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e |terative method

® Objective type of questions

7.1

Introduction

Suppose we are given the following values of y = f(x) for a set of values
of x:

X: X X, X

1 2 n

y: YO yl yQU. yn'

0

Then the process of finding the value of y corresponding to any value of
x = x, between x, and «_is called interpolation. Thus interpolation is the
technique of estimating the value of a function for any intermediate value
of the independent variable while the process of computing the value of the
function outside the given range is called extrapolation. The term interpola-
tion however, is taken to include extrapolation.

If the function f(x) is known explicitly, then the value of y correspond-
ing to any value of x can easily be found. Conversely, if the form of f{x) is not
known (as is the case in most of the applications), it is very difficult to de-
termine the exact form of f(x) with the help of tabulated set of values (x,, ).
In such cases, f(x) is replaced by a simpler function ¢ (x) which assumes the
same values as those of f(x) at the tabulated set of points. Any other value
may be calculated from ¢(x) which is known as the interpolating function or
smoothing function. If ¢(x) is a polynomial, then it called the interpolating
polynomial and the process is called the polynomial interpolation. Similarly
when ¢(x) is a finite trigonometric series, we have trigonometric interpola-
tion. But we shall confine ourselves to polynomial interpolation only.

The study of interpolation is based on the calculus of finite differences.
We begin by deriving two important interpolation formulae by means of
forward and backward differences of a function. These formulae are often
employed in engineering and scientific investigations.

7.2 Newton’s Forward Interpolation Formula

Let the function y = f(x) take the values y, y,, ---, y, corresponding to
the values x0, x1, ---, x_of x. Let these values of x be equispaced such that
x,=x,+ih (i=0,1, ---). Assuming y(x) to be a polynomial of the nth degree
in x such that y(xy)=y,.y(x;) =y~ y(x,)=1y,. We can write



INTERPOLATION © 275

y(x) =ay +a,(x —xy) +ay(x —xp)(x —x;) +ag(x—2x,)(x—x;)(x—2x,)
+ota, (x—xp)(x =) (x—x, ) (1)
Putting x =x, x,, ---, x_ successively in (1), we get

Yo = oYy = dg Fay(x; —x0),ys = ag +a, (xy —x) +ay (x5 —xp) (x5 — ;)
and so on.

From these, we find that a, = y,, Ay, =y, -y, = a,(x; —xy) =a,h

1
4 = ZA?/()
Also Ayy =y, =y = ay(xy —x;) +ay(xy —x0)(xy — 1)
= a;h+ a,hh = Ay, + 2h*a,

1
ay = th (Ayl A!/o)z Azyo

21h?

Similarly a; = ——A’y, and so on.

vhs
Substituting these values in (1), we obtain
A2 3
y(x) =y, +%(x 1)+ mgg (r=g)r =)+ (e Y= e y) o

2)

Now if it is required to evaluate y for x =x + ph, then
(x—xy) =ph,x—x, =x—x,—(x—x)) =ph—h=(p—1h,
(x—xy))=x—x,—(x—xy)=(p—Dh—h=(p—-2)h

etc.
Hence, writting y(x) = y(x, + ph) = Y, (2) becomes

0
plp=1) 5 plp—D(p-2)
9p=y0+PAyo 9] A? yo"'T

AS%

P<P—1)"?;$P—”‘l) Ay (3)

4.4

It is called Newton’s forward interpolation formula as (3) contains v,
and the forward differences of y/,

Otherwise: Let the function y = f(x) take the values v, y,, y,,--- corre-
sponding to the values x, x, + h, x, + 2h, --- of x. Suppose it is required to
evaluate f(x) for x =x +ph, where p is any real number.
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For any real number p. we have defined E such that

E’ f(x)= f(x+ph)
Yy =f<x0 +Ph):Epf<x0>=<l+A)py0 [ E=1 +A]
(p—1) (p—1Dp—2)
[Using binomial theorem]
, p—-1 (p—1(p-2) .
L., ypzy()+PAyo+pp2, Azy()+—pp 3'}9 Ny +--

If y = f(x) is a polynomial of the nth degree, then A™'y and higher dif-
ferences will be zero.

Hence (4) will become

(p=1 (p—Dp—=2) .
Yp =Yo T pAy, + L le A%y, +%A3% e

(p—1)-(p—n—1
L 3(!70 n=1) Ay,

Which is same as (3)

Obs. 1. This formula is used for interpolating the values of y
near the beginning of a set of tabulated values and extrapolating

values of y a little backward (i.e., to the left) of y,.

Obs. 2. The first two terms of this formula give the linear inter-
polation while the first three terms give a parabolic interpola-
tion and so on.

NOTE

7.3 Newton’s Backward Interpolation Formula

Let the function y = f(x) take the values y, . ,, ... corresponding to
the values x, x, + h, x, + 2h, --- of x. Suppose it is required to evaluate f{x)

0> 70
forx=x_+ph, where p is any real number. Then we have
y,=flx, +ph) =Ep flx )= (1-V)?y, [ E'=1-V]
= [1 +pV+ P(Pz‘ D V2 + Pp +2’(P +2) V3y0 +...:|yn

[using binomial theorem]
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- (p+1) (p+D(p+2)
1.e., y77=yn+van+pp2’ V2yn+pp 3‘p VSy"+ <1>

It is called Newton’s backward interpolation formula as (1) contains y,

and backward differences of

Obs. This formula is used for interpolating the values of y near
the end of a set of tabulated values and also for extrapolating
values of y a little ahead (to the right) of y,

NOTE

EXAMPLE 7.1

The table gives the distance in nautical miles of the visible horizon for
the given heights in feet above the earth’s surface:

x = height: 100 150 200 250 300 350 400
y = distance: | 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the values of y when
(i) x=160f1. (ii)x =410,
Solution:

The difference table is as under:

x y A A’ A’ A

100 10.63
2.40

150 13.03 -0.39
2.01 0.15

200 15.04 -0.24 -0.07
1.77 0.08

250 16.81 -0.16 -0.05
1.61 0.03

300 18.42 -0.13 -0.01
1.48 0.02

350 19.90 -0.11
1.37

400 21.27

(i) If we take x, = 160, then y = 13.03, Ay, = 2.01, A% = — 0.24,
A =0.08, A* Yy=— 0.05



278  NUMERICAL METHODS IN ENGINEERING AND SCIENCE

X=Xy E
 h 50
Using Newton’s forward interpolation formula, we get
pp=1 o pp—Dp-2)
(p—Dp—2)(p—3)
4!
Yo = 13.03 + 0.402 + 0.192 + 0.0384 + 0.00168 = 13.46 nautical miles

(ii) Since x = 410 is near the end of the table, we use Newton’s back-
ward interpolation formula.

Since x = 160 and h = 50, =0.2

Ya1s = Y, = Yo T pAYy, +

WP

A4y0+...

x—x, 10
ho 50
Using the line of backward difference
y=2127,Vy =137, V?y =-0.11, V’y = 0.02 etc.
. Newton’s backward formula gives

0.2

Taking x =400, p=

Yar0 = Yoo +PV¥a00 +P(}02—‘!|‘1)V2y400
P +é>!<p 2 poy s+ AP +1><704J!r 2P+ i, 4.
—2127+02087)+ 2202 o 11)
+ 0.2(1.;)(2.2) (0.02)+ 0.2(1.2)1(54.2)(3.2) (=0.01)

=21.27+0.274—-0.0132 + 0.0018 — 0.0007

= 21.53 nautical miles

EXAMPLE 7.2

From the following table, estimate the number of students who ob-
tained marks between 40 and 45:

Marks: 30—40 40—>50 50—60 60—70 70—S80
No. of students: 31 42 51 35 31
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Solution:

First we prepare the cumulative frequency table, as follows:

Marks less than (x): 40 50 60 70 80
No. of students (y ): 31 73 124 159 190
Now the difference table is
x Y, Ay, | Ny | Ny | Ayx
40 31
42
50 73 9
51 - 25
60 124 -16 37
35 12
70 159 -4
31
80 190

We shall find y_, i.e., the number of students with marks less than 45.
Taking x = 40, x = 45, we have
x—x, O
= =—=05 '.'h=10
h 10 [ ]
Using Newton’s forward interpolation formula, we get
pp=D o Pp=Dp=2) s Vo

Yas = Yao T PAYs9 + =2 ATy 3l
4 plp— 1)(794: 2)(p—3) Aty
=31405x42+ (05)(=05) g, (0'5)(_06;5)(_ 15) (-25)
N (0.5)(—0.5)2(4— 15)(—2.5) 3

=31+21-1.125-1.5625 — 1.4453
= 47.87, on simplification.

