
Merge sort
1. Split array A[0..n-1] in two about equal halves and make copies of each half

in arrays B and C
2. Sort arrays B and C recursively
3. Merge sorted arrays B and C into array A as follows:

 Repeat the following until no elements remain in one of the arrays:
– compare the first elements in the remaining unprocessed portions of
the arrays
– copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

 Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Merge sort algorithm Merge algorithm

Merge_sort (arr , start_index, last_index)
{
if(start_index== last_index)

Return(arr[start_index]);
else {

Mid=floor((start_index+last_index)/2);
Merge_sort(arr, start_index, mid);
Merge_sort(arr, mid+1, last_index);
Merge(arr, start_index, mid, last_index);

 }
}

Merge(arr, start_index, mid,last_index)
{ k=mid+1, p=1;
 While(start_index<=mid && k<=last_index)
{ if(arr[start_index]<arr[k]) {

Brr[p]=arr[start-index];
start_index++;
P++;

}
else
 { Brr[p]=arr[k];

k++;
P++;

}

}

for(; start_index<=mid;start_index++)

{ Brr[p]=arr[start_index]

 P++;

}

for(; k<=last_index; k++)

{ Brr[p]=arr[k];

P++;

}

for(k=1; k<=last_index; k++)

{

arr[k]=Brr[k];

}

}

Example of merge sort

Merge procedure analysis

Input: two sorted sub array

Output: single sorted array

Worst case:

20 9 3 6 1 0 13 8

20 9 3 6 1 0 13 8

20 9 3 6 1 0 13 8

 20 9 3 6 1 0 13 8

9 20 3 6 0 1 8 13

3 6 9 20 0 1 8 13

0 1 3 6 8 9 13 20

10 20 30 40 11 21 31 41

Min(10,11)

Min(20,11)

Min(21,20)

Min(30,21) total no. of comparison=(4+4-1)=7 comparison.

Min(30,31) worst case time complexity of merge procedure

Min(40,31) m+n-1 = O(m+n) where m & n is the size of sub-array

Min(40,41)

When both the sub-array size is equal then time complexity

 n/2+n/2-1=2n=O(n) (neglect constant)

Best case:

Min(10,1)

 Min(10,2) Best case time complexity is no. of comparison

Min(10,3) - if 1 part of array has size m & 2 part of array has size n

Min(10,4) then time complexity O(min(m, n))

- If size of sub- arrays is n/2 then time complexity (n)

Note: if we don’t use second array for merge procedure then time complexity of

merge procedure of two sorted sub-array will increase.

Merge sort can be both in-place or outplace but in outplace time complexity is

less as compare to in-place because of usage of second array for merge

procedure.

Worst case: O(n)

Best case: (n)

Average case: (n)

10 20 30 40 1 2 3 4

Time complexity :

Merge sort recurrence relation equation

 O(1) if n=1

T(n)=

 O(1) + T(n/2) +T(n/2) + (n) if n>1

 Divide cost 2 sub-array conquer cost/ merge cost

T(n)=2T(n/2) + n ….. neglecting constant time

Solved using recurrence relation solving technique. We get time complexity of

merge sort O(nlogn) for outplace sorting.

Space complexity

For merge sort : n + clog2n + n

 No. of element stack size (no. of function array size of b array

 in array calls, where c is no of variable

 size in each function)

space complexity of merge sort=O(n)

Note: If array size is small then merge sort is not recommended. Merge sort is

used for large size array.

