh—x—}—icosm—ﬁ—
B a2 2 3 2 52 2

It should be noted that the given function f(x) = x, 0 < x < 2, is represented equally well by the
two different series in (a) and (b).

PARSEVAL’S IDENTITY

13.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(x) in (—L, L),
prove Parseval’s identity

o vera=9s@ e

where the integral is assumed to exist.

If f(x) = —+ Z(a cos T + b, sin T) then multiplying by f(x) and integrating term by term

from —L to L (whlch is justified since the series is uniformly convergent) we obtain

J:{f(x)}z v = a2 J fl)dv+ Z{ “nj £(x)cos 2 dx + b,’J Sf(x)sin ? dX}

ao 2 2
:7L+L;(an+bn) (1)
where we have used the results
L oL L
J f(x)cos T ax = La,, J f(sin 7T ax = L, J f(x)dx = Lay ©)
, L » L .

obtained from the Fourier coefficients.
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The required result follows on dividing both sides of (/) by L. Parseval’s identity is valid under less
restrictive conditions than that imposed here.

(a) Write Parseval’s identity corresponding to the Fourier series of Problem 13.12(b).
. .1 1 1 1
(b) Determine from (@) the sum S of the series 7 + Tt g +oe gt
n
4
(a) Here L=2,ay=2,a,= W(cosnn —1),n#0,b,=0.
Then Parseval’s identity becomes
1(? ) 1P, 2F & 16 )
) pera=s] s =3t D g cosm =)
0r8—2+641+1+1+ ie 1+1+1+ all
377 A\t s T3S ~ 9.
1 1 1 1 1 1 1 1 1
B S=gtmtyt o =gtutat ) tatatat
1 1 1 1 /1 1 1
gttt ) tulEtatat o
4 4
b4 S . b4
7%—1—%, fromwhlcthﬁ

Prove that for all positive integers M,
a(z) = 2 2 N PSS
T @rms ] vora

where a, and b, are the Fourier coefficients corresponding to f(x), and f(x) is assumed piecewise
continuous in (—L, L).
niwx
Let Syu(x) =—= + Z(““ cos X + b, sin T) (1)

For M =1,2,3, ... this is the sequence of partial sums of the Fourier series corresponding to f(x).
We have

L
J V) = Sy dx 2 0 )

since the integrand is non-negative. Expanding the integrand, we obtain

L L L
2j 1) SM(x)dx—j S2,(x) dx gj P dx 3)
L L L

Multiplying both sides of (/) by 2f(x) and integrating from —L to L, using equations (2) of Problem
13.13, gives

L
2J F(%) Sy (x) dx = ZL{ + Z(a + b,%)} 4)
—L

Also, squaring (/) and integrating from —L to L, using Problem 13.3, we find

L a2 M
J S3(x) dx = L[i‘) +) (an+ bﬁ)’ 5)
-L n=1

Substitution of (4) and (5) into (3) and dividing by L yields the required result.
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Taking the limit as M — oo, we obtain Bessel’s inequality
a% o, 2 2 1 5
Pey@en s | vwre ®
p L

If the equality holds, we have Parseval’s identity (Problem 13.13).

We can think of S,,(x) as representing an approximation to f(x), while the left-hand side of (2), divided
by 2L, represents the mean square error of the approximation. Parseval’s identity indicates that as M — oo
the mean square error approaches zero, while Bessels’ inequality indicates the possibility that this mean
square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example, we were
to leave out one or more terms in a Fourier series (say cos 4mx/L, for example), we could never get the mean
square error to approach zero no matter how many terms we took. For an analogy with three-dimensional
vectors, see Problem 13.60.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

13.16. (a) Find a Fourier series for f(x) = x%,0 < X< 2, by integrating the series of Problem 13.12(a).

h) U aluate the series 3 "1
(b) Use (a) to evaluate the series ZIT
n=
(a) From Problem 13.12(a),
4 sin °* ls‘nznx+ls'n 3mx 0
R G T R R S R

Integrating both sides from 0 to x (applying the theorem of Page 339) and multiplying by 2, we find

16 x 1 2 1 3
xz:C—;(cos%—?cos$+?cos%—-~-) 2

16 1 1 1
where C:?O_?J’_?_F—Fm)‘

(b) To determine C in another way, note that (2) represents the Fourier cosine series for x* in 0 < x < 2.
Then since L = 2 in this case,

_a_1f* _lrz _4
C_2_LJ0f(x)_20xdx_3

Then from the value of C in (a), we have

ST e
p nr 227327 42 16 3

13.17. Show that term by term differentiation of the series in Problem 13.12(«) is not valid.

> 2 3
Term by term differentiation yields 2(cos %Y —cos %x + cos %x - )

Since the nth term of this series does not approach 0, the series does not converge for any value of x.