The number of students with marks less than 45 is 47.87, i.e., 48. But
the number of students with marks less than 40 is 31.

Hence the number of students getting marks between 40 and 45 =
48 - 31 =17.
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EXAMPLE 7.3.

Find the cubic polynomial which takes the following values:

x: 0 1 2 3
o | 1 D) 1 10
Hence or otherwise evaluate f(4)
Solution:
The difference table is
Slx) Aflx) | Nflx) | Aflx)
1
1
1 2 -2
-1 12
2 1 10
9
3 10
We take x,=0 and p:xz():x [-h=1]
. Using Newton’s forward interpolation formula, we get
—D(x—2
)= £0) Af >A%f<> 59;12§§——2A%fm>
— 141+ x2 (—2)+ 3= 16)5(“‘ 2 (12)
=93 =71 +6x+1
which is the required polynomial.
To compute f(4), we take x, =3, x =4 so that p= YTy [ h=1]

NOTE Obs. Using Newton’s backward interpolation formula, we get

pp+1)(p+2) _,

p(p+1)
1.2.3 Vi)

pVf(
=1+ pvre) + 2
=10+9+10+12=41

S VEB)+
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which is the same value as that obtained by substituting x = 4 in
the cubic polynomial above.

The above example shows that if a tabulated function is a
polynomial, then interpolation and extrapolation give the same
values.

EXAMPLE 7.4

Using Newton’s backward difference formula, construct an interpolat-
ing polynomial of degree 3 for the data: f (- 0.75) = — 0.0718125, f (-
=~0.02475, f (- 0.25) = 0.3349375, f (0) = 1.10100. Hence find f (= 1/3

Solution:
The difference table is
x y Ay Ay Ay
-0.75 —-0.0718125
0.0470625
-0.50 —0.02475 0.312625
0.3596875 0.09375
-0.25 0.3349375 0.400375
0.7660625
0 1.10100

We use Newton’s backward difference formula

ASIPNIASITAL

X0 [-h=0.25]

VS?/:;

4x(4x+1)

y(x) =1.10100 + 4x(0.7660625) + (0.400375)

+ 4x(4x +1)(4x +2)
6
=1.101+3.06425x +3.251x +0.81275x +1° 4+ 0.75x% +0.125x
=17 4+4.001x* +4.002x +1.101

(0.09375)

Put x= —%, so that
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2

y(—l) = (—1)%4.001(—1) +4.002(—1)+1.101

3 3 3 3
= 0.1745

EXAMPLE 7.5

In the table below, the values of y are consecutive terms of a series of
which 23.6 is the 6" term. Find the first and tenth terms of the series:

x 3 4 5 6 7 8 9
y: | 48 | 84 | 145 | 23.6 | 362 | 52.8 | 73.9

Solution:
The difference table is
y Ay Ay Ay Ay
4.8
3.6
4 8.4 2.5
6.1 0.5
5 14.5 3.0 0
9.1 0.5
6 23.6 3.5 0
12.6 0.5
7 36.2 4.0 0
16.6 0.5
8 52.8 4.5
21.1
9 73.9

To find the first term, use Newton’s forward interpolation formula with
x,=3,x=1,h=1, and p =-2. We have

(= 2) (=2)(=3) (=2)(=3)(-4)
1.2 1.2.3
To obtain the tenth term, u se Newton’s backward interpolation for-
mula withx =9, x =10, h =1, and p = 1.This gives
1(2) 1(2)(3)

y(10)=73. 9+ X211+ ——=%X45+
1 1.2 1.2.3

y(1)=4.8+-—-X3.6+ X235+ x0.5=3.1

X 0.5=100
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EXAMPLE 7.6
Using Newton’s forward interpolation formula show
2
Tt = {n(n2+ 1)}

Solution:

If s =sn’, then s,,;==(n+1)°
As, =8, —5, = E(n +1)° —EnS =(n+1)°
Then A%, =As,,, —As, =(n+2)° —(n+1)’ =30> +9n+7
N’s, =Ns,,, — N’s,
=[3(n+17 +9(n+1)+7]-(3n> +9n+7) =6n+12
A's, =A%, — A, =[6(n+1)+12]-[6n+12]=6

and A’s =As =..=0
Since the first term of the given series is 1, therefore takingn =1,s =1,
As =8, As =19, A% =18 A*s =6.
Substituting these in the Newton’s for war d interpolation formula, i.e.,

s=s+(n-1)As, + (n _1;:1 —2) A’s, + (n=1)n ;‘2)(71 —3

(=D =20 =3 =4)
4!

sn=1+8n-1) +%(n—1)(n—2)+3(n—1)(n—2)(n—3)

2
+i (n-1)(n-2)(n—-3)(n—4) =i<n4 +2n° 4n2)= {n(n; 1)}

3
A’s,

4
A’s,

Exercises 7.1

1. Using Newton ’s forward formula, fin d the value of f(1.6), if
X: 1 14 1.8 2.2
Sflx): 3.49 4.82 5.96 6.5

2. From the following table find y when x = 1.85 an d 2.4 by Newton’s inter-
polation formula:

x| L7 1.8 1.9 2.0 2.1 2.2 2.3
y=e% | 5474 | 6.050 | 6.686 | 7.389 | 8.166 | 9.025 | 9.974
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. Express the value of 6 in terms of x using the following data:

x: 40 50 60 70 80 90
0: 184 204 226 250 276 304

Also find 6 at x = 43.

. Given sin 45°=0.7071, sin 50° = 0.7660, sin 55° = 0.8192,

sin 60° = 0.8660, find sin 52° using Newton’s forward formula.

. From the following table:

x| 0.1 0.2 0.3 0.4 0.5 0.6
flx): | 2.68 | 3.04 | 3.38 | 3.68 | 396 |4.21

find (0.7) approximately.

. The area A of a circle of diameter d is given for the following values:

d: 80 85 90 95 100

A: 5026 | 5674 | 6362 | 7088 | 7854
Calculate the area of a circle of diameter 105

. From the following table:

X% 10 20 30 40 50 60 70 80

cosax: | 0.9848 | 0.9397 | 0.8660 | 0.7660 | 0.6428 | 0.5000 | 0.3420 | 0.1737
Calculate cos 25° and cos 73° using the Gregory-1 Newton formula.

. A test performed on a NPN transistor gives the following result:

Base current f (mA) 0 0.01| 0.02| 0.03| 004 0.05
Collector current I, (mA) 0 1.2 2.5 3.6 4.3 5.34

Calculate (i) the value of the collector current for the base current of
0.005 mA.
(i) the value of base current required for a collector correct of 4.0 mA.

. Find f(22) from the following data using Newton’s backward formulae.

x| 20 25 30 35 40 45
flx): | 354 | 332 | 291 | 260 | 231 | 204

Find the number of men getting wages between Rs. 10 and 15 from the
following data:

Wages in Rs: 0—10 10—20 | 20—30 | 30—40
Frequency: 9 30 35 42
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11. From the following data, estimate the number of persons having in-
comes between 2000 and 2500:

Income Below 500 | 500-1000 | 1000-2000 | 2000-3000 | 3000-4000
No. of persons 6000 4250 3600 1500 650
12. Construct Newton’s forward interpolation polynomial for the following
data:
X 4 6 8 10
y: 1 3 s | 16

Hence evaluate y for x = 5.

13. Find the cubic polynomial which takes the following values:
y(0)=1,y(1)=0,y(2) =1 and y(3) = 10.

Hence or otherwise, obtain y(4).

14. Construct the difference table for the following data:

x: 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f(x): 0.003 | 0.067 | 0.148 | 0.248 | 0.370 | 0.518 | 0.697

Evaluate f (0.6)

15. Apply Newton’s backward difference formula to the data below, to ob-
tain a polynomial of degree 4 in x:

X: 1 2 3 4 5

v | 1 |11 1]

16. The following table gives the population of a town during the last six
censuses. Estimate the increase in the population during the period
from 1976 to 1978:

Year: 1941 1951 1961 1971 1981 1991

Population: 12 15 20 27 39 52
(in thousands)

17. In the following table, the values of y are consecutive terms of a series of
which 12.5 is the fifth term. Find the first and tenth terms of the series.

x 3 4 5 6 7 8 9
y: 2.7 6.4 12.5 21.6 34.3 51.2 72.9
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18. Using a polynomial of the third degree, complete the record given be-
low of the export of a certain commodity during five years:

Year: 1989 | 1990 | 1991 | 1992 | 1993
Export: 443 384 — 397 467
(in tons)

19. Given u,=40, u, =45, u_= 54, findu, and u,.
20.Ifu_ =10,u, =8, u,=10u,=50, findu, and u..

21. Giveny,=3,y, =12,y, =81, y, =200,y, =100, y_ =8, without form-
ing the difference table, find A%0.

7.4 Central Difference Interpolation Formulae

In the preceding sections, we derived Newton’s forward and backward
interpolation formulae which are applicable for interpolation near the be-
ginning and end of tabulated values. Now we shall develop central differ-
ence formulae which are best suited for interpolation near the middle of

the table.

