
Merge sort
1. Split array A[0..n-1] in two about equal halves and make copies of each half

in arrays B and C
2. Sort arrays B and C recursively
3. Merge sorted arrays B and C into array A as follows:

 Repeat the following until no elements remain in one of the arrays:
– compare the first elements in the remaining unprocessed portions of
the arrays
– copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

 Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Merge sort algorithm Merge algorithm

Merge_sort (arr , start_index, last_index)
{
if(start_index== last_index)

Return(arr[start_index]);
else {

Mid=floor((start_index+last_index)/2);
Merge_sort(arr, start_index, mid);
Merge_sort(arr, mid+1, last_index);
Merge(arr, start_index, mid, last_index);

 }
}

Merge(arr, start_index, mid,last_index)
{ k=mid+1, p=1;
 While(start_index<=mid && k<=last_index)
{ if(arr[start_index]<arr[k]) {

Brr[p]=arr[start-index];
start_index++;
P++;

}
else
 { Brr[p]=arr[k];

k++;
P++;

}

}

for(; start_index<=mid;start_index++)

{ Brr[p]=arr[start_index]

 P++;

}

for(; k<=last_index; k++)

{ Brr[p]=arr[k];

P++;

}

for(k=1; k<=last_index; k++)

{

arr[k]=Brr[k];

}

}

Example of merge sort

Merge procedure analysis

Input: two sorted sub array

Output: single sorted array

Worst case:

20 9 3 6 1 0 13 8

20 9 3 6 1 0 13 8

20 9 3 6 1 0 13 8

 20 9 3 6 1 0 13 8

9 20 3 6 0 1 8 13

3 6 9 20 0 1 8 13

0 1 3 6 8 9 13 20

10 20 30 40 11 21 31 41

Min(10,11)

Min(20,11)

Min(21,20)

Min(30,21) total no. of comparison=(4+4-1)=7 comparison.

Min(30,31) worst case time complexity of merge procedure

Min(40,31) m+n-1 = O(m+n) where m & n is the size of sub-array

Min(40,41)

When both the sub-array size is equal then time complexity

 n/2+n/2-1=2n=O(n) (neglect constant)

Best case:

Min(10,1)

 Min(10,2) Best case time complexity is no. of comparison

Min(10,3) - if 1 part of array has size m & 2 part of array has size n

Min(10,4) then time complexity O(min(m, n))

- If size of sub- arrays is n/2 then time complexity (n)

Note: if we don’t use second array for merge procedure then time complexity of

merge procedure of two sorted sub-array will increase.

Merge sort can be both in-place or outplace but in outplace time complexity is

less as compare to in-place because of usage of second array for merge

procedure.

Worst case: O(n)

Best case: (n)

Average case: (n)

10 20 30 40 1 2 3 4

Time complexity :

Merge sort recurrence relation equation

 O(1) if n=1

T(n)=

 O(1) + T(n/2) +T(n/2) + (n) if n>1

 Divide cost 2 sub-array conquer cost/ merge cost

T(n)=2T(n/2) + n ….. neglecting constant time

Solved using recurrence relation solving technique. We get time complexity of

merge sort O(nlogn) for outplace sorting.

Space complexity

For merge sort : n + clog2n + n

 No. of element stack size (no. of function array size of b array

 in array calls, where c is no of variable

 size in each function)

space complexity of merge sort=O(n)

Note: If array size is small then merge sort is not recommended. Merge sort is

used for large size array.

