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Introduction to CPU 
 

The operation or task that must perform by CPU is: 
• Fetch Instruction: The CPU reads an instruction from memory.  
• Interpret Instruction: The instruction is decoded to determine what action is 

required.  
• Fetch Data: The execution of an instruction may require reading data from 

memory or I/O module.  
• Process data: The execution of an instruction may require performing some 

arithmetic or logical operation on data.  
• Write data: The result of an execution may require writing data to memory or 

an I/O module.  
  
 To do these tasks, it should be clear that the CPU needs to store some data 
temporarily. It must remember the location of the last instruction so that it can know 
where to get the next instruction. It needs to store instructions and data temporarily 
while an instruction is being executed. In other words, the CPU needs a small internal 
memory. These storage locations are generally referred as registers. 
 The major components of the CPU are an arithmetic and logic unit (ALU) and 
a control unit (CU). The ALU does the actual computation or processing of data. The 
CU controls the movement of data and instruction into and out of the CPU and 
controls the operation of the ALU.  
 The CPU is connected to the rest of the system through system bus. Through 
system bus, data or information gets transferred between the CPU and the other 
component of the system. The system bus may have three components: 
Data Bus:  
 Data bus is used to transfer the data between main memory and CPU. 
Address Bus:  
 Address bus is used to access a particular memory location by putting the 
address of the memory location. 
Control Bus:  
 Control bus is used to provide the different control signal generated by CPU to 
different part of the system.  
 As for example, memory read is a signal generated by CPU to indicate that a 
memory read operation has to be performed. Through control bus this signal is 
transferred to memory module to indicate the required operation.  

 
Figure 1: CPU with the system bus. 

 



 There are three basic components of CPU: register bank, ALU and Control 
Unit. There are several data movements between these units and for that an internal 
CPU bus is used. Internal CPU bus is needed to transfer data between the various 
registers and the ALU.  
 

 
Figure 2 : Internal Structure of CPU 

 
 

Stack Organization 
 
 A useful feature that is included in the CPU of most computers is a stack or 
last in, first out (LIFO) list. A stack is a storage device that stores information in such 
a manner that the item stored last is the first item retrieved. The operation of a stack 
can be compared to a stack of trays. The last tray placed on top of the stack is the first 
to be taken off. 
 The stack in digital computers is essentially a memory unit with an address 
register that can only( after an initial value is loaded in to it).The register that hold the 
address for the stack is called a stack pointer (SP) because its value always points at 
the top item in stack. Contrary to a stack of trays where the tray it self may be taken 
out or inserted, the physical registers of a stack are always available for reading or 
writing. 
 The two operation of stack are the insertion and deletion of items. The 
operation of insertion is called PUSH because it can be thought of as the result of 
pushing a new item on top. The operation of deletion is called POP because it can be 
thought of as the result of removing one item so that the stack pops up. However, 
nothing is pushed or popped in a computer stack. These operations are simulated by 
incrementing or decrementing the stack pointer register. 
 
Register stack: 
 A stack can be placed in a portion of a large memory or it can be organized as 
a collection of a finite number of memory words or registers. Figure X shows the 
organization of a 64-word register stack. The stack pointer register SP contains a 
binary number whose value is equal to the address of the word that is currently on top 
of the stack. Three items are placed in the stack: A, B,  and C in the order. item C is 
on the top of the stack so that the content of sp is now 3. To remove the top item, the 
stack is popped by reading the memory word at address 3 and decrementing the 



content of SP. Item B is now on top of the stack since SP holds address 2. To insert a 
new item, the stack is pushed by incrementing SP and writing a word in the next 
higher location in the stack. Note that item C has read out but not physically removed. 
This does not matter because when the stack is pushed, a new item is written in its 
place. 
 In a 64-word stack, the stack pointer contains 6 bits because 26 =64. since SP 
has only six bits, it cannot exceed a number grater than 63(111111 in binary). When 
63 is incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP 
can accommodate only the six least significant bits. Similarly, when 000000 is 
decremented by 1, the result is 111111. The one bit register Full is set to 1 when the 
stack is full, and the one-bit register EMTY is set to 1 when the stack is empty of 
items. DR is the data register that holds the binary data to be written in to or read out 
of the stack. 
 

 
 
Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP points 
to the word at address o and the stack is marked empty and not full. if the stack is not 
full , a new item is inserted with a push operation. the push operation is implemented 
with the following sequence of micro-operation. 
 