If x takes the values x,— 2h, x — h, x, x, + h, x, + 2h and the correspond-
ing values of y = fx) are y_,, y_, y,, y,, y,, then we can write the difference

table in the two notations as follows:

x y 1st diff. 2nd diff. 3rd diff. 4th diff.

x,—2h |y,
Ay—, (= Ay—,,)

x,—h |y, Ay—,(= Ay )
Ay  (=Ay ) ANy, (=AY )

X, Y, Ay | (=A%) Ay (=AY,
Ay, (=Ay,,) Ay (=A%)

x,+h |y Ay (= Ay))

A%(: Ay3/2>

x,+2h |y,
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7.5 Gauss’s Forward Interpolation Formula

The Newton’s forward interpolation formula is

(p—1) (p—D(p—2) .

?/0=?/0+PAy0+p};2 A2y0+pp 1.2.5739 o+ W

We have A%y — Ay =AMy
ie., Ny, =Ny +Ay, @
Similarly Ay, =Ny + A%y | (3)
Aty,=A'y + Ny  etc (4)

Also A Y- A3y72 =A Y,

ie., Ny =Ny +Ay,

Similarly Aty =Ny + Ny ete 5)

Substituting for A%y, A®y,, Ay, from (2), (3), (4)..in (1), we get

(p—1) (p=D(p-2)
g, = o +phyy + L%y + A%y )+ PP A 4 Ay

12 1.2.3
pp—=Dp-2(p-3), , 5
+ A + A
1934 (A% + %)
(p=1) . (p—D(p—2) ..
Hence y, =y, +pAy, + P p2' A%y, +%A3y_l
+(P+1><P;2>(P_3) A4y_2+"' [using (5)]

which is called Gauss’s forward interpolation formula.

Cor. In the central differences notation, this formula will be
plp=1) plp=1(p=2)
BT 62?/1/2 +Tégyl/2
(p—Dp—-2)(p-3)
4!
NOTE Obs. 1. It employs odd differences just below the central line
and even difference on the central line as shown below:

Yp = Yo + POy +

AP

‘54.’/1/2

Y, A%y Ay, A%, Central line

NN

Ay, Ny, Ny, Ay,
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Obs. 2. This formula is used to interpolate the values of y for p
(0 < p < 1) measured forwardly from the origin.

7.6 Gauss’s Backward Interpolation Formula

The Newton’s forward interpolation formula is

4, = o +pAyy + P(;;; 1) A2y, + pp —112)(;9 -2) Ay 4 0

We have Ay, —Ay  =Ay
ie. Ay, =Dy, + Ay, @
Similarly Ay, =Ny +Ny 3)
Ny =Ny +Ay  etc (4)

Also Ay —-Ny =Ay,
ie., Ny =Ny +Ay, (5)
Similarly Aty =Ay + Ny etc (6)

Substituting for Ay, Ay, A’y ,--- from (2), (3), (4) in (1), we get

. -1)/ .
Yp =Yo +p(Ay_, +A2?/—1)+ p<7;2 )(Azy_] +A3?/—1)
LPp=Dp=2) (p=D(p=2)(p=3)

(ABy_1+A4y_1)+p X(A4y_1+A5y_l)+---

1.2.3 1.2.34
pip+1) (p+Lpp—1) 4
=y, +pAy_, + JNTIRR Y
Yo TPAY_, 19 Y1 193 Y1
+Dplp—1D(p—2 —Dp—-2)p—
Lo pp=Vp=2) 0 PRV =2PY) 5
1.2.34 1.2.34
(p+1lp . (p+Dplp—1), .
=yo tpAy_, +TA2?/—1 +T(A3y_2 +AYy,)
(p+Lplp—D(p—2) 5
* 1234 (A% + 8% )+
[using (5) and (6)
(p+1 +1 -1
Hence yp =1y +pAy_1 +p P2‘ >A2y_1 +%A3y_2
+Dplp+1D(p—1
L Dplp+Dip >A4y2+---

4! -
which is called Gauss’s backward interpolation formula.



INTERPOLATION © 289

Cor. In the central differences notation, this formula will be

(p+1p (p+Dp(p—1)
Yp =Yo + Péy—l/z + BY 52?/0 + Tasy—l/z

(p+2)p+Lpp—1)
4!

+ Sty 4

NOTE Obs. 1. This formula contains odd differences above the central
line and even differences on the central line as shown below:

Ay, Ay, Ay,
Y, 2, Ay, A% _Central line

Obs. 2. It is used to interpolate the values of y for a negative
value of p lying between — 1 and 0.

Obs. 3. Gauss’s forward and backward formulae are not of
much practical use. However, these serve as intermediate steps
for obtaining the important formulae of the following sections.

7.7 Stirling’s Formula

Gauss’s forward interpolation formula is

+1 +1 -1
Yy = 1o +pAy, +%A29—1 +%A39—1
' : M
+1 —Dip—2
L+ Dplp=1p )A4y_9 ‘o

4! ‘
Gauss’s backward interpolation formula is

(p+Lp .. (p+p(p—1)
Y, =Yo T PAY_ + P ol PAzy—l +%A3y_2 (2)
G2 FOpp=l)
4| -

Taking the mean of (1) and (2), we obtained

Ay, +Ay_ 2 (p*—1)
Yp =Y +P(—y° 5 1)+%A2y_1 + B
X(ASy_l + AS’j—z ) + P2 (P2 -1 A4
2 4!
Which is called Stirling’s formula.

y_2+...
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Cor. In the central difference notation, (3) takes the form

2 P2<P2_12)

\ (p*—1%)
Yp = Yo +Pﬂ5yo+p—,<52yo L o

o TR 8y +---

1 1
For E(Ayo +Ay_, ) = 5(591/2 + 5?/—1/2) = uoy,

%(Agy—l + A%y, ) = é(‘ssyl/z +0y_yj9 ) = ud’y, etc.

NOTE Obs. This formula involves means of the odd differences just

above and below the central line and even differences on this
line as shown below:

Ay—l 2
S

7.8 Bessel’s Formula

Ay,
Ay,

Ay,
Asyo

4
PREE

e ASy_g

Central line.

Gauss’s forward interpolation formula is

—D +Dpp—1
Y, =1y +pAy, +MA2 +w

ol oY TR
Lot DP(’; Dip+1) Aty_y+---
We have A2 0= Azyfl = A3y71 . (1)
ie., Ny =Ny -Ny 2)
Similarly Ay =AYy  — Ay, etc.

Now (1) can be written as

(p—D(1 1 (" =1
R e B A

2! 3| -l
2
pp_=Dp=2)(1 oy 1,
+ 1 2A y_2+2A Y o |+
1pp+1) 1plp=1), ..
=y, +pAy, +§2—!Azy-1 Sy (A%, +A%_,)
PPN e P ) L Dip=2)
3! 2 4! 2 4!

4 _AD
X(A y-1—A ’—1)+ [Using (2), (3) etc.]
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1
pp=1) A’y + A%, (P _2)’9(79_1)

Henee y, =y, +pAy, +=; 3 3 Ay, @)

Which is known as Bessel’s formula.

