Transaction Management

Transaction

A transaction can be defined as a group of tasks. A single task is the
minimum processing unit which cannot be divided further.

Let’s take an example of a simple transaction. Suppose a bank employee
transfers Rs 500 from A's account to B's account. This very simple and
small transaction involves several low-level tasks.

A’s Account

Open Account (A)

Old Balance = A.balance

New Balance = 0Old Balance - 500
A.balance = New Balance

Close Account (A)

B’s Account

Open Account (B)

Old Balance = B.balance

New Balance = 0Old Balance + 500
B.balance = New Balance
Close_Account(B)

ACID Properties

A transaction is a very small unit of a program and it may contain several low level tasks. A
transaction in a database system must maintain Atomicity, Consistency, Isolation, and Durability
— commonly known as ACID properties — in order to ensure accuracy, completeness, and data
Integrity.

o Atomicity - Either all of its operations are executed or none,

o Consistency -If the database was in a consistent state before the execution of
transaction, it must remain consistent after the execution of the transaction as well.

» Isolation — No transaction will affect the existence of any other transaction.

o Durability - If a transaction commits but the system fails before the data could be
written on to the disk, then that data will be updated once the system springs hack into
action.

States of Transactions

Active — In this state, the transaction is being executed. This is the initial state of every
transaction.
Partially Committed — When a transaction executes its final operation, it is said to be in
a partially committed state.
Failed — A transaction is said to be in a failed state if any of the checks made by the
database recovery system fails. A failed transaction can no longer proceed further.
Aborted — If any of the checks fails and the transaction has reached a failed state, then
the recovery manager rolls back all its write operations on the database to bring the
database back to its original state where it was prior to the execution of the transaction.
Transactions in this state are called aborted. The database recovery module can select one
of the two operations after a transaction aborts —

@) Re-start the transaction

o Kill the transaction
Committed — If a transaction executes all its operations successfully, it is said to be
committed. All its effects are now permanently established on the database system.

Partially .
Committed S OTIRTRRI M Eec] ﬁ
Begin
; Active End

v

Schedule

A series of operation from one transaction to another transaction is known as schedule. It is used
to preserve the order of the operation in each of the individual transaction.

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is executed completely before
starting another transaction. In the serial schedule, when the first transaction completes its cycle,
then the next transaction is executed.

2. Non-serial Schedule

e If interleaving of operations is allowed, then there will be non-serial schedule.
e It contains many possible orders in which the system can execute the individual operations of
the transactions.

3. Serializable schedule

e The serializability of schedules is used to find non-serial schedules that allow the transaction to
execute concurrently without interfering with one another.

e [tidentifies which schedules are correct when executions of the transaction have interleaving of
their operations.

e A non-serial schedule will be serializable if its result is equal to the result of its transactions
executed serially.

Testing of Serializability

Serialization Graph is used to test the Serializability of a schedule.

Assume a schedule S. For S, we construct a graph known as
precedence graph. This graph has a pair G = (V, E), where V consists
a set of vertices, and E consists a set of edges. The set of vertices is
used to contain all the transactions participating in the schedule.
The set of edges is used to contain all edges Ti > Tj for which one of
the three conditions holds:

Create a node Ti - Tj if Ti executes write (Q) before Tj executes
read (Q).

Create a node Ti - Tj if Ti executes read (Q) before Tj executes
write (Q).

Create a node Ti - Tj if Ti executes write (Q) before Tj executes
write (Q).

Precedence graph for Schedule S

o Ifaprecedence graph contains a single edge Ti - Tj, then all the instructions of Ti are executed
before the first instruction of Tj is executed.

o Ifaprecedence graph for schedule S contains a cycle, then S is non-serializable. If the
precedence graph has no cycle, then S is known as serializable.

