
Unit - II 

Linear Systems- Let us consider a system of first order differential equations of the form 
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Where t is an independent variable.  And x & y are dependent variables. 

The system (1) is called a linear system if both F(x, y) and G(x, y) in x and y. 

Also system (1) can be written as 
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Where )(tai , )(tbi and )(tai 2,1=∀i  are continuous functions on [ ]ba, . 

Homogeneous and Non-Homogeneous Linear Systems- The system (2) is called a 

homogeneous linear system, if both )(1 tf and )(2 tf are identically zero and if both )(1 tf and 

)(2 tf are not equal to zero, then the system (2) is called a non-homogeneous linear system. 
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obtain tey 22= again putting tex 3= in A, we obtain tey 3= . Therefore the solutions of (3) are 
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Theorem-1 If 0t is any point of [ ]ba, and 0x & 0y are any two numbers, then the system (2) has a 

unique solution 
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Theorem-2 If the homogeneous system 
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has two solutions 
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on [ ]ba, . Then 
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is also a solution of (5) on [ ]ba, for any two constants 1c and 2c . 

Theorem-3 If the two solutions 
)(

)(

1

1

tyy

txx

=
=

and 
)(

)(

2

2

tyy

txx

=
=

   (6) of the homogeneous system (5) 

have a wronskian )(tW that does not vanish on [ ]ba, , then 
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solution of homogeneous system (5) on [ ]ba, . 

Note- The wronskian W(t) of the solutions (4) is  
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Theorem -4 The wronskian W(t) of two solutions (6) of homogeneous system (5) is either 
identically zero or nowhere zero on [ ]ba, i.e  

0)( =tW (linearly dependent) or  0)( ≠tW (linearly independent).   

The wronskian W(t) satisfies the differential equation, [ ]Wtbta
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Theorem -5 If the two solutions 
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independent on [ ]ba, and if 
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First, we show that each of the pair 
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determines a particular solution of (1), let us consider 
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solution of (1), where the constants1c and 2c are to be determined. Putting the values of 
tetx 4

1 )( = , tetx 2
2 )( −= ,  tety 4

1 )( =  and tety 2
2 )( −−= in (2) and using the given conditions 

5)0( =x and 1)0( =y , we obtain 31 =c and 22 =c .  

Therefore 
tt

tt

eey

eex
24

24

23

23
−

−

−=

+=
is a particular solution. 

Example Show that 
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the system (1). In order to find a general solution of system (1), we have to find a solution 

corresponding homogeneous system 
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Homogeneous Linear Systems with Constant Coefficients- Let us consider a homogeneous 

linear system with constant coefficients 
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Where 211 ,, aba and 2b are constants. Suppose 
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(where BA, and m are to be determined) be a solution of the system (1), then it satisfies (1) so 
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is a system of equations of the form 0=ax  has a trivial solution 0=x , if 0== BA  so for a 
nontrivial solution 0≠x  of (3), we have 0=a i.e 
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gives two values of m say 1m and 2m . Now the following three cases arise  

Case-1 If 1m  and 2m are real and distinct, then corresponding to 1m , we find the values of A and 
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Therefore the general solution is 
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Example- Find the general solution of the system of equations 
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Solution- Let 
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On comparing 4,1,1 211 === aba and 22 −=b , the auxiliary equation is 062 =−+ mm gives 
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Similarly for 2=m , then by (2) we get 1,1 == BA and the another nontrivial solution is 
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Example- Find the general solution of the system 
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Case-2 If 1m and 2m are conjugate complex numbers of the form iba ± , where a and b are real 

numbers with 0≠b , then we consider two linearly independent solutions 
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Equating real and imaginary parts, we obtain two linearly independent solutions say  
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The auxiliary equation is 01862 =+− mm gives im 33±= , taking a nontrivial solution
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Answer- 
[ ])3cos33(sin)3sin33cos(

)3sin23cos2(

21
3

21
3

ttcttcey

tctcex
t

t

−++=

+=
 

Case -3 If mmm == 21 are equal roots then we should have only one linearly solution  
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Example- Find the general solution of the system 
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Solution-   Let 
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be a first linearly independent solution of (1). We consider the second linearly independent 
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so it satisfies (1) 
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On solving the equations in (5), we obtain 1&2,0,1 2211 ==== BABA  

The another linearly independent solution is  

t

t

tey

etx

=

+= )21(
 

Therefore the general solution is  
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Example- Find the general solution of the system 
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Non-Linear Systems: Volterra’s Prey- Predator Equations- 

Everyone knows that there is a constant struggle for survival among different species of animals 
living in the same environment. One kind of animal survives by eating another and a second by  

For an example of this universal conflict between the predator and its prey, let us imagine an 
island inhabited by foxes and rabbits. The foxes eat rabbits and the rabbits eat clovers. Let us 
assume that there is so much clovers then the rabbits have an ample supply of food. When the 
rabbits are abundant, then the foxes flourish and their population grows. When the foxes become 
too numerous and eat too many rabbits, then they enter into a period of famine and their 
population begins to decline. As the foxes decrease, then the rabbits become relatively safe and 
their population starts to increase again. Thus we have an endless repeated cycle of the increase 
and decrease in two species of animals and the fluctuations in two species are given by the 
following figure  

 



If x  and y are the number of rabbits and foxes at any time t, then in the presence of an unlimited 

supply of clovers,  

The rate of change of rabbits is 0, >= aax
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, after some encounter between the rabbits and 

foxes the rate of change of rabbits is 0,, >−= babxyax
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In the absence of rabbits the foxes die and the rate of change of foxes is 0, >−= ccy
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 and 

after some encounter of foxes with rabbits their population grows and the rate of change of foxes 
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These two equations are called the volterra’s prey-predator equations.  

For the solution of these equations, we divide (2) by (1)  
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on separating the variables, we have  
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On integrating, we have 
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In order to determine K putting 0000 )(,)( ytyxtx == in (4) so 
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Therefore the solution of volterra’s prey- predator equations is 
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