 
SP ←SP + 1   (Increment stack pointer) 
M(SP) ← DR   (Write item on top of the stack) 
if (sp=0) then  (Full ← 1) (Check if stack is full) 
Emty ← 0   ( Marked the stack not empty) 
 
The stac pointer is incremented so that it points to the address of the next-higher 
word. A memory write operation inserts the word from DR into the top of the stack. 
Note that  SP holds the address of the top of the stack and that M(SP) denotes the 
memory word specified by the address presently available in SP, the first item stored 
in the stack is at address 1. The last item is stored at address 0, if SP reaches 0, the 



stack is full of item, so FULLL is set to 1. This condition is reached if the top item 
prior to the last push was in location 63 and after increment SP, the last item stored in 
location 0. Once an item is stored in location 0, there are no more empty register in 
the stack. If an item is written in the stack, Obviously the stack can not be empty, so 
EMTY is cleared to 0. 
 
DR← M[SP]   Read item from the top of stack 
SP ← SP-1   Decrement stack Pointer 
if( SP=0) then (Emty ← 1) Check if stack is empty 
FULL ← 0   Mark the stack not full 
 
The top item is read from the stack into DR. The stack pointer is then decremented. if 
its value reaches zero,  the stack is empty, so Emty is set to 1. This condition is 
reached if the item read was in location 1. once this item is read out , SP is 
decremented and reaches the value 0, which is the initial value of SP. Note that if a 
pop operation reads the item from location 0 and then SP is decremented, SP changes 
to 111111, which is equal to decimal 63. In this configuration, the word in address 0 
receives the last item in the stack. Note also that an erroneous operation will result if 
the stack is pushed when FULL=1 or popped when EMTY =1. 
 
Memory Stack : 
  A stack can exist as a stand-alone unit as in figure 4 or can be implemented in 
a random access memory attached to CPU. The implementation of a stack in the CPU 
is done by assigning a portion of memory to a stack operation and using a processor 
register as a stack pointer. Figure shows a portion of computer memory partitioned in 
to three segment program, data and stack. The program counter PC points at the 
address of the next instruction in the program. The address register AR points at an 
array of data. The stack pointer SP points at the  top of the stack. The three register 
are connected to a common address bus, and either one can provide an address for 
memory. PC is used during the fetch phase to read an instruction. AR is used during 
the execute phase to read an operand. SP is used to push or POP items into or from 
the stack. 
As show in figure :4 the initial value of SP is 4001 and the stack grows with 
decreasing addresses. Thus the first item stored in the stack is at address 4000, the 
second item is stored at address 3999, and the last address hat can be used for the 
stack is 3000. No previous are available for stack limit checks. 
We assume that the items in the stack communicate with a data register DR. A new 
item is inserted with the push operation as follows. 
SP← SP-1 
M[SP] ← DR 
The stack pointer is decremented so that it points at the address of the next word. A 
Memory write operation insertion the word from DR into the top of the stack. A new 
item is deleted with a pop operation as follows. 
DR← M[SP] 
SP←SP + 1 
The top item is read from the stack in to DR. The stack pointer is then incremented to 
point at the next item in the stack. 
Most computer do not provide hardware to check for stack overflow (FULL) or 
underflow (Empty). The stack limit can be checked by using two prossor register : 



one to hold upper limit and other hold the lower limit. after the pop or push operation 
SP is compared with lower or upper limit register. 
 

 
 
INSTRUCTION FORMATS 

 
 We know that a machine instruction has an opcode and zero or more operands. 
Encoding an instruction set can be done in a variety of ways. Architectures are 
differentiated from one another by the number of bits allowed  per instruction (16, 32, 
and 64 are the most common), by the number of operands allowed per instruction, and 
by the types of instructions and data each can process. More specifically, instruction 
sets are differentiated by the following features:  

1. Operand storage in the CPU (data can be stored in a stack structure or in 
registers) 

2. Number of explicit operands per instruction (zero, one, two, and three being 
the most common) 

3. Operand location (instructions can be classified as register-to-register, 
register-to-memory or memory-to-memory, which simply refer to the 
combinations of operands allowed per instruction) 

4. Operations (including not only types of operations but also which instructions 
can access memory and which cannot) 

5. Type and size of operands (operands can be addresses, numbers, or even 
characters) 

 
 
 
 
 



Number of Addresses:  
 One of the characteristics of the ISA(Industrial Standard Architecture) that 
shapes the architecture is the number of addresses used in an instruction. Most 
operations can be divided into binary or unary operations. Binary operations such as 
addition and multiplication require two input operands whereas the unary operations 
such as the logical NOT need only a single operand. Most operations produce a single 
result. There are exceptions, however.  
 For example, the division operation produces two outputs: a quotient and a 
remainder. Since most operations are binary, we need a total of three addresses: two 
addresses to specify the two input operands and one to specify where the result should 
go. 