Example-
T Ts TG
Read(A)
As=T10A)
Read(C)
Write(A)
A= Tf2(C)
Read(B)
Write(C)
Read(A)
Read(C)
Time B:=f3(B)
Write(B)
C:=f4(C)
Read(B)
Write(C)
A-=f5(A)
Write(A)
L B:=fa(B)
A Write(B)

Schedule S=

The precedence graph for
schedule S2 contains no
cycle that's why
ScheduleS2 is serializable.

View Serializability

« Aschedule will view serializable if it is view equivalent to a serial schedule.
* |fascheduleis conflict serializable, then it will be view serializable.

* The view serializable which does not conflict serializable contains blind
writes.

« Two schedules S1 and S2 are said to be view equivalent if they satisfy the
following conditions:

1. Initial Read- An initial read of both schedules must be the same,
Suppose two schedule 51 and S2. In schedule S1, if a transaction T1 is reading
the data item A, then in S2, transaction T1 should also read A.

2. Updated Read- In schedule 51, if Ti is reading A which is updated
by Tj then in 52 also, Ti should read A which is updated by T].

3. Final Write- A final write must be the same between both the
schedules. Inschedule 51, if a transaction T1 updates A at last then in S2, final
writes operations should also be done by T1.

Log-Based Recovery

e Thelogis a sequence of records. Log of each transaction is maintained in some stable storage so
that if any failure occurs, then it can be recovered from there.

e If any operation is performed on the database, then it will be recorded in the log.

e But the process of storing the logs should be done before the actual transaction is applied in the
database.

Let's assume there is a transaction to modify the City of a student. The following logs are written
for this transaction.

e When the transaction is initiated, then it writes 'start' log.
<Tn, Start>

e When the transaction modifies the City from 'Noida' to 'Bangalore’, then another log is written
to the file.

<Tn, City, 'Noida', 'Bangalore' >

e When the transaction is finished, then it writes another log to indicate the end of the
transaction.

<Tn, Commit>

Recovery using Log records

When the system is crashed, then the system consults the log to find which transactions need to
be undone and which need to be redone.

1. If the log contains the record <Ti, Start> and <Ti, Commit> or <Ti, Commit>, then the Transaction

Ti needs to be redone.
2. Iflog contains record<T,, Start> but does not contain the record either <Ti, commit> or <Ti,

abort>, then the Transaction Ti needs to be undone.

Checkpoint

The checkpoint is a type of mechanism where all the previous logs
are removed from the system and permanently stored in the
storage disk.

The checkpoint i1s like a bookmark. While the execution of the
transaction, such checkpoints are marked, and the transaction is

executed then using the steps of the transaction, the log files will be
created.

When it reaches to the checkpoint, then the transaction will be
updated into the database, and till that point, the entire log file will
be removed from the file. Then the log file is updated with the new
step of transaction till next checkpoint and so on.

The checkpoint is used to declare a point before which the DBMS
was in the consistent state, and all transactions were committed.

Concurrency Control

e Inthe concurrency control, the multiple transactions can be executed simultaneously.
e It may affect the transaction result. It is highly important to maintain the order of execution of
those transactions.

Problems of concurrency control

Several problems can occur when concurrent transactions are executed in an uncontrolled
manner. Following are the three problems in concurrency control.

1. Lost updates
2. Dirtyread
3. Unrepeatable read

1. Lost update problem

e When two transactions that access the same database items contain their operations in a way
that makes the value of some database item incorrect, then the lost update problem occurs.

e If two transactions T1 and T2 read a record and then update it, then the effect of updating of
the first record will be overwritten by the second update.

2. Dirty Read

The dirty read occurs in the case when one transaction updates an item of the
database, and then the transaction fails for some reason. The updated database
item is accessed by another transaction before it is changed back to the original

value.

A transaction T1 updates a record which is read by T2. If T1 aborts then T2 now
has values which have never formed part of the stable database.

. Inconsistent Retrievals Problem

Inconsistent Retrievals Problem is also known as unrepeatable read. When a
transaction calculates some summary function over a set of data while the other
transactions are updating the data, then the Inconsistent Retrievals Problem
OCCUrS.

