Knapsack problem

Problem:

- input:
 - ✓ n objects.
 - $\checkmark~$ each object i has a weight w_i and a profit p_i
 - ✓ Knapsack : M
- output:
 - \checkmark Fill up the Knapsack s.t. the total profit is maximized.
 - ✓ Feasible solution: $(x_1, ..., ..., x_n)$.

Formally:

✓ Let xi be the fraction of object i placed in the Knapsack, $O \le x_i \le 1$.

For $1 \le i \le n$.

Then :

$P = \sum$	p _i x _i	And	Σ	$w_i x_i \leq M$	
1≤i≤n			1≤i≤n		

Assumptions:

n

- $\sum_{i=1}^{\infty} w_i > M$; not all xi= 1.
- $\sum_{1 \le i \le n}$ wi xi = M

Example:

- 3 objects (n=3).
- (w1,w2,w3)=(18,15,10)
- (p1,p2,p3)=(25,24,15)
- M=20(knapsack capacity)

Largest-profit strategy: (Greedy method)

- Pick always the object with largest profit.
- If the weight of the object exceeds the remaining Knapsack capacity, take a fraction of the object to fill up the Knapsack.

Example:

P=0(profit) , C=M=20 /* remaining capacity */

Put object 1 in the Knapsack.
P=25 Since w₁ < M then x₁=1 C=M-18=20-18=2
Pick object 2 Since C< w₂ then x₂= C/w₂=2/15.

- Since the Knapsack is full then x₃=0.

The feasible solution is (1, 2/15,0) P=28.2

Smallest-weight strategy:

- be greedy in capacity: do not want to fill the knapsack quickly.
- Pick the object with the smallest weight.
- If the weight of the object exceeds the remaining knapsack capacity, take a fraction of the object.

Example:

cu=M=20

Pick object 3
 Since w₃ < cu then x₃=1
 P= 15 cu = 20-10 = 10 , x₃ = 1

- Pick object 2 Since $w_2 > cu$ then $x_2 = 10/15 = 2/3$ P = 15+ 2/3.24= 15+ 16 = 31 cu= 0.
- Since cu=0 then $x_1=0$
- Feasible solution : (0,2/3,1) P (profit)=31.

Largest profit-weight ratio strategy:

- Order profit-weight ratios of all objects.
- $Pi/wi \ge (pi+1)/(wi+1)$ for $1 \le i \le n-1$
- Pick the object with the largest p/w

• If the weight of the object exceeds the remaining knapsack capacity, take a fraction of the object.

Example:

 $P_1/w_1=25/18=1.389$ $P_2/w_2=24/15=1.6$ $P_3/w_3=15/10=1.5$

$$P_2/w_2 > P_3/w_3 > P_1/w_1$$

Cu=20; p=0

- Pick object 2 Since $cu \ge w_2$ then $x_2=1$ cu=20-15=5 and p=24

- Pick object 3
 Since cu<w₃ then x₃=cu/w₃=5/10=1/2
 cu= 0 and P= 24+1/2.15=24+7.5=31.5
- Feasible solution (0,1,1/2) P=31.5

Largest-profit strategy: 28.2

Smallest-weight strategy: 31.

Largest profit-weight ratio strategy: 31.5

Largest profit-weight ratio strategy gives maximum profit

Analysis

Analysis of knapsack problem with Largest profit-weight ratio strategy:

Step 1- Calculating P/w for all n object required O(n).

Step 2- Arranging P/w for all n object required sorting technique so time required for sorting P/w for all object is O(nlogn).

Step 3- If the weight of the object exceeds the remaining knapsack capacity, take a fraction of the object required O(n)

So **time complexity of knapsack problem** is O(nlogn) because here bigger loop exists.