
Relational Model, Relational
Algebra and TRC

Codd's Rules

According to Dr Edgar F. Codd, there are twelve rules for ideal

relational database:

Rule 1: Information Rule

Rule 2: Guaranteed Access Rule

Rule 3: Systematic Treatment of NULL Values

Rule 4: Active Online Catalog

Rule 5: Comprehensive Data Sub-Language Rule

Rule 6: View Updating Rule

Rule 7: High-Level Insert, Update, and Delete Rule

Rule 8: Physical Data Independence

Rule 9: Logical Data Independence

Rule 10: Integrity Independence

Rule 11: Distribution Independence

Rule 12: Non-Subversion Rule

RELATIONAL DATA MODEL

Constraints

Relational Algebra
 Relational algebra is a procedural query language that works on

relational model. The purpose of a query language is to retrieve data

from database or perform various operations such as insert, update,

delete on the data. When I say that relational algebra is a procedural

query language, it means that it tells what data to be retrieved and how

to be retrieved.

On the other hand relational calculus is a non-procedural query

language, which means it tells what data to be retrieved but doesn’t tell

how to retrieve it.

Types of operations in relational algebra

We have divided these operations in two categories:

1. Basic Operations

2. Derived Operations

Basic/Fundamental Operations:

1. Select (σ)

2. Project (∏)

3. Union (∪)

4. Set Difference (-)

5. Cartesian product (X)

6. Rename (ρ)

Derived Operations:

1. Natural Join (⋈)

2. Left, Right, Full outer join (⟕, ⟖, ⟗)

3. Intersection (∩)

4. Division (÷)

Select Operator (σ)

Select Operator is denoted by sigma (σ) and it is used to find the tuples

(or rows) in a relation (or table) which satisfy the given condition.

If you understand little bit of SQL then you can think of it as a where

clause in SQL, which is used for the same purpose.

Syntax of Select Operator (σ)

σ Condition/Predicate(Relation/Table name)

Project Operator (∏)
Project operator is denoted by ∏ symbol and it is used to select desired columns

(or attributes) from a table (or relation).

Project operator in relational algebra is similar to the Select statement in SQL.

Syntax of Project Operator (∏)
∏ column_name1, column_name2,, column_nameN(table_name)

https://beginnersbook.com/2018/11/sql-select/

Syntax of Union Operator (∪)

 table_name1 ∪ table_name2

Syntax of Intersection Operator (∩)

 table_name1 ∩ table_name2

Set Difference (-)

• Set Difference is denoted by – symbol. Lets say we have two relations R1 and R2 and we want
to select all those tuples(rows) that are present in Relation R1 but not present in Relation R2,
this can be done using Set difference R1 – R2.

• Syntax of Set Difference (-)

 table_name1 - table_name2

Cartesian product (X)

• Cartesian Product is denoted by X symbol. Lets say we have two relations R1 and R2 then the
Cartesian product of these two relations (R1 X R2) would combine each tuple of first relation
R1 with the each tuple of second relation R2. I know it sounds confusing but once we take an
example of this, you will be able to understand this.

• Syntax of Cartesian product (X) : R1 X R2

• Note: The number of rows in the output will always be the cross product of number of rows
in each table.

Rename (ρ)

• Rename (ρ) operation can be used to rename a relation or an attribute of a relation.
Rename (ρ) Syntax: ρ(new_relation_name, old_relation_name)

Relational Calculus

 In contrast to Relational Algebra, Relational Calculus is a non-

procedural query language, that is, it tells what to do but never explains

how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.

For example −

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written

article on 'database'.

TRC can be quantified. We can use Existential (∃) and Universal

Quantifiers (∀).

For example −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The above query will yield the same result as the previous

one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of

entire tuple values (as done in TRC, mentioned above).

Notation −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where a1, a2 are attributes and P stands for formulae built by inner

attributes.

For example −

{< article, page, subject > | ∈ TutorialsPoint ∧ subject =

'database'}

Output − Yields Article, Page, and Subject from the relation

TutorialsPoint, where subject is database.

Just like TRC, DRC can also be written using existential and universal

quantifiers. DRC also involves relational operators.

The expression power of Tuple Relation Calculus and Domain Relation

Calculus is equivalent to Relational Algebra.