Three-Address Machines : 
 In three-address machines, instructions carry all three addresses explicitly. The 
RISC processors use three addresses. Table X1 gives some sample instructions of a 
three-address machine. 
In these machines, the C statement 
  A = B + C * D - E + F + A 
is converted to the following code: 
mult  T,C,D   ; T = C*D 
add  T,T,B   ; T = B + C*D 
sub  T,T,E   ; T = B + C*D - E 
add  T,T,F   ; T = B + C*D - E + F 
add  A,T,A   ; A = B + C*D - E + F + A 
 
Table :T1 Sample three-address machine instructions 

Instruction Semantics 
add dest,src1,src2 
 

Adds the two values at src1 and src2 and 
stores the result in dest 
M(dest) = [src1] + [src2] 

sub dest,src1,src2 
 

Subtracts the second source operand at 
src2 from the first at src1 and stores the 
result in dest 
M(dest) = [src1] - [src2] 

mult dest,src1,src2 
 

Multiplies the two values at src1 and src2 
and stores the result in dest 
M(dest) = [src1] * [src2] 

 
 We use the notation that each variable represents a memory address that stores 
the value associated with that variable. This translation from symbol name to the 
memory address is done by using a symbol table. 
 As you can see from this code, there is one instruction for each arithmetic 
operation. Also notice that all instructions, barring the first one, use an address twice. 
In the middle three instructions, it is the temporary T and in the last one, it is A. This 
is the motivation for using two addresses, as we show next. 

Two-Address Machines : 
 In two-address machines, one address doubles as a source and destination. 
Usually, we use dest to indicate that the address is used for destination. But you 
should note that this address also supplies one of the source operands. The Pentium is 
an example processor that uses two addresses. Sample instructions of a two-address 
machine. 



On these machines, the C statement 
A = B + C * D - E + F + A 

is converted to the following code: 
load  T,C   ; T = C 
mult  T,D   ; T = C*D 
add  T,B   ; T = B + C*D 
sub  T,E   ; T = B + C*D - E 
add  T,F   ; T = B + C*D - E + F 
add  A,T   ; A = B + C*D - E + F + A 

Table :T2 Sample Two-address machine instructions 
Instruction Semantics 

load dest,src  Copies the value at src to dest  
M(dest) = [src] 
 

add dest,src     Adds the two values at src and dest and 
stores the result in dest 
M(dest) = [dest] + [src]   

sub dest,src  Subtracts the second source operand at 
src from the first at dest and stores the 
result in dest 
M(dest) = [dest] - [src] 
 

mult dest,src Multiplies the two values at src and dest 
and stores the result in dest 
M(dest) = [dest] * [src] 

 
 Since we use only two addresses, we use a load instruction to first copy the C 
value into a temporary represented by T. If you look at these six instructions, you will 
notice that the operand T is common. If we make this our default, then we don’t need 
even two addresses: we can get away with just one address. 
 
One-Address Machines : 
 In the early machines, when memory was expensive and slow, a special set of 
registers was used to provide an input operand as well as to receive the result from the 
ALU. Because of this, these registers are called the accumulators. In most machines, 
there is just a single accumulator register. This kind of design, called accumulator 
machines, makes sense if memory is expensive. 
 In accumulator machines, most operations are performed on the contents of 
the accumulator and the operand supplied by the instruction. Thus, instructions for 
these machines need to specify only the address of a single operand. There is no need 
to store the result in memory: this reduces the need for larger memory as well as 
speeds up the computation by reducing the number of memory accesses. A few 
sample accumulator machine instructions are shown in Table X3. 
In these machines, the C statement 

