

ACCUMULATOR A (8)
FLAG REGISTER

B (8) C (8)

D (8) E (8)

H (8) L (8)

Stack Pointer (SP) (16)

Program Counter (PC) (16)

Data Bus Address Bus

8 Lines Bidirectional 16 Lines unidirectional

Tutorial on Remaining part of 8085 Microprocessor

Dear students this tutorial is in continuation of lectures we have already discussed in the classroom.

The 8085 Programming Model:

As we have already discussed in the class, the 8085 programming model includes six

registers, one accumulator, and one flag register, as shown in Figure given below. In addition, it

has two 16-bit registers: the stack pointer and the program counter. They are described below in

brief.

Registers

The 8085 has six general - purpose registers to store 8-bit data; these are identified as B,

C, D, E, H and L as shown in the figure. They can be combined as register pairs - BC, DE, and

HL - to perform some 16-bit operations. The programmer can use these registers to store or

copy data into the registers by using data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This

register is used to store 8-bit data and to perform arithmetic and logical operations. The result

of an operation is stored in the accumulator. The accumulator is also identified as register A.

Flags

The ALU includes five flip-flops, which are set or reset after an operation according to

data conditions of the result in the accumulator and other registers. They are called Zero (Z),

Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; their bit positions in the flag

register are shown in the Figure below. The most commonly used flags are Zero, Carry, and

Sign. The microprocessor uses these flags to test data conditions.

D7 D6 D5 D4 D3 D2 D1 D0

S Z

AC

P

CY

For example, after an addition of two numbers, if the sum in the accumulator id larger than

eight bits, the flip-flop uses to indicate a carry - called the Carry flag (CY) is set to one. When

an arithmetic operation results in zero, the flip-flop called the Zero (Z) flag is set to one. The

first Figure shows an 8-bit register, called the flag register, adjacent to the accumulator.

However, it is not used as a register; five bit positions out of eight are used to store the outputs

of the five flip-flops. The flags are stored in the 8-bit register so that the programmer can

examine these flags (data conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the micro- processor.

The conditions (set or reset) of the flags are tested through the software instructions. For

example, the instruction JC (Jump on Carry) is implemented to change the sequence of a

program when CY flag is set. The thorough understanding of flag is essential in writing

assembly language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a

memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit register.

The microprocessor uses this register to sequence the execution of the instructions. The function of

the program counter is to point to the memory address from which the next byte is to be fetched.

When a byte (machine code) is being fetched, the program counter is incremented by one to point to

the next memory location

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory

location in R/W memory, called the stack. The beginning of the stack is defined by loading 16-

bit address in the stack pointer.

The 8085 Addressing Modes

The instructions MOV B, A or MVI A, 82H are to copy data from a source into a

destination. In these instructions the source can be a register, an input port, or an 8-bit number

(00H to FFH). Similarly, a destination can be a register or an output port. The sources and

destination are operands. The various formats for specifying operands are called the

ADDRESSING MODES. For 8085, they are:

1. Immediate addressing.

2. Register addressing.

3. Direct addressing.

4. Indirect addressing.

Immediate addressing

Data is present in the instruction. Load the immediate data to the destination provided.

Example: MVI R, data

Register addressing

Data is provided through the registers.

Example: MOV Rd, Rs

Direct addressing

Used to accept data from outside devices to store in the accumulator or send the data

stored in the accumulator to the outside device. Accept the data from the port 00H and store

them into the accumulator or Send the data from the accumulator to the port 01H.

Example: IN 00H or OUT 01H

Indirect Addressing

This means that the Effective Address is calculated by the processor. And the contents of the

address (and the one following) is used to form a second address. The second address is where

the data is stored. Note that this requires several memory accesses; two accesses to retrieve the

16-bit address and a further access (or accesses) to retrieve the data which is to be loaded into

the register.

For instruction Set this is in continuation of the part which we have already

discussed in the class.
Instructions Set:

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions, called the instruction set, determines what functions

the microprocessor can perform. These instructions can be classified into the following five

functional categories: data transfer (some time also called as copy) operations, arithmetic

operations, logical operations, branching operations, and machine-control operations.