Cor. In the central difference notation, (4) becomes

1
_- -1
(p=1 =g
Yp=Yo + Pé’jl/z +%ﬂ5291/2 +T68y1/2
(p+DLp(p—D(p—2)
+ P pp4' P /’“54?/1/2-'_”'

1 s 1
for E(Agy—l + Azyo) = ﬂ5291/2>§(A4y_2 + A4y_1) = ﬂ54y1/2 etc.,

NOTE Obs. This is a very useful formula for practical purposes. It
— involves odd differences below the central line and means of
even differences of and below this line as shown below
Y, APy, Aty_, A%y_, Central line
Ay, Ay, Ay, Ay_ '

A2?/0 A4y_1 Aﬁyo

7.9 Laplace-Everett’s Formula

Gauss’s forward interpolation formula is
(p—Dp > (p+DLpp—1)
Yy =y +phyy +- N Pa%y +%A3y-l
(p+Lpp—1)(p—2) (p+2)(p+Lpp—1)(p—2)
41 51
We eliminate the odd differences in (1) by using the relations

(1)

+ XAPy_y 4

A4y_2 +

Ayy =y, - ?/0:A3?/71 = AZ’JO - AQTLDA‘SM = A4%1 - A4y72 etc.
Then (1) becomes
Yy = Yo TP _y0>+@Agy—l +%(Azyo ~A%y)
p+Lpp—D(p—2)
4!
(At -ty

(p+2)(p+Lpp—Dp—2)
5!

X

A4y 5+
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-1Dp—2 +1 -1
=<1_p>y0+pyl_P(P 3)'<P )Azy_1+(p );(p )Azyo
+p(p—1)(p—2)(p—3

_(p+Dplp 5)!(70 )(p—3) Ay
+(p+2)(p+1)p(p—1)(p—2) X Aty =
5!

To change the terms with negative sign, putting p = 1 — ¢, we obtain

( 2_12> ) ( 2_12>< 2_22>
g, =qy + L o Ayt T S,q Ay, +
2 42 2 12v/,.2 o2
plp”—17) plp” =17)(p~ —27)
+py, + 30 AZ?/O + 5] A4y_2 +

This is known as Laplace-Everett’s formula.

NOTE Obs. 1. This formula is extensively used and involves only even

differences on and below the central line as shown below:

Yo Ny Ay, A%_,Central line

Y1 Azyo A4y—1 Aﬁy—z

Obs. 2. There is a close relationship between Bessel’s formula
and Everett’s formula and one can be deduced from the other
by suitable rearrangements. It is also interesting to observe that
Bessel’s formula truncated after third differences is Everett’s
formula truncated after second differences.

7.10 Choice of an Interpolation Formula

So far we have derived several interpolation formulae such as Newton’s
forward, Newton’s backward, Gauss’s forward, Gauss’s backward, Stirling’s,
Bessel’s and Everett’s formulae for calculating Y, from equispaced values
which are called classical formulae. Now, we have to see which formula
yields most accurate results in a particular problem.

The coefficients in the central difference formulae are smaller and
converge faster than those in Newton’s formulae. After a few terms, the
coefficients in the Stirling’s formula decrease more rapidly than those of
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the Bessel’s formula and the coefficients of Bessel’s formula decrease more
rapidly than those of Newton’s formula. As such, whenever possible, central
difference formulae should be used in preference to Newton’s formulae.

The right choice of an interpolation formula however, depends on the
position of the interpolated value in the given data.

The following rules will be found useful:

1. To find a tabulated value near the beginning of the table, use Newton’s
forward formula.

2. To find a value near the end of the table, use Newton’s backward for-
mula.

3. To find an interpolated value near the center of the table, use either
Stirling’s or Bessel's or Everett’s formula.

If interpolation is required for p lying between _L and l, prefer Stirling’s
formula 4 4

1 3
If interpolation is desired for p lying between 1 and T use Bessel’s
or Everett’s formula.

EXAMPLE 7.7
Find f(22) from the Gauss forward formula:

x: 20 25 30 35 40 45
fx): | 354 332 291 260 231 204

Solution:
Taking x, = 25, h = 5, we have to find the value of f(x) for x = 22.
ie., for p= X=X 22725 0.6

h 5
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The difference table is as follows:

x p v, Ay, | Ny, | Ny | Ay | Ay,
20 | -1 Bsa(=y,) | -22

25 0 B32(=y,) | -41 | =19 | 29

30 1 291 (= ?/1> -31 10 -8 - 37 45
35 2 [260(=y,) | -29 2 0 8

40 3 31(=y,) —27 2

45 4 04 (=y,)

Gauss forward formula is
Pp=D o (p+Dplp—1) 5

Yp = Yo FPAY Yot A
N (p+ l)p(pzj D(p—2) Ay,
24 g
- f(22) =332+ (0.6)(—41) + %(—19)
(064 1)(—;)!.6)(—0.6 —D g
L (0.6+ 1)(—0.6)(;!0.6— DE06-2) o
HE06+D=06/=06-1)(=06-2(06+2)

5!
=332+24.6-9.12-0.512 + 1.5392 — 0.5241
Hence f (22) = 347.983.

EXAMPLE 7.8

Use Gauss’s forward formula to evaluate y, , given that ¢, = 18.4708,
y,= 178144,y =17.1070, y, = 16.3432 and y,_ = 15.5154.

Solution
Taking x, = 29, h = 4, we require the value of y for x = 30
x—x, 30—29

=0.25
h 4

ie, for p=
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The difference table is given below:

x p Y, Ay, Ay, Ny, Ay,
21 ~2 | 18.4708
— 0.6564
25 1 | 17.8144 ~0.0510
—0.7074 —0.7074
29 0 |17.1070 —0.0564 ~0.0022
—0.7638 —0.0076
33 1 | 163432 —~0.0640
~0.8278
37 2 | 155154

Gauss’s forward formula is

plp+1) (p+Dplp—1)

— 2 3
Yp =Yo FPAY+— o= Ay F ATy
+Dpp—1)(p—2
L+ Dplp=1)p >A4y_2+-~-
1.2.3.4
Y50 = 17.1070 +(0.25)(~0.7638) + w(—o.%&)
+ (1.25)(0.2(;5)(—0.75) (L0.0076) + (1.25)(0.25)(2—40.75)(— 1.75)

X(-0.0022)
=17.1070 - 0.19095 + 0.00529 + 0.0003 — 0.00004 = 16.9216 approx.

EXAMPLE 7.9

Using Gauss backward difference formula, find y (8) from the following
table.

X 0 5 10 15 20 25
y 7 11 14 18 24 32
Solution:

Taking x, =10, h = 5, we have to find y forx = §, i.e., for
x—x, 8—10
p:—:—

=-04.
h 5
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The difference table is as follows:

x p Y, Ay, | Ny, | Ny | Ay | Ay
0 2 7
4
5 1 11 1
3 2
10 0 14 1 _1
4 1 0
15 1 18 2 -1
6 0
20 2 24 2
8
25 3 32

Gauss backward formula is

(p+1Dp

(p+Dplp=1)
Yp = Yo TPAY- Ny, + PR

3| y—Z
p+2pp+pp-1)
4!

—-04 +21‘)(—0.4) )+ (=04 + 1)(—;)‘.4)(—0.4 -1
+ (=044+2)(—-044+1)(—0.4)(—0.4-1)

4!

N

A4y_2 +--.

y(8)=14+(-0.4)(3)+ ( 2)

(=1

=14-12-0.12+4+0.1124+0.034
Hence Ys = 12.826

EXAMPLE 7.10

Interpolate by means of Gauss’s backward formula, the population of a
town for the year 1974, given that:

Year: 1939 1949 1959 1969 1979 1989
Population: 12 15 20 27 39 52
(in thousands)

Solution:
Taking x, = 1969, h = 10, the population of the town is to be found for

19741969
p 10

=0.5
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x p y, | Ay, | Ay | Ny | Ay | Ny
1939 -3 | 12 | 3 2 0 3 | -10
1949 | -2 15
5
1959 -1 | 20 2
7 3
1969 0 27 5 -7
12 —4
1979 1 | 39 1
13
1989 2 52

Gauss’s backward formula is
(p+Dp
2l

+2p+1Dplp—1)
p P P4! p\p A4y_2
p+2)(p+Lpp—1(p-—2)
51

(1.5)2(0.5) (5)+ (1.5)(0.2)(—0.5)

(p+Dplp—1) Ay

2
A Y + 3‘ 2

Y, =Yy +pAy_ +

N

N

A5y3 + ...

Yos =27 +(0.5)(7) +

N (25)(1.5)(=0.5) =7+ (2.5)(1.5)(0.5)(—0.5)(1.5) (=10)
24 120
=27+35+1.875-0.1875+0.2743 - 0.1172

= 32.532 thousands approx.

