
Transaction Management

Transaction
A transaction can be defined as a group of tasks. A single task is the

minimum processing unit which cannot be divided further.

Let’s take an example of a simple transaction. Suppose a bank employee

transfers Rs 500 from A's account to B's account. This very simple and

small transaction involves several low-level tasks.

A’s Account

Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

Close_Account(A)

B’s Account

Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

ACID Properties

A transaction is a very small unit of a program and it may contain several low level tasks. A

transaction in a database system must maintain Atomicity, Consistency, Isolation, and Durability

− commonly known as ACID properties − in order to ensure accuracy, completeness, and data

integrity.

 Atomicity − Either all of its operations are executed or none.

 Consistency −If the database was in a consistent state before the execution of a

transaction, it must remain consistent after the execution of the transaction as well.

 Isolation − No transaction will affect the existence of any other transaction.

 Durability − If a transaction commits but the system fails before the data could be

written on to the disk, then that data will be updated once the system springs back into

action.

States of Transactions
 Active − In this state, the transaction is being executed. This is the initial state of every

transaction.

 Partially Committed − When a transaction executes its final operation, it is said to be in

a partially committed state.

 Failed − A transaction is said to be in a failed state if any of the checks made by the

database recovery system fails. A failed transaction can no longer proceed further.

 Aborted − If any of the checks fails and the transaction has reached a failed state, then

the recovery manager rolls back all its write operations on the database to bring the

database back to its original state where it was prior to the execution of the transaction.

Transactions in this state are called aborted. The database recovery module can select one

of the two operations after a transaction aborts −
o Re-start the transaction
o Kill the transaction

 Committed − If a transaction executes all its operations successfully, it is said to be

committed. All its effects are now permanently established on the database system.

Schedule

A series of operation from one transaction to another transaction is known as schedule. It is used

to preserve the order of the operation in each of the individual transaction.

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is executed completely before

starting another transaction. In the serial schedule, when the first transaction completes its cycle,

then the next transaction is executed.

2. Non-serial Schedule

 If interleaving of operations is allowed, then there will be non-serial schedule.
 It contains many possible orders in which the system can execute the individual operations of

the transactions.

3. Serializable schedule

 The serializability of schedules is used to find non-serial schedules that allow the transaction to
execute concurrently without interfering with one another.

 It identifies which schedules are correct when executions of the transaction have interleaving of
their operations.

 A non-serial schedule will be serializable if its result is equal to the result of its transactions
executed serially.

Testing of Serializability

 If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti are executed
before the first instruction of Tj is executed.

 If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the
precedence graph has no cycle, then S is known as serializable.

Example-

The precedence graph for
schedule S2 contains no
cycle that's why
ScheduleS2 is serializable.

View Serializability

Log-Based Recovery
 The log is a sequence of records. Log of each transaction is maintained in some stable storage so

that if any failure occurs, then it can be recovered from there.
 If any operation is performed on the database, then it will be recorded in the log.
 But the process of storing the logs should be done before the actual transaction is applied in the

database.

Let's assume there is a transaction to modify the City of a student. The following logs are written

for this transaction.

 When the transaction is initiated, then it writes 'start' log.

<Tn, Start>

 When the transaction modifies the City from 'Noida' to 'Bangalore', then another log is written
to the file.

<Tn, City, 'Noida', 'Bangalore' >

 When the transaction is finished, then it writes another log to indicate the end of the
transaction.

<Tn, Commit>

Recovery using Log records

When the system is crashed, then the system consults the log to find which transactions need to

be undone and which need to be redone.

1. If the log contains the record <Ti, Start> and <Ti, Commit> or <Ti, Commit>, then the Transaction
Ti needs to be redone.

2. If log contains record<Tn, Start> but does not contain the record either <Ti, commit> or <Ti,
abort>, then the Transaction Ti needs to be undone.

Checkpoint

Concurrency Control

 In the concurrency control, the multiple transactions can be executed simultaneously.
 It may affect the transaction result. It is highly important to maintain the order of execution of

those transactions.

Problems of concurrency control

Several problems can occur when concurrent transactions are executed in an uncontrolled

manner. Following are the three problems in concurrency control.

1. Lost updates
2. Dirty read
3. Unrepeatable read

1. Lost update problem

 When two transactions that access the same database items contain their operations in a way
that makes the value of some database item incorrect, then the lost update problem occurs.

 If two transactions T1 and T2 read a record and then update it, then the effect of updating of
the first record will be overwritten by the second update.

Concurrency Control Protocol

Concurrency control protocols ensure atomicity, isolation, and serializability of concurrent

transactions. The concurrency control protocol can be divided into three categories:

1. Lock based protocol
2. Time-stamp protocol
3. Validation based protocol

 Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any transaction

cannot read or write data until it acquires an appropriate lock on it. Locks are of two kinds −

 Binary Locks − A lock on a data item can be in two states; it is either locked or

unlocked.

 Shared/exclusive − This type of locking mechanism differentiates the locks based on

their uses. If a lock is acquired on a data item to perform a write operation, it is an

exclusive lock. Allowing more than one transaction to write on the same data item would

lead the database into an inconsistent state. Read locks are shared because no data value

is being changed.

There are four types of lock protocols available:

Timestamp Ordering Protocol

Validation Based Protocol

Validation phase is also known as optimistic concurrency control technique. In the validation

based protocol, the transaction is executed in the following three phases:

1. Read phase: In this phase, the transaction T is read and executed. It is used to read the value of
various data items and stores them in temporary local variables. It can perform all the write
operations on temporary variables without an update to the actual database.

2. Validation phase: In this phase, the temporary variable value will be validated against the actual
data to see if it violates the serializability.

3. Write phase: If the validation of the transaction is validated, then the temporary results are
written to the database or system otherwise the transaction is rolled back.

Here each phase has the following different timestamps:

Start(Ti): It contains the time when Ti started its execution.

Validation (Ti): It contains the time when Ti finishes its read phase and starts its validation

phase.

Finish(Ti): It contains the time when Ti finishes its write phase.