DATA TRANSFER INSTRUCTIONS

Opcode Operand Description

Copy from source to destination

MOV Rd, Rs This instruction copies the contents of the source
 M, Rs register into the destination register; the contents of
 Rd, M the source register are not altered. If one of the operands is a
 memory location, its location is specified by the contents of
 the HL registers.
 Example: MOV B, C or MOV B, M

Move immediate 8-bit

MVI Rd, data The 8-bit data is stored in the destination register or
 M, data memory. If the operand is a memory location, its location is
 specified by the contents of the HL registers.
 Example: MVI B, 57H or MVI M, 57H

Load accumulator

LDA 16-bit address The contents of a memory location, specified by a
 16-bit address in the operand, are copied to the accumulator.
 The contents of the source are not altered.
 Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair The contents of the designated register pair point to a memory
 location. This instruction copies the contents of that memory
 location into the accumulator. The contents of either the
 register pair or the memory location are not altered.
 Example: LDAX B

Load register pair immediate

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register pair

designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

Load H and L registers direct

LHLD 16-bit address The instruction copies the contents of the memory location

pointed out by the 16-bit address into register L and copies

the contents of the next memory location into register H. The

contents of source memory locations are not altered.

Example: LHLD 2040H

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory
 location specified by the operand. This is a 3-byte instruction,
 the second byte specifies the low-order address and the third
 byte specifies the high-order address.
 Example: STA 4350H

Store accumulator indirect

STAX Reg. pair The contents of the accumulator are copied into the memory
 location specified by the contents of the operand (register
 pair). The contents of the accumulator are not altered.
 Example: STAX B

Store H and L registers direct

SHLD 16-bit address The contents of register L are stored into the memory location
 specified by the 16-bit address in the operand and the contents
 of H register are stored into the next memory location by
 incrementing the operand. The contents of registers HL are
 not altered. This is a 3-byte instruction, the second byte
 specifies the low-order address and the third byte specifies the
 high-order address.
 Example: SHLD 2470H

Exchange H and L with D and E

XCHG none The contents of register H are exchanged with the contents of
 register D, and the contents of register L are exchanged with
 the contents of register E.
 Example: XCHG

Copy H and L registers to the stack pointer

SPHL none The instruction loads the contents of the H and L registers into
 the stack pointer register, the contents of the H register
 provide the high-order address and the contents of the L
 register provide the low-order address. The contents of the H
 and L registers are not altered.
 Example: SPHL

Exchange H and L with top of stack

XTHL none The contents of the L register are exchanged with the stack
 location pointed out by the contents of the stack pointer
 register. The contents of the H register are exchanged with
 the next stack location (SP+1); however, the contents of the
 stack pointer register are not altered.
 Example: XTHL

Push register pair onto stack

PUSH Reg. pair The contents of the register pair designated in the operand are
 copied onto the stack in the following sequence. The stack
 pointer register is decremented and the contents of the high-
 order register (B, D, H, A) are copied into that location. The
 stack pointer register is decremented again and the contents of
 the low-order register (C, E, L, flags) are copied to that
 location.
 Example: PUSH B or PUSH A

Pop off stack to register pair

POP Reg. pair The contents of the memory location pointed out by the stack
 pointer register are copied to the low-order register (C, E, L,
 status flags) of the operand. The stack pointer is incremented
 by 1 and the contents of that memory location are copied to
 the high-order register (B, D, H, A) of the operand. The stack
 pointer register is again incremented by 1.
 Example: POP H or POP A

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address The contents of the accumulator are copied into the I/O port

specified by the operand.

Example: OUT F8H

Input data to accumulator from a port with 8-bit address

IN 8-bit port address The contents of the input port designated in the operand are

read and loaded into the accumulator.

Example: IN 8CH

ARITHMETIC INSTRUCTIONS

Opcode Operand Description

Add register or memory to accumulator

ADD R The contents of the operand (register or memory) are
 M added to the contents of the accumulator and the result is
 stored in the accumulator. If the operand is a memory
 location, its location is specified by the contents of the HL
 registers. All flags are modified to reflect the result of the
 addition.
 Example: ADD B or ADD M

Add register to accumulator with carry

ADC R The contents of the operand (register or memory) and
 M the Carry flag are added to the contents of the accumulator
 and the result is stored in the accumulator. If the operand is a
 memory location, its location is specified by the contents of
 the HL registers. All flags are modified to reflect the result of
 the addition.
 Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The 8-bit data (operand) is added to the contents of the
 accumulator and the result is stored in the accumulator. All
 flags are modified to reflect the result of the addition.
 Example: ADI 45H