A = B + C * D - E + F + A 
is converted to the following code: 
 

load C ; load C into the accumulator 
mult D ; accumulator = C*D 
add B ; accumulator = C*D+B 



sub E ; accumulator = C*D+B-E 
add F ; accumulator = C*D+B-E+F 
add A ; accumulator = C*D+B-E+F+A 
store A ; store the accumulator contents in A 

Table :T3 Sample ONE-address machine instructions 
Instruction Semantics 

load    addr 
 

Copies the value at address addr into the 
accumulator accumulator = [addr] 

store   addr 
 

Stores the value in the accumulator at the 
memory address addr  
M(addr) = accumulator 

add   addr 
 

Adds the contents of the accumulator and 
value at address addr  
accumulator = accumulator + [addr] 

sub    addr 
 

Subtracts the value at memory address 
addr from the contents of the accumulator 
accumulator = accumulator - [addr] 

mult   addr 
 

Multiplies the contents of the 
accumulator and value at address addr 
accumulator = accumulator * [addr] 

 
Zero-Address Machines : 
 In zero-address machines, locations of both operands are assumed to be at a 
default location. These machines use the stack as the source of the input operands and 
the result goes back into the stack. Stack is a LIFO (last-in-first-out) data structure 
that all processors support, whether or not they are zero-address machines. As the 
name implies, the last item placed on the stack is the first item to be taken out of the 
stack. A good analogy is the stack of trays you find in a cafeteria.  
 All operations on this type of machine assume that the required input operands 
are the top two values on the stack. The result of the operation is placed on top of the 
stack. Table X4 gives some sample instructions for the stack machines. 
 

Table :T4 Sample Zero-address machine instructions 
Instruction Semantics 

push addr 
 

Places the value at address addr on top of the stack  
push([addr])  

pop addr 
 

Stores the top value on the stack at memory address addr 
M(addr) = pop  

add    
 

Adds the top two values on the stack and pushes the result 
onto the stack 
push(pop + pop)  

sub    
 

Subtracts the second top value from the top value of the stack 
and pushes the result onto the stack 
push(pop – pop)  

mult    
 

Multiplies the top two values in the stack and pushes the result 
onto the stack 
push(pop * pop) 
 



 
 Notice that the first two instructions are not zero-address instructions. These 
two are special instructions that use a single address and are used to move data 
between memory and stack. 
 All other instructions use the zero-address format. Let’s see how the stack 
machine translates the arithmetic expression we have seen in the previous subsections. 
In these machines, the C statement 

A = B + C * D - E + F + A 
is converted to the following code: 

push E  ; <E> 
push C  ; <C, E> 
push D  ; <D, C, E> 
mult   ; <C*D, E> 
push B  ; <B, C*D, E> 
add   ; <B+C*D, E> 
sub   ; <B+C*D-E> 
push F   ; <F, B+D*C-E> 
add   ; <F+B+D*C-E> 
push A  ; <A, F+B+D*C-E> 
add   ; <A+F+B+D*C-E> 
pop A   ; < > 

 
 On the right, we show the state of the stack after executing each instruction. 
The top element of the stack is shown on the left. Notice that we pushed E early 
because we need to subtract it from (B+C*D). 
 Stack machines are implemented by making the top portion of the stack 
internal to the processor. This is referred to as the stack depth. The rest of the stack is 
placed in memory. Thus, to access the top values that are within the stack depth, we 
do not have to access the memory. Obviously, we get better performance by 
increasing the stack depth.  
 

INSTRUCTION TYPES 
 

 Most computer instructions operate on data; however, there are some that do 
not. Computer manufacturers regularly group instructions into the following 
categories: 
• Data movement 
• Arithmetic 
• Boolean 
• Bit manipulation (shift and rotate) 
• I/O 
• Transfer of control 
• Special purpose 
 Data movement instructions are the most frequently used instructions. Data is 
moved from memory into registers, from registers to registers, and from registers to 
memory, and many machines provide different instructions depending on the source 
and destination. For example, there may be a MOVER instruction that always requires 
two register operands, whereas a MOVE instruction allows one register and one 
memory operand.  