EXAMPLE 7.11

Employ Stirling’s formula to compute y,,, from the following table
(y, =1+log sinx):
x°: 10 11
10°y 23,967 28,060

%

12
31,788

13
35,209

14
38,368
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Solution:

Taking the origin at x ;= 12°, h = 1 and p =x — 12, we have the following
central difference table:

2, & 4,
p Y, Ay, Ay, Ay, Ay,
—-2=x, 0.23967 =y ,
0.04093 = Ay ,
—1l=x, 0.28060 =y , -0.00365 = A2y ,
0.03728 = Ay | 0.00058 = A’y ,
0= X, 0.31788 = Y, —0.00307 = Agyf1 —0.00013 = A4y72
0.03421 = Ay, —0.00045 = A% |
l=x, 0.35209 =y, - 0.00062 = A%y,
0.03159 = Ay,
2=x, 0.38368 =y,

Atx =122, p =0.2. (As p lies between —— and —, the use of String’s
formula will be Quite suitable.) 4

Stirling’s formula is

Ay_, + A 2
PAYy, ) +P_A2

2 3 3
pip” =1 Ay, + A%y
Yp =Yt + : :

2 T TR 2
2/ 2

PO =

When p = 0.2, we have

0.03728 + 0.03421) (0.2)*

+

Yoo =0.3178 + 0.2( (—0.00307)

L ©027[02) 1] (0.00058 ¥ 0.00054) L 02°[02r 1]

(=0.00013)
6 2 24
=0.31788 + 0.00715 — 0.00006 — 0.000002 + 0.0000002
=0.32497.
EXAMPLE 7.12
Given
6°: 0 5 10 15 20 25 30

tan 6: 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774
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Using Stirling’s formula, estimate the value of tan16°.

Solution:
Taking the origin at 6° = 15°, h = 5°and p= @ we have the follow-
ing central difference table: >
p | y=tand Ay A%y A%y Aty Ay
-3 | 0.0000
0.0875
-2 | 0.0875 0.0013
0.0888 0.0015
-1 0.1763 0.0028 0.0002
0.0916 0.0017 —0.0002
0 0.2679 0.0045 0.0000
0.0961 0.0017 0.0009
1 0.3640 0.0062 0.0009
0.1023 0.0026
2 | 0.4663 0.0088
0.1111
3 | 05774
AtO=16° p= 16-15_

Stirling’s formula is

+£,Ay—1 + Ay, +£A2

= + .
Ip =Y B ST 31 2
2 2
pp -1
+ 1 Ay o+
2
- Yo =0.2679 +o.2(0'0916;’0'0916)+ (0'22) (0.0045) +---

=0.2679 + 0.01877 + 0.00009 + --- =0.28676
Hence, tan 16" = 0.28676.

EXAMPLE 7.13

Apply Bessel's formula to obtain y,., given y, = 2854, y,, = 3162,
Y, = 3544y, =3992.
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Solution:
Taking the origin at x, =24, h = 4, we have p = (x — 24).

.. The central difference table is

P y Ay Ny Ny
-1 2854
308
0 pie 74
382 -8
1 3544 66
448
2 3992
At x=25,p=(25+424)=i.. (As p lies betweeni and % ,the use of

Bessel’s formula will yield accurate results)

Bessel’s formula is

1
i -1
(p—1) A%y_, +A* (P )W
b, = o +plyy + S SRS e 2Ry e (1)

When p = 0.25, we have

0.25(—0.75) (74 + 66 0.25)0.25(—0.75
yp=3162+0.25><382+ ( >( )+( ) ( >—8
21 2 21
= 3162 + 95.5 — 6.5625 — 0.0625
= 3250.875 approx.
EXAMPLE 7.14

Apply Bessel’s formula to find the value of f (27.5) from the table:

X: 25 26 27 28 29 30
fix): | 4.000 | 3.846 | 3.704 | 3.571 | 3.448 | 3.333

Solution:

Taking the origin at x, =27, h =1, we have p =x - 27
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The central difference table is

x p y Ay Ay A’y A'y
25 -9 4.000
~0.154
26 -1 3.846 0.012
~0.142 ~0.003
27 0 3.704 0.009 0.004
~0.133 ~0.001
28 1 3.571 0.010 —0.001
—-0.123 —0.002
29 2 3.448 0.008
-0.115
30 3 3.333

Atx =275, p = 0.5 (As p lies between 1/4 and 3/4, the use of Bessel’s
formula will yield an accurate result),

Bessel’s formula is

1
i -1)
(p—1) A2y, +A> (P 2)P<P
yp=yo+PAyo+pp2, . 12 % 4 3t A%y_,

(p+Upp—1(p=2)(Aly, +A%, )
41 2

+

When p = 0.5, we have
(0.5)(0.5—-1) (0.009 ;— 0.010) +0
4 (0.5+1)(0.5)(0.5—1)(0.5—2) (=0.001 — 0.004)

2 2
=3.704 — 0.11875 — 0.00006 = 3.585

Hence f (27.5) = 3.585.

y, =3.704—

EXAMPLE 7.15
Using Everett’s formula, evaluate f(30) if f(20) = 2854, f(28) = 3162,
£(36) = 7088, f(44) = 7984
Solution:
x—28
8

Taking the origin at x = 28, h = 8, we have p= _The central table

is
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x P y Ay Ay Ay
20 -1 2854
308
28 0 3162 3618
3926 — 6648
36 1 7088 — 3030
896
44 2 7984
At x=30,p=30_28=0.25andq=1—p=0.75
Everett’s formula is
9 12 9 19\, 9 o2
qlg~—1%) qlg —1")(q" —27)
Yy = Yo+ oAy + ) Ay, +
2 12 9 19y, 2 o2
plp~ —17) plp” —17)(p~ —27)
tpy g Ay + - Alyy+
0.75(0.75% — 1
—(0.75)+(3162) +%(3618) o
0.25(0.25% -1
+0.25 +(7080) +¥(—3030) +.
=2371.5-351.75+ 1770 + 94.69 = 3884 .4
Hence f(30)=23884.4
EXAMPLE 7.16
Given the table
x: 310 320 330 340 350 360
log x| 249136 | 2.50515 | 2.51851 | 2.53148 | 2.54407 | 2.55630
find the value of log 337.5 by Everett’s formula.
Solution:
x—330

Taking the origin at x, = 330 and h = 10, we have p=

10
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.. The central difference table is

P y Ay Ay Ay A'y Ay
-2 2.49136
0.01379
-1 2.50515 —0.00043
0.01336 0.00004
0 2.51881 —0.00039 —0.00003
0.01297 0.00001 0.00004
1 2.53148 —0.00038 0.00001
0.01259 0.00002
2 2.54407 —0.00036
0.01223
3 2.55630
To evaluate log 337.5, i.e., forx = 337.5, p= 337?% =0.75

(Asp > 0.5 and =0.75, Everett’s formula will be quite suitable)
Everett’s formula is

2_2)

qlq” =1 qlq” =1°)(¢* = 2°)

3! 5!
2 _12)(p2 =92
LAQ% PP =1 =27
3! 5!
0.25(0.0625-1)

Ay, + Aty g+

Yp =qYo t

+py; + Ay +-

=0.25% 251851 + X (—0.00039)

0.25(0.0625-1)(0.0625-4
1+ 025 120)( )x(—o.oooos)

0.75(0.5625 — 1

+0.75%x2.53148 + )X(—0.000SS)

+ 0.75(0.5625 —1)(0.5625 — 4
6
=0.62963 + 0.00002 — 0.0000002 + 1.89861 + 0.00002 + 0.0000001

= 2.52828 nearly.

) % (—0.00001)
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Exercises 7.2

1. Find they (25), given that y, =24, y,, =32, y,, = 35, y,, = 40, using Gauss
for ward difference formula.

2. Using Gauss’s forward formula, fin d a polynomial of degree four which
takes the following values of the function f (x):
X 1 2 3 4 5
f@:| 1] -1 1 1 |1

3. Using Gauss’s forward formula, evaluate f(3.75) from the table:

X 2.5 3.0 3.5 4.0 4.5 5.0
Y: | 24.145 | 22.043 | 20.225 | 18.644 | 17.262 | 16.047

4. From the following table:

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

et 2.7183 | 2.8577 | 3.0042 | 3.1582 | 3.3201 | 3.4903 | 3.6693
Find e'"", using Gauss forward formula.

5. Using Gauss’s backward formula, estimate the number of persons
earning wages between Rs. 60 and Rs. 70 from the following data:
Wages (Rs.): Below 40 | 40—60 60—80 80—100 | 100—120

No. of persons: 250 120 100 70 50
(in thousands)

6. Apply Gauss’s backward formula to find sin 45° from the following table:

0°: 20 30 40 50 60 70 80
sin 6: | 0.34202 | 0.502 | 0.64279 | 0.76604 | 0.86603 | 0.93969 | 0.98481

7. Using Stirling’s formula find ., given y, =512, y, =439, y, =346,
y,, =243, where y_represents the number of persons at age x years in a

life table.
8. The pressure p of wind corresponding to velocity v is given by the fol-
lowing data. Estimate p when v = 25.
v Vi 10 20 30 40
: 1.1 2 44 7.9




10.

