E-content: Methods of Gene Transfer

Vivek Prasad

Chemically assisted transformation of protoplasts Electroporation Bombardment of plant material with DNA-coated microprojectiles By exploiting the bacterium *Agrobacterium tumefaciens* and its T_i plasmid

Chemically-assisted transformation

Protoplasts take up DNA from surrounding medium DNA gets stably integrated into the genome in a proportion of transfected cells Polyethylene glycol (PEG) is the most widely used chemical

Problems:

Inability of the host species to regenerate from protoplasts DNA inserted into cells in this way is not capable of independent replication Random integration into any plant chromosome through non-homologous recombination

Bacterial Transformation

Problem:	<i>E. coli</i> cannot be transformed naturally
Solution:	Make <i>E. coli</i> competent in the lab
Problem:	Fate of the foreign DNA after entering bacteria
Solution:	Hook foreign DNA to a vector
Problem:	Locating transformants
Solution:	Use selection marker genes

Preparation of Competent Cells

Grow bacteria in LB broth, 100 mL, 37 C x 3h (OD₆₀₀ of approx. $0.4 = 10^8$ viable cells/mL) Transfer cells to sterile 50 mL tubes. Cool at 0 °C x 10 min Centrifuge at 2700 x g, 4 °C, 10 min, decant supernatant Resuspend pellet in 30 mL ice-cold MgCl₂ - CaCl₂ solution (80 mM MgCl₂, 20 mM CaCl₂) Centrifuge at 2700 x g, 4 °C, 10 min, decant supernatant Resuspend pellet in 2 mL ice-cold 0.1 M CaCl₂ Transform cells OR store at -70 °C

Transformation of Competent Cells

Take 200 μ L of competent cells, add DNA, let stand on ice for 30 min Transfer tubes to 42 °C in water bath, for 90 sec Transfer immediately to ice-bath, chill for 1-2 min Add 800 μ L of LB/other medium, in water bath at 37 °C for 1 h Plate on appropriate medium Allow for liquid film to dry on medium Incubate at 37 °C, colonies in approx 12-16 h

Electroporation

Passage of molecules through *electropores* Pore formation extremely rapid – 1 μs Electropores reseal simultaneously, resealing slower Factors affecting electroporation: temperature, electrical field, topological form of DNA, host cell factors

Biolistics: Microprojectile Bombardment

DNA coated gold or tungsten spheres, $0.4 - 1.2 \mu m$ diam (microprojectiles) Accelerated to 300-600 msec⁻¹ with a particle gun Particle gun may use gunpowder, compressed air or compressed helium Projectile hits stopping plate, microprojectiles released at high velocity, penetrate cells DNA integrates randomly into plant DNA (how?)

Advantages:

Can introduce DNA into many cell types Works in monocots also Linear DNA more efficiently integrated than circular Can introduce DNA into chloroplasts and mitochondria

Disadvantages:

Multiple insertions require many breeding cycles to select best insertion Can get transient gene expression without integration

Agrobacterium-mediated Gene Transfer

Agrobacterium tumefaciens - causes Crown Gall disease in a wide variety of plants

Crown gall tissue represents true oncogenic transformation, and tumor properties retained even after the destruction/death of infecting *Agrobacterium* :

Ability to form a tumor when grafted onto a healthy plant

Unlimited growth as callus even in absence of phytohormones

Synthesis of opines (octopine and nopaline) that are unusual amino acid derivatives

T_i Plasmid 200 kbp Has two major regions:

VIR, 35 kbp T-DNA, 10 kbp

Disarmed Ti Plasmid

Co-integrate Vector

Intermediate vector transferred into *Agrobacterium* by conjugation Unable to replicate autonomously in *Agrobacterium*

Co-integration in *A. tumefaciens* between homologous regions on modified Ti plasmid (disarmed) and a small *E. coli* cloning vector (intermediate vector) which contains a selectable marker gene that will function in plant cells and unique sites for the insertion of foreign DNA

Vir genes carried on the SAME plasmid as the insert

T_i Plasmid Based Binary Vector

Based on plasmids that can replicate both in *E. coli* and *A. tumefaciens*, and which contain T-DNA borders

Border sequences flank MCS to allow insertion of foreign DNA and markers for direct selection of transformed cells

Vector system consists of two plasmids: one carrying the MCS, and the other carrying the *Vir* genes to function in trans

Binary vector (trans vector)

Vir genes and T-DNA borders with MCS on SEPARATE plasmids

Recombinant plasmid transferred to *A. tumefaciens* carrying helper *Ti* plasmid with *Vir* genes Plant cells co-cultivated with *Agrobacterium* to allow transfer of recombinant T-DNA into the plant genome

Transformed plant cells selected, and grown in through tissue culture