 Some architectures, such as RISC, limit the instructions that can move data to 
and from memory in an attempt to speed up execution. Many machines have ariations 
of load, store, and move instructions to handle data of different sizes. For example, 
there may be a LOADB instruction for dealing with bytes and a LOADW instruction 
for handling words.  
 Arithmetic operations include those instructions that use integers and floating 
point numbers. Many instruction sets provide different arithmetic instructions for 
various data sizes. As with the data movement instructions, there are sometimes 
different instructions for providing various combinations of register and memory 
accesses in different addressing modes. 
 Boolean logic instructions perform Boolean operations, much in the same way 
that arithmetic operations work. There are typically instructions for performing AND, 
NOT, and often OR and XOR operations. 
 Bit manipulation instructions are used for setting and resetting individual bits 
(or sometimes groups of bits) within a given data word. These include both arithmetic 
and logical shift instructions and rotate instructions, both to the left and to the right. 
Logical shift instructions simply shift bits to either the left or the right by a specified 
amount, shifting in zeros from the opposite end. Arithmetic shift instructions, 
commonly used to multiply or divide by 2, do not shift the leftmost bit, because this 
represents the sign of the number. On a right arithmetic shift, the sign bit is replicated 
into the bit position to its right. On a left arithmetic shift, values are shifted left, zeros 
are shifted in, but the sign bit is never moved. Rotate instructions are simply shift 
instructions that shift in the bits that are shifted out. For example, on a rotate left 1 bit, 
the leftmost bit is shifted out and rotated around to become the rightmost bit. 
 I/O instructions vary greatly from architecture to architecture. The basic 
schemes for handling I/O are programmed I/O, interrupt-driven I/O, and DMA 
devices. These are covered in more detail in Chapter 5. 
 Control instructions include branches, skips, and procedure calls. Branching 
can be unconditional or conditional. Skip instructions are basically branch instructions 
with implied addresses. Because no operand is required, skip instructions often use 
bits of the address field to specify different situations (recall the Skipcond instruction 
used by MARIE). Procedure calls are special branch instructions that automatically 
save the return address. Different machines use different methods to save this address. 
Some store the address at a specific location in memory, others store it in a register, 
while still others push the return address on a stack. We have already seen that stacks 
can be used for other purposes.  
 Special purpose instructions include those used for string processing, high 
level language support, protection, flag control, and cache management. Most 
architectures provide instructions for string processing, including string manipulation 
and searching. 
 
 

Addressing Modes 
 

 We have examined the types of operands and operations that may be 
specified by machine instructions. Now we have to see how is the address of an 
operand specified, and how are the bits of an instruction organized to define the 
operand addresses and operation of that instruction.  



Addressing Modes: The most common addressing techniques are 

• Immediate  
• Direct                       
• Indirect                       
• Register                          
• Register Indirect                       
• Displacement                     
• Stack  

 All computer architectures provide more than one of these addressing modes. 
The question arises as to how the control unit can determine which addressing mode 
is being used in a particular instruction. Several approaches are used. Often, different 
opcodes will use different addressing modes. Also, one or more bits in the instruction 
format can be used as a mode field. The value of the mode field determines which 
addressing mode is to be used.  

 What is the interpretation of effective address. In a system without virtual 
memory, the effective address will be either a main memory address or a register. In a 
virtual memory system, the effective address is a virtual address or a register. The 
actual mapping to a physical address is a function of the paging mechanism and is 
invisible to the programmer.  

To explain the addressing modes, we use the following notation:  

A = contents of an address field in the instruction that refers to a 
memory 

R = contents of an address field in the instruction that refers to a 
register 

EA = actual (effective) address of the location containing the 
referenced operand 

(X) = contents of location X 
 
Immediate Addressing: 
 The simplest form of addressing is immediate addressing, in which the 
operand is actually present in the instruction:  

OPERAND   =   A 
 This mode can be used to define and use constants or set initial values of 
variables. The advantage of immediate addressing is that no memory reference other 
than the instruction fetch is required to obtain the operand. The disadvantage is that 
the size of the number is restricted to the size of the address field, which, in most 
instruction sets, is small compared with the world length. 

 

Figure 4.1: Immediate Addressing Mode 



The instruction format for Immediate Addressing Mode is shown in the Figure 4.1.  
Direct Addressing: 
 A very simple form of addressing is direct addressing, in which the address 
field contains the effective address of the operand:  

EA   =   A 
It requires only one memory reference and no special calculation.  