Add immediate to accumulator with carry

ACI 8-bit data The 8-bit data (operand) and the Carry flag are added to the
 contents of the accumulator and the result is stored in the
 accumulator. All flags are modified to reflect the result of the
 addition.
 Example: ACI 45H

Add register pair to H and L registers

DAD Reg. pair The 16-bit contents of the specified register pair are added to
 the contents of the HL register and the sum is stored in the
 HL register. The contents of the source register pair are not
 altered. If the result is larger than 16 bits, the CY flag is set.
 No other flags are affected.
 Example: DAD H

Subtract register or memory from accumulator

SUB R The contents of the operand (register or memory) are
 M subtracted from the contents of the accumulator, and the result
 is stored in the accumulator. If the operand is a memory
 location, its location is specified by the contents of the HL
 registers. All flags are modified to reflect the result of the
 subtraction.
 Example: SUB B or SUB M

Subtract source and borrow from accumulator

SBB R The contents of the operand (register or memory) and
 M the Borrow flag are subtracted from the contents of the
 accumulator and the result is placed in the accumulator. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers. All flags are modified to
 reflect the result of the subtraction.
 Example: SBB B or SBB M

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the
 accumulator and the result is stored in the accumulator. All
 flags are modified to reflect the result of the subtraction.
 Example: SUI 45H

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted

from the contents of the accumulator and the result is stored

in the accumulator. All flags are modified to reflect the result
of the subtracion.

 Example: SBI 45H

Increment register or memory by 1

INR R The contents of the designated register or memory) are
 M incremented by 1 and the result is stored in the same place. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers.
 Example: INR B or INR M

Increment register pair by 1

INX R The contents of the designated register pair are incremented

by 1 and the result is stored in the same place.

Example: INX H

Decrement register or memory by 1

DCR R The contents of the designated register or memory are

M decremented by 1 and the result is stored in the same place. If

the operand is a memory location, its location is specified by

the contents of the HL registers.

Example: DCR B or DCR M

Decrement register pair by 1

DCX R The contents of the designated register pair are decremented

by 1 and the result is stored in the same place.

Example: DCX H

Decimal adjust accumulator

DAA none The contents of the accumulator are changed from a binary

value to two 4-bit binary coded decimal (BCD) digits. This is

the only instruction that uses the auxiliary flag to perform the

binary to BCD conversion, and the conversion procedure is

described below. S, Z, AC, P, CY flags are altered to reflect

the results of the operation.

If the value of the low-order 4-bits in the accumulator is

greater than 9 or if AC flag is set, the instruction adds 6 to the

low-order four bits.

If the value of the high-order 4-bits in the accumulator is

greater than 9 or if the Carry flag is set, the instruction adds 6

to the high-order four bits.

Example: DAA

BRANCHING INSTRUCTIONS

Opcode Operand Description

Jump unconditionally

JMP 16-bit address The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand.

Example: JMP 2034H or JMP XYZ

Jump conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand based on

the specified flag of the PSW as described below.

Example: JZ 2034H or JZ XYZ

Opcode Description Flag Status

JC Jump on Carry CY = 1

JNC Jump on no Carry CY = 0

JP Jump on positive S = 0

JM Jump on minus S = 1

JZ Jump on zero Z = 1

JNZ Jump on no zero Z = 0

JPE Jump on parity even P = 1

JPO Jump on parity odd P = 0

Unconditional subroutine call

CALL 16-bit address The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand. Before

the transfer, the address of the next instruction after CALL

(the contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

Call conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand based on

the specified flag of the PSW as described below. Before the

transfer, the address of the next instruction after the call (the

contents of the program counter) is pushed onto the stack.

Example: CZ 2034H or CZ XYZ

Opcode Description Flag Status

CC Call on Carry CY = 1

CNC Call on no Carry CY = 0

CP Call on positive S = 0

CM Call on minus S = 1

CZ Call on zero Z = 1

CNZ Call on no zero Z = 0

CPE Call on parity even P = 1

CPO Call on parity odd P = 0

Return from subroutine unconditionally

RET none The program sequence is transferred from the subroutine to

the calling program. The two bytes from the top of the stack

are copied into the program counter, and program execution

begins at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

The program sequence is transferred from the subroutine to

the calling program based on the specified flag of the PSW as

described below. The two bytes from the top of the stack are

copied into the program counter, and program execution

begins at the new address.