11.

12.

13.

14.

15.

16.
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. Use Stirling’s formula to evaluate f(1.22), given

X: 1.0 1.1 1.2 1.3 1.4
fix):| 0.841 0.891 0.932 0.963 0.985

Calculate the value of f (1.5) using Bessels” interpolation formula, from
the table

X: 0 1 2 3
™ | 3 6 12 15

Use Bessel’s formula to obtain ., given y, =24, y, =32, 1y, = 35,
Y, = 40.
Employ Bessel’s formula to find the value of F atx = 1.95, given that

X 1.7 1.8 1.9 2.0 2.1 2.2 2.3
F: 2.979 | 3.144 | 3.283 | 3.391 | 3.463 | 3.997 | 4.491

Which other interpolation formula can be used here? Which is more ap-
propriate? Give reasons.

From the following table:

X 20 25 30 35 40
flx): | 11.4699 | 12.7834 | 13.7648 | 14.4982 | 15.0463

Find f(34) using Everett’s formula.

Apply Everett’s formula to obtain u
u,, = 3544, u_ = 3992,

32

given u, = 2854, u,, = 3162,

25’ > 24

Given the table:
x: 310 320 330 340 350 360
log X: 24914 | 2.5052 | 2.5185 | 2.5315 | 2.5441 | 2.5563

Find the value of log 337.5 by Gauss, Stirling, Bessel, and Everett’s
formulae.

Ify,y, v, v, y, Y, (v, being constant) are given, prove that

_3(a—c)+25(c—b) , ¢ where a=yy+ys, b=y, +y,c=y, +ys.
a2 = 256 3

[HINT: Use Bessel’s formula taking p = 1/2.]
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7.11 Interpolation with Unequal Intervals

The various interpolation formulae derived so far possess the disadvan-
tage of being applicable only to equally spaced values of the argument. It is,
therefore, desirable to develop interpolation formulae for unequally spaced
values of x. Now we shall study two such formulae:

(i) Lagrange’s interpolation formula

(it) Newton’s general interpolation formula with divided differences.

7.12 Lagrange’s Interpolation Formula

If y = f(x) takes the value y, y ......., y, corresponding to x =x,x -, X ,
then
Fl)= (x =2 )(x—x9)--(x—2x,) (x—xp)(x—xy) - (x—x,)
T =) — ) =) T (= g )y — )y =)

(1)

(x—x)x—xy)--(x—2x,y)
(xn - x())(xn - xl>' : '(xn - xn—l)
This is known as Lagrange’s interpolation formula for unequal inter-
vals.

4.+

n

Proof: Let y = f(x) be a function which takes the values (x, y,), (x, 1)+,
(xn’ y ). Since there are n + 1 pairs of values of x and ¢/, we can represent f(x)
by a polynomial in x of degree n. Let this polynomial be of the form

y=fx)=ay(x—x)(x—xy)...(x —x,) +a;(x —x)(x —x5)-(x —x,)
Fag(x —xp)x —x )(x —x ) (x—x,)+ +a, (0 —x)(x —xp) (v —x,) (2)
Putting x =x, y =y, in (2), we get
Yo = ap(xg —x )X —xy)-+(x —x,)
ay =Yy /[<x_x1><x_xz)"'<x_xn>:|
Similarly putting x =x,, y =y, in (2), we have
ay =y /[ —x)(x) —xg)-+(x) — )]
Proceeding the same way, we find a,, a....... a

Substituting the values of ¢, a,,---, @ in (2), we get (1)
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Obs. Lagrange’s interpolation formula (1) for n points is a
polynomial of degree (n — 1) which is known as the Lagrangian
polynomial and is very simple to implement on a computer.

NOTE

This formula can also be used to split the given function into

partial fractions.

For on dividing both sides of (1) by (x —xy)(x —x,)---(x —x,,), we

get

flx) _ Yo . 1
(x—x)x—x)(x=x,) (xg—x)(xg —x5)(xp—2,) (x—2xp)
Y 1
+(x1 —x)(x; —xg) (6, —x,) (x—2xp) T
Y, 1
(x, = xo)x, =x;)-+(x, —x,) (x—x,)

+

EXAMPLE 7.17

Given the values

X: 5 7 11 13 17
Sx): 150 392 1452 | 2366 | 5202

evaluate f(9), using Lagrange’s formula

Solution:

(i) Herex,=5,x,=7,x,=11,x,=13,x, =17

and y, =150, y, =392, y,= 1452, y, = 2366, y, = 5202.

Putting x = 9 and substituting the above values in Lagrange’s formula,
we get

(9-T)9-11)9—13)(9—17) (9=35)(9—11)(9—13)(9—17)
= s o611 P T s T— T 1) <2
(9= 5)9—T)(9—13)(9—17)
1=5)11—T11-13)11—17) <1432
9=5)9—=T)9—11(9—17)
13-513-T)(13-1)(13—17) 200
O=HO-DO-100-13
N

50 3136 3872 2366 578
=——+ + + +—=810
3 15 3 3 5
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EXAMPLE 7.18

Find the polynomial f (x) by using Lagrange’s formula and hence find
£(3) for

X: 0 1 2 5
f: | 2 3 12 | 147
Solution:

Here x,=0,x, =1,x,=2,x2,=5
and y,=2,y,=3,y,=12,y=147.

Lagrange’s formula is

_ (=2 )(x = x9 )(x — x5) (x = 2x9)(x —x5)(x — x3)
™ g =)t =)t — ) 0 () — g )y =)y — )
(x = xp)(x — 2 )(x — x3) (2 = x ) (x — 2y )(x — x5)
(k3 — o)t - x1><x2—x3>~’/2 (5 — )0 — )5 — 1)
= Da=2a=5) . (x—0)x—2)(x—5)
=~ 0-D0-20-52 o2 "
(x=0)(x—1)(x—5) (x—0)(x—1)(x—2)
2—0E-DE@=5 j2)+ G-0G-15-2 """

Hence f(x)=x3+x2—x+2
f(3)=27+9-3+2=35

EXAMPLE 7.19

A curve passes through the points (0, 18), (1, 10), (3, —18) and (6, 90).
Find the slope of the curve atx = 2.

Solution:
Here x, =0,x; =1,x, =3,x; =6 and y, =18,y, =10,y, =-18,y; =90.

Since the values of x are unequally spaced, we use the Lagrange’s for-

mula:
_ (=) —xp)(x — x3) 4 (x —xp)(x — x5 )(x — x3)
(k0 =)0 =) (¥ =) 70 () = 30) (¥, = x)(, —53) "
4 (x—xo)(x xp)(x —x3) (x —xp)(x — 2y )(x — x5
( Xy — xo)(xg )(12_15',) 2 (xs— xo)(xg— x1)<x3_x2> 5
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x—1)(x —3)(x —6) (x=0)(x—=3)(x—6
B Eo ;Eo 33?0 6% - (1- O;E ;El —6>) (10
S e
= (=2 +102% — 27x+18) +(x® — 92* +18x)
+(x® — 722 +6x) +(x° — 42 +3x)
ie, y=2x"-10x" +18
Thus the slope of the curve atx=2= (fl_Z)
= (62> —20x),_, =—16 o
EXAMPLE 7.20
Using Lagrange’s formula, express the function B¢ +at1 as
a sum of partial fractions. (x=1)(x—-2)(x=3)

Solution:
Let us evaluate y =3x*+x + 1 forx =1, x=2andx =3

These values are

X: x,=1 | x =2 ,=3

Vi Y,=5 |y, =15|y,=31
Lagrange’s formula is

_ =) —x,) (oxp)le—xy) o xp)e—)
(g =21 (%9 —25) Jo (1 = x0)(x; —25) h (xy = xp)(xy — xy) s
Substituting the above values, we get
(x 2)(x (x—=1)(x—=3) x—1D(kx—-2)
T 1—21-3) CE @-1)E2-3 (15)+<3—1><3—2>(31)

=25x-2)(x-3)-15(x-1) (x-3)+155(x-1) (x - 2)