 

Figure 4.2: Direct Addressing Mode  

Indirect Addressing:  
 With direct addressing, the length of the address field is usually less than the 
word length, thus limiting the address range. One solution is to have the address field 
refer to the address of a word in memory, which in turn contains a full-length address 
of the operand. This is know as indirect addressing:  

EA   =   (A) 

 

Figure 4.3: Indirect Addressing Mode 

Register Addressing:  
 Register addressing is similar to direct addressing. The only difference is that 
the address field refers to a register rather than a main memory address:  

EA   =   R 



 The advantages of register addressing are that only a small address field is 
needed in the instruction and no memory reference is required. The disadvantage of 
register addressing is that the address space is very limited. 

 

Figure 4.4: Register Addressing Mode. 

 The exact register location of the operand in case of Register Addressing 
Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is 
present. 

 

Register Indirect Addressing:  
 Register indirect addressing is similar to indirect addressing, except that the 
address field refers to a register instead of a memory location. It requires only one 
memory reference and no special calculation.  

EA   =   (R) 
 Register indirect addressing uses one less memory reference than indirect 
addressing. Because, the first information is available in a register which is nothing 
but a memory address. From that memory location, we use to get the data or 
information. In general, register access is much more faster than the memory access. 

 

 
 
 



Diaplacement Addressing:  
 A very powerful mode of addressing combines the capabilities of direct 
addressing and register indirect addressing, which is broadly categorized as 
displacement addressing:  

EA   =   A   +  (R) 
 Displacement addressing requires that the instruction have two address fields, 
at least one of which is explicit. The value contained in one address field (value = A) 
is used directly. The other address field, or an implicit reference based on opcode, 
refers to a register whose contents are added to A to produce the effective address. 
The general format of Displacement Addressing is shown in the Figure 4.6.  
Three of the most common use of displacement addressing are:  

• Relative addressing        
• Base-register addressing                  
• Indexing  

 

Figure 4.6: Displacement Addressing  

Relative Addressing:  
 For relative addressing, the implicitly referenced register is the program 
counter (PC). That is, the current instruction address is added to the address field to 
produce the EA. Thus, the effective address is a displacement relative to the address 
of the instruction. 
Base-Register Addressing:  
 The reference register contains a memory address, and the address field 
contains a displacement from that address. The register reference may be explicit or 
implicit. In some implementation, a single segment/base register is employed and is 
used implicitly. In others, the programmer may choose a register to hold the base 
address of a segment, and the instruction must reference it explicitly.  
Indexing:  
 The address field references a main memory address, and the reference 
register contains a positive displacement from that address. In this case also the 
register reference is sometimes explicit and sometimes implicit. 
 Generally index register are used for iterative tasks, it is typical that there is a 
need to increment or decrement the index register after each reference to it. Because 



this is such a common operation, some system will automatically do this as part of the 
same instruction cycle.  
This is known as auto-indexing.  We may get two types of auto-indexing: -one is 
auto-incrementing and the other one is -auto-decrementing. 
 If certain registers are devoted exclusively to indexing, then auto-indexing can 
be invoked implicitly and automatically. If general purpose register are used, the auto 
index operation may need to be signaled by a bit in the instruction.  

Auto-indexing using increment can be depicted as follows:  

EA   =   A    +  (R)  
R     =  (R)  +   1 

Auto-indexing using decrement can be depicted as follows:  

EA     =     A    +   (R)  
R       =    (R)   -    1 

 In some machines, both indirect addressing and indexing are provided, and it 
is possible to employ both in the same instruction. There are two possibilities: The 
indexing is performed either before or after the indirection.  
If indexing is performed after the indirection, it is termed post indexing  

EA     =   (A)    +   (R)  

 First, the contents of the address field are used to access a memory location 
containing an address. This address is then indexed by the register value. 

With pre indexing, the indexing is performed before the indirection:  

EA    =    ( A    +    (R)   

           An address is calculated, the calculated address contains not the operand, but 
the address of the operand.  

Stack Addressing:  
 A stack is a linear array or list of locations. It is sometimes referred to as a 
pushdown list or last-in-first-out queue. A stack is a reserved block of locations. Items 
are appended to the top of the stack so that, at any given time, the block is partially 
filled. Associated with the stack is a pointer whose value is the address of the top of 
the stack. The stack pointer is maintained in a register. Thus, references to stack 
locations in memory are in fact register indirect addresses.  
 The stack mode of addressing is a form of implied addressing. The machine 
instructions need not include a memory reference but implicitly operate on the top of 
the stack. 
 