Example: RZ

Opcode Description Flag Status

RC Return on Carry CY = 1

RNC Return on no Carry CY = 0

RP Return on positive S = 0

RM Return on minus S = 1

RZ Return on zero Z = 1

RNZ Return on no zero Z = 0

RPE Return on parity even P = 1

RPO Return on parity odd P = 0

Load program counter with HL contents

PCHL none The contents of registers H and L are copied into the program

counter. The contents of H are placed as the high-order byte

and the contents of L as the low-order byte.

Example: PCHL

Restart

RST 0-7 The RST instruction is equivalent to a 1-byte call instruction

to one of eight memory locations depending upon the number.

The instructions are generally used in conjunction with

interrupts and inserted using external hardware. However

these can be used as software instructions in a program to

transfer program execution to one of the eight locations. The

addresses are:

Instruction Restart Address

RST 0 0000H

RST 1 0008H

RST 2 0010H

RST 3 0018H

RST 4 0020H

RST 5 0028H

RST 6 0030H

RST 7 0038H

The 8085 has four additional interrupts and these interrupts

generate RST instructions internally and thus do not require

any external hardware. These instructions and their Restart

addresses are:

Interrupt Restart Address

TRAP 0024H

RST 5.5 002CH

RST 6.5 0034H

RST 7.5 003CH

LOGICAL INSTRUCTIONS

Opcode Operand Description

Compare register or memory with accumulator

CMP R The contents of the operand (register or memory) are

M compared with the contents of the accumulator. Both

contents are preserved . The result of the comparison is

shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set

if (A) = (reg/mem): zero flag is set

if (A) > (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

Compare immediate with accumulator

CPI 8-bit data The second byte (8-bit data) is compared with the contents of

the accumulator. The values being compared remain

unchanged. The result of the comparison is shown by setting

the flags of the PSW as follows:

if (A) < data: carry flag is set

if (A) = data: zero flag is set

if (A) > data: carry and zero flags are reset

Example: CPI 89H

Logical AND register or memory with accumulator

ANA R The contents of the accumulator are logically ANDed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY is reset. AC is set.
 Example: ANA B or ANA M

Logical AND immediate with accumulator

ANI 8-bit data The contents of the accumulator are logically ANDed with the
 8-bit data (operand) and the result is placed in the
 accumulator. S, Z, P are modified to reflect the result of the
 operation. CY is reset. AC is set.
 Example: ANI 86H

Exclusive OR register or memory with accumulator

XRA R The contents of the accumulator are Exclusive ORed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.
 Example: XRA B or XRA M

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the
 8-bit data (operand) and the result is placed in the
 accumulator. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.
 Example: XRI 86H

Logical OR register or memory with accumulaotr

ORA R The contents of the accumulator are logically ORed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.
 Example: ORA B or ORA M

Logical OR immediate with accumulator

ORI 8-bit data The contents of the accumulator are logically ORed with the

8-bit data (operand) and the result is placed in the

accumulator. S, Z, P are modified to reflect the result of the

operation. CY and AC are reset.

Example: ORI 86H

Rotate accumulator left

RLC none Each binary bit of the accumulator is rotated left by one

position. Bit D7 is placed in the position of D0 as well as in

the Carry flag. CY is modified according to bit D7. S, Z, P,

AC are not affected.
 Example: RLC

Rotate accumulator right

RRC none Each binary bit of the accumulator is rotated right by one

 position. Bit D0 is placed in the position of D7 as well as in

the Carry flag. CY is modified according to bit D0. S, Z, P,

AC are not affected.

Example: RRC

Rotate accumulator left through carry

RAL none Each binary bit of the accumulator is rotated left by one

 position through the Carry flag. Bit D7 is placed in the Carry
 flag, and the Carry flag is placed in the least significant

 position D0. CY is modified according to bit D7. S, Z, P, AC
 are not affected.
 Example: RAL

Rotate accumulator right through carry

RAR none Each binary bit of the accumulator is rotated right by one

 position through the Carry flag. Bit D0 is placed in the Carry
 flag, and the Carry flag is placed in the most significant

 position D7. CY is modified according to bit D0. S, Z, P, AC
 are not affected.
 Example: RAR

Complement accumulator

CMA none The contents of the accumulator are complemented. No flags

are affected.

Example: CMA

Complement carry

CMC none The Carry flag is complemented. No other flags are affected.