25(x—=2)(x—=3)—15(x—1) (x—3)+
Thus 3% +x+1 _ 155 (x—1) (x—2)
(x = 1)(x —2)(x = 3) (x=1)(x—=2)(x—3)
25 15 4 15.5

x—1 x—2 «x-3
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EXAMPLE 7.21

Find the missing term in the following table using interpolation:
x: 0 1 2 3 4
y: 1 3 9 81

Solution:
Since the given data is unevenly spaced, therefore we use Lagrange’s

interpolation formula:

_ (o—x)(r = xp)(x — x3) (x — xp)(x — x5 )(x —x3)
(g =21 )(xg =23 )(xg —x3) ’ (7 =29y = 29) () —x3) !
(x = xp)(x = 2 )(x — x3) (2 = g )(x — 2y )(x — x5)
Yo Ys

= 1)1 — ) =) 2 (— )t — 1) — 1)

Here we have x, =0 x, =1 x,=2 x;=4
yo=1 y, =3 y,=9 y;=81

(x=D(x—2)(x—4) (x=0)(x—2)(x—4)
Y= 0=Do- 2)(0—4)(1)+ 1—0)(1—2)(1—4)(3)
(x=0)(x —1)(x—4) (x=0)(x—=1)(x—2)
*e—oe-ne=2 u—gu-na=2 "’
When x = 3, then
Lm0 gy, FOTDO-00),
+W(81)_l_3+g+§:31
24 4 2 o4

Hence the missing term for x = 3 is y = 31.

EXAMPLE 7.22
Find the distance moved by a particle and its acceleration at the end of
4 seconds, if the time verses velocity data is as follows:

t: 0 1 3 4
v 21 15 12 10
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Solution:
Since the values of ¢ are not equispaced, we use Lagrange’s formula:
(t—tl)(t—tz)(t—tS) . (t =ty )t =ty ) —13) .
(to )( )( ) 0 ( _to>(t1 _t2)<t1 _ts) !
(t_t0><t_t1>< _t3> (t_t0)<t t1)<t_t3)
+ +
(b —to)lty —ta)lt =) 2 (1, —to)(t, —to)(t, — 1) °

1
ie., v =E(—5t3 +38t2 —105' +252)

. (o _ [ =3 2 ¢ s
.. Distance moved s—fo odt—fo (=5¢% +38¢* — 105" +252) |: u—dt:|

4
38t°  105¢7 1057 o Qt)

0

3
1 -320+ 24332 -840+ 1008) 54.9

2
dv
d

1( 5t
=—|-——+=
12 4

o
Also acceleration = .

= é(— 15t2 + 76t —105+0)
1
Hence acceleration at (t =4)= 5(_ 15+ +76(4)—105) =—

Exercises 7.3

1. Use Lagrange’s interpolation formula to find the value of y when x = 10,
if the following values of x and y are given:

X: 5 6 9 11
Vv 12 13 14 16

2. The following table gives the viscosity of oil as a function of tempera-
ture. Use Lagrange’s formula to find the viscosity of oil at a temperature
of 140°.

Temp®: 110 130 160 190
Viscosity: 10.8 8.1 5.5 4.8




10.

11.

12.

. Given log, 654 = 2.8156, log,, 658 = 2.8182, log,, 659 = 2.8189,

log, 661 =2.8202, find by using Lagrange’s formula, the value of
log,, 656.

. The following are the measurements 7' made on a curve recorded by

oscilograph representing a change of current I due to a change in the
conditions of an electric current.

T: 1.2 2.0 2.5 3.0
I: 1.36 | 0.58 | 034 | 0.20

Using Lagrange’s formula, find I and T = 1.6.

. Using Lagrange’s interpolation, calculate the profit in the year 2000

from the following data:

Year: 1997 1999 2001 2002
Profit in Lakhs of Rs: 43 65 159 248

. Use Lagrange’s formula to find thee form of f(x), given

x 0 2 3 6
Sflx): 648 704 729 | 792

Afy(1)=-3,1(3)=9, y(4) =30, y(6) = 132, fin d the Lagrange’s interpola-

tion polynomial that takes the same values as y at the given point s.

. Given f{0) = — 18, (1) = 0, 3) = 0, Ai5) = — 248, f(6) = 0, (9) = 13104,
find f{x).
. Find the missing term in the following table using interpolation
Xt 1 2 4 5 6
y: 14 15 5 ... 9
2 - —
Using Lagrange’s formula, express the function % as a sum
of partial fractions. x =2 —x+2
. > : 2 +6x—1
Using Lagrange’s formula, express the function as

—1)(x—4)(x—6
a sum of partial fractions. (x )(‘ )(x—6)

[Hint. Tabulate the values of f{x) =x*+ 6x— 1 forx=—1, 1, 4, 6 and apply
Lagrange’s formula.]

Using Lagrange’s formula, prove that

1 11 1
1= 500 = g 0+ 0) =500}

[Hint. Here x,=—-3,x,=—1,x,=1,x,=3/]
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7.13 Divided Differences

The Lagrange’s formula has the drawback that if another interpola-
tion value were inserted, then the interpolation coefficients are required
to be recalculated. This labor of recomputing the interpolation coefficients
is saved by using Newton’s general interpolation formula which employs
what are called “divided differences.” Before deriving this formula, we
shall first define these differences.

If (x0,40),(x1,41),(x3,y2), - be given points, then the first divided dif-

ference for the arguments x, x, is defined by the relation [x, x,] or
_YN 7Y
Ayo =
X Xp — Xy
Similarly [x,, x,] or Ay, =270 d [, x,] or Ay, = Ys ~ Yo
) *2 Yo =X ' X3 X3 — Xy
The second divided difference for x, x , x, is defined as
s lx,x]=[xg,x
T A
XXy Xg — Xy

The third divided difference forx, x, x,, x, is defined as

0t e s
[xl,xg,xg]_[xoaxl,xz]

. 3 —
[x,, x,,x,,x,] or Ay = —
X1,X9,X3 Xy — Xy

Properties of Divided Differences

I The divided differences are symmetrical in their arguments, i.e,. inde-
pendent of the order of the arguments. For it is easy to write

Yo

[xo’xl]: - +L

=[x1,x()]’[x(),x1>x2]

- Yo Y Yo
(xo _xl)(x() _x2> " (xl _xo)<x1 _x2> i (xz _x0>(x2 _x1>

= [xL X, x,] or [xz x,, x,] and so on

II. The nth divided differences of a polynomial of the nth degree are con-
stant.

Let the arguments be equally spaced so that

X, —x,=x,-x =---=x —x _=h.Then
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- A
S e
‘ _[xl,xg]—[xo—xl]_l Ay, Ay,
[xom1%: 1= Xy — X, "o h h
. 1
=2!h2 Agyoandmgeneral, [0, X) s Xgseenens x,]1= ‘h” Ay,

If the tabulated function is a nth degree polynomial, then A"y, will be
constant. Hence the nth divided differences will also be constant

IIL. The divided difference operator A is linear
i.e., A{aux + bvx} =alAu, +bAv,

(aux +bo, )—(aux +bv, )
We have A(au + bU ) - ! 1 0 0

X

X =X
u,. —u. v, —0U,
x X, x X,
=a{ ] 0}+b{ ] }
xl_xo xl_xo
=alAu, +bAu

Rl Xo

In general A(a“x + mb) =aAu, +bAv, This property is also true for
higher order differences.

7.14 Newton’s Divided Difference Formula

Let yo, Y-y, be the values of y = f(x) corresponding to the arguments
Xy, %+, % . Then from the definition of divided differences, we have

[x xo] Yo

X=Xy
So that y=yo +(x~ ’Co)[‘C %]
Again [on ] otodzlon]
X—x

which gives [x,x0]= [xg, %, ]+ (x = 2 )[x, 5,3, ]
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Substituting this value of [x, x ] in (1), we get
y =1y +(x—x)[xg, 27 ]+ (0 = xp) (0 — 2 ) [, %9, %, ] 2)

[v.xg 2p ] = [xg s |

x_xz

Also [x,%0,%;,%, ] =

which gives [x,xq, % 1= [xg, 27, %5 ]+ (x = x5)[x, %9, 27,35 ]
Substituting this value of [x, x, x,] in (2), we obtain
Yy =yo + (x —x¢)[xg, 2 ]+ (v = x0)(x = 21 ), 1, %5 ]
+(or — w9 )(x — 20 )(x = x09) [, 20, 21, x5 |
Proceeding in this manner, we get

y=1yo +(x—x9)[xg, 2] +(x—x)(x — 2,20, %]
+<x_x0)(x_xl)“'(x_xn>[x’x0,x1,“'x,,]
F(x — x5 ) (2 — 20 ) (2 — 209 [, X, 27, g -+ 3)

which is called Newton’s general interpolation formula with divided
differences.