A transaction T1 reads a record and then does some other processing during which
the transaction T2 updates the record. Now when the transaction T1 reads the
record, then the new value will be inconsistent with the previous value,

Concurrency Control Protocol

Concurrency control protocols ensure atomicity, isolation, and serializability of concurrent
transactions. The concurrency control protocol can be divided into three categories:

1. Lock based protocol

2. Time-stamp protocol
3. Validation based protocol

/" Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any transaction
cannot read or write data until it acquires an appropriate lock on it. Locks are of two kinds —

o Binary Locks — A lock on a data item can be in two states; it is either locked or
unlocked.

o Shared/exclusive — This type of locking mechanism differentiates the locks based on
their uses. If a lock is acquired on a data item to perform a write operation, it is an
exclusive lock. Allowing more than one transaction to write on the same data item would
lead the database into an inconsistent state. Read locks are shared because no data value
IS being changed.

There are four types of lock protocols available:

* Simplistic Lock Protocol- Simplistic lock-based protocols allow transactions to
obtain a lock on every object before a "write' operation is performed. Transactions
may unlock the data item after completing the “write’ operation.

* Pre-claiming Lock Protocol- Pre-claiming protocols evaluate their operations and
create a list of data items on which they need locks. Before initiating an execution,
the transaction requests the system for all the locks it needs beforehand. If all the
locks are granted, the transaction executes and releases all the locks when all its
operations are over. If all the locks are not granted, the transaction rolls back and
waits until all the locks are granted.

* Two-Phase Locking 2PL- Two-phase locking has two phases, one is growing, where
all the locks are being acquired by the transaction; and the second phase is
shrinking, where the locks held by the transaction are being released.

* To claim an exclusive (write) lock, a transaction must first acquire a shared (read)
lock and then upgrade it to an exclusive lock.

* Strict Two-Phase Locking- The first phase of Strict-2PL is same as 2PL. After
acquiring all the locks in the first phase, the transaction continues to execute
normally. But in contrast to 2PL, Strict-2PL does not release a lock after using it.
Strict-2PL holds all the locks until the commit point and releases all the locks at a
time.

Timestamp Ordering Protocol

* The timestamp-ordering protocol ensures serializability among transactions in
their conflicting read and write operations. This is the responsibility of the protocol
system that the conflicting pair of tasks should be executed according to the
timestamp values of the transactions.

* Thetimestamp of transaction T, is denoted as TS(T)).

* Read time-stamp of data-item X is denoted by R-timestamp(X).
* Write time-stamp of data-item X is denoted by W-timestamp(X).
* Timestamp ordering protocol works as follows -

* |f atransaction Tiissues a read(X) operation -
— IfT5(Ti) <= W-timestamp(X)
* Operation rejected.
— IfTSITi) == W-timestamp(X)
* Operation executed.
— All data-item timestamps updated.

* |If atransaction Tiissues a write(X) operation—
— IfT5(Ti) < R-timestamp(X)
* Operation rejected.
— IfT5(Ti) < W-timestamp(X)
* Operation rejected and Ti rolled back.
* (Otherwise, operation executed.

Validation Based Protocol

Validation phase is also known as optimistic concurrency control technique. In the validation
based protocol, the transaction is executed in the following three phases:

1. Read phase: In this phase, the transaction T is read and executed. It is used to read the value of
various data items and stores them in temporary local variables. It can perform all the write
operations on temporary variables without an update to the actual database.

2. Validation phase: In this phase, the temporary variable value will be validated against the actual
data to see if it violates the serializability.

3. Write phase: If the validation of the transaction is validated, then the temporary results are
written to the database or system otherwise the transaction is rolled back.

Here each phase has the following different timestamps:
Start(Ti): It contains the time when Ti started its execution.

Validation (T;): It contains the time when Ti finishes its read phase and starts its validation
phase.

Finish(Ti): It contains the time when Ti finishes its write phase.