Example: CMC

Set Carry

STC none The Carry flag is set to 1. No other flags are affected.

Example: STC

CONTROL INSTRUCTIONS

Opcode Operand Description

No operation

NOP none No operation is performed. The instruction is fetched and

decoded. However no operation is executed.

Example: NOP

Halt and enter wait state

HLT none The CPU finishes executing the current instruction and halts

any further execution. An interrupt or reset is necessary to

exit from the halt state.

Example: HLT

Disable interrupts

DI none The interrupt enable flip-flop is reset and all the interrupts

except the TRAP are disabled. No flags are affected.

Example: DI

Enable interrupts

EI none The interrupt enable flip-flop is set and all interrupts are

enabled. No flags are affected. After a system reset or the

acknowledgement of an interrupt, the interrupt enable flip-

flop is reset, thus disabling the interrupts. This instruction is

necessary to reenable the interrupts (except TRAP).

Example: EI

Read interrupt mask

RIM none This is a multipurpose instruction used to read the

status of interrupts 7.5, 6.5, 5.5 and read serial data

input bit. The instruction loads eight bits in the

accumulator with the following interpretations.

Example: RIM

Set interrupt mask

SIM none This is a multipurpose instruction and used to implement the 8085

interrupts 7.5, 6.5, 5.5, and serial data output.

Instruction word size

The 8085 instruction set is classified into the following three groups according to

word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor.

However, instructions are commonly referred to in terms of bytes rather than words.

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s)

are internal register and are coded into the instruction.

For example:

Task Op

code

Operand Binary

Code

Hex

Code

Copy the contents of the accumulator in

the register C.

MOV C,A 0100 1111 4FH

Add the contents of register B to the

contents of the accumulator.

ADD B 1000 0000 80H

Invert (compliment) each bit in the

accumulator.
CMA 0010 1111 2FH

These instructions are 1-byte instructions performing three different tasks. In the first

instruction, both operand registers are specified. In the second instruction, the operand

B is specified and the accumulator is assumed. Similarly, in the third instruction, the

accumulator is assumed to be the implicit operand. These instructions are stored in 8-

bit binary format in memory; each requires one memory location.

MOV rd, rs

rd < rs copies contents of source register (rs) into destination register (rd).

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is the

destination of the data, sss is the code of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction

design of such processors).

ADD r

A < A + r

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second

byte specifies the operand. Source operand is a data byte immediately following the

opcode. For example:

Task Opcode Operand Binary

Code

Hex Code

Load an 8-bit data

byte in the

accumulator.

MVI A, Data
0011 1110

3E

Data

First Byte

Second Byte

DATA

Assume that the data byte is 32H. The assembly language instruction is written as

Mnemonics Hex code

MVI A, 32H 3E 32H

The instruction would require two memory locations to store in memory.

MVI r,data

r < data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is an

example of immediate addressing.

ADI data

A < A + data

OUT port

where port is an 8-bit device address. (Port) <-- A. Since the byte is not the data but

points directly to where it is located this is called direct addressing.

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following

two bytes specify the 16-bit address. Note that the second byte is the low-order

address and the third byte is the high-order address.

opcode + data byte + data byte

For example:

1100 0011

1000 0101

0010 0000

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data

bytes are 16-bit data in L H order of significance.

rp <-- data16

Example:

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate

addressing.

LDA addr

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H coded as

3AH 34H 21H. This is also an example of direct addressing.

Task Opcode Operand Binary code Hex Code

Transfer the

program

sequence to

the memory

location
2085H.

JMP 2085H C3

85

20

First byte

Second Byte

Third Byte

	Tutorial on Remaining part of 8085 Microprocessor
	Dear students this tutorial is in continuation of lectures we have already discussed in the classroom.
	The 8085 Programming Model:
	Registers
	Accumulator
	Flags
	Program Counter (PC)
	Stack Pointer (SP)

	The 8085 Addressing Modes
	Immediate addressing
	Register addressing
	Direct addressing
	Indirect Addressing

	Instructions Set:
	DATA TRANSFER INSTRUCTIONS
	ARITHMETIC INSTRUCTIONS
	BRANCHING INSTRUCTIONS
	LOGICAL INSTRUCTIONS
	CONTROL INSTRUCTIONS
	Instruction word size
	One-Byte Instructions
	Two-Byte Instructions
	Three-Byte Instructions