7.15 Relation Between Divided and Forward Differences

If (x9,Y0).(x1,41),(x5,45), -+ be the given points, then

[xo 5 xl] = u
Xy — Xy
Also Ay, =1, —y,
Ifx), x,, x,,- -+ are equispaced, then x, —x, = h, so that
_ Ay,
[,\0’ Xy ] = h
A
Similarly — [x;,x,]= %
Now [xo,xl,x2]=w
Xy — Xy
B M [ Xy —Xg = 2h:|
2h
_ Ay — Ay
2h*
A%
Thus  [x0,%p,%5]= Yo

21h?
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Ath
21h?

A2y, 2R = A2y, 2R Ay, — A2

Similarly [xy,x;,x,]=

AS?/O
313
B Any()

ol
This is the relation between divided and forward differences.

Thus [xy,x,,%5,%5]=

In general, [x),x, -x,]

EXAMPLE 7.23
Given the values

X 5 7 11 13 17
f(x) 150 392 1452 2366 5202

evaluate f(9), using Newton’s divided difference formula

Solution:
The divided differences table is
x y Ay A%y A%y
= 150 302-150 _
7-5
7 392 — 1
265 —121 — o4
11-5
1452—392=265 32—24=1
11-7 13—-5
11 1452 -
457 — 265 —39
13—-7
2366 — 1452 — 457 492 — 32 -1
13—11 17-7
13 2366 -
709 — 457 — 49
17—11
5202 — 2366 —709
17-13
17 5202
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Taking x = 9 in the Newton’s divided difference formula, we obtain
f(9) =150+ (9-5)x 121+ (9-5)(9-7) x 24+ (9-5)(9-7)(9-11) x 1
=150 + 484 + 192 — 16 = 810.
EXAMPLE 7.24

Using Newton’s divided differences formula, evaluate f(8) and f(15)

given:

X: 4 5 7 10 11 13
y Zf(x) 48 100 294 900 1210 | 2028
Solution:
The divided differences table is
x Sx) Ay A%y Ay Aty
4 48 0
52
5 100 15
97 1
7 294 21 0
202 1
10 900 27 0
310 1
11 1210 33
409
13 2028

Taking x = 8 in the Newton’s divided difference formula, we obtain
f(8)=48+(8-4)52+(8-4)(8-5)15+(8-4)(8-5)(8-7)1

=448.
Similarly f(15) = 3150.

EXAMPLE 7.25

Determine f(x) as a polynomial in x for the following data:

Xx: —4

: -1 0 2 5
y=flx): 1245

33 1335
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Solution:
The divided differences table is

X fx) Ay A% Ay Aty
—4 1245
—404
-1 33 94
- 28 - 14
0 5 10 3
2 13
2 9 88
442
5 1335

Applying Newton’s divided difference formula
fx)= flxy) +(x—x0)xg,x;] +(x—xp)(x— 22,27, x5] +--
=1245+ (x +4) (—404) + (x +4) (x + 1) (94)
+x+4)x+1)x—-0)(=14) + (x +4)(x + Dx(x — 2)(3)
=3t —5x?+6x>—14x + 5

EXAMPLE 7.26

Using Newton’s divided difference formula, find the missing value
from the table:

x: 1 2 4 5
y: 14 15 5

Solution:
The divided difference table is

y Ay A%y Ay
1 14
15—14=1
2—1
2 15 “5_
5-1_,
4-1
5-15_ . T/442 3
4-2 6—1 4
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x y Ay A%y Ay
4 5 5 7
6—2 4
9-6_,
6—4
6 9

Newton’s divided difference formula is
y =1, +(x—xy)[xg, 0, ]+ (0 — x9)(x — 27 )%, 27,25 ]
F(x — 2 (x — 27 )(x — x9) [, X7, X9, x5 ] -+ 3
=ld+a-DM+E-1) -2 2)+x-1) (x-2) (x-4)
Putting x = 5, we get
y(5)=14+4+(4) (3) (-2)+(4) (3) (1)% =3.

Hence missing value is 3

Exercises 7.4

1

. Find the third divided difference with arguments 2, 4, 9, 10 of the func-

tion f (x) =x°- 2x.

. Obtain the Newton ’s divided difference interpolating polynomial and

hence find f(6)

x: 3 7 9 10
f@): | 160 | 120 72 63

. Using Newton’s divided differences interpolation, find u(3), given that

u(l)=-26,u(2) =12, u(4) =256, u(6) = 844.

. A thermocouple gives the following output for rise in temperature

Tem p (°C) 0 10 20 30 40 50
Output (mV) | 0.0 0.4 0.8 1.2 1.6 2.0

Find the output of thermocouple for 37°C temperature using Newton’s
divided difference formula.

. Using Newton ’s divided difference interpolation, find the polynomial of
the given data:
X: -1 0 1 3

() 2 1 0 ~1
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6. For the following table, find f(x) a s a polynomial in x using Newton’s
divided difference formula:
x: 5 6 9 11
fa: | 12 | 13| 14 | 16

7. Using the following data, find f(x) a s a polynomial in x:

x: -1 0 3 6 7
Sflx): 3 -6 39 822 1611
8. The observed values of a function are respectively 168, 120, 72, and 63

at the four positions 3, 7, 9, and 10 of the independent variable. What is
the best estimate value of the function at the position 6?

9. Find the equation of the cubic curve which passes through the point s
(4,-43),(7,83), (9, 327), and (12, 1053).

10. Find the missing term in the following table using Newton’s divided dif-
ference formula.

Xt 0 1 2 3 4

y: 1 3 9 .| s

7.16 Hermite’s Interpolation Formula

This formula is similar to the Lagrange’s interpolation formula. In La-
grange’s method, the interpolating polynomial P(x) agrees with y(x) at the
points X, x ,......, x_, whereas in

Hermite’s method P(x) and y(x) as well as P’(x) and y’(x) coincide at the
(n + 1) points, i.e.,

P(x)=y(x)and P’(x)=¢'(x);i=0,1,....n (1)

As there are 2(n + 1) conditions in (1), (2n + 2) coefficients are to be
determined.

Therefore P(x) is a polynomial of degree (2n + 1).

We assume that P(x) is expressible in the form

EU (r)y +2V(r)y (2)

where U, (x) and V., (x) are polynomials in x of degree (2n + 1). These are to
be determined. Using the conditions (1), we get
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0 wheni# j; Vi(x;)=0 forall i
Ux;)= o
B 1 wheni=j

0 when i # j;
Ui(x ) Oforalle(])
1 wheni=j

We now write

U; (x)= A, (x)[Li (x):l2 Vi (x)= B, (x)[Li (3\)]2
(x—xo)(x—xl)---(x i) (x =) (2 —x,)
(x'_xo)(x'_xl)'”(i 11)( 1+1) (x.—x

Since [L (x)]* is of degree 2n and U (x), V (x) are of degree (2n + 1),
therefore A (x) and Bi(x) are both linear functions

where L;(x)=

. We can write U(x) = (a,+bx) [L(x)]? ] @
and V. (x) = (c, +dx)[L, (x)]?
Using conditions (3) in (4), we geta, +bx=1,¢, +dx=0
} )
and b +2L/(x)=0,d =1
Solving these equations, we obtain
b,=-2L{(x;),a; =1+ 2x,L{(x;) (6)
d=1landc,=-x,

Now putting the above values in (4), we get
U,(x) =[1+2x,L;(x;) - 2xL{(x)][ L, (x)]
[1—2(x — x,) L (x )I[L; (x) P
andV, (v) = (x —x) [L,(0)]?
Finally substituting U (x) and V (x) in (2), we obtain

p(x)=2|:1—2(x—x) [Lz +E =) [Lix)Py'x)  (7)
i=0
This is the required Hermite’s mterpolatzon formula which is some-
times known as osculating interpolation formula.

NOTE Obs. In comparison to Lagrange’s interpolation formula, the
Hermite interpolation formula is computationally uneconomical
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EXAMPLE 7.27

For the following data:

x: Sfx) fx)
0.5 4 - 16
1 1 -2
Find the Hermite interpolating polynomial.
Solution:
We havex,=0.5,x, =1, y(x)) =4, y(x) =1y (x) =-16,y'(x,) = -2

_ (x—x) _x—1
AISO Li<x0) - (xl _xo) - _05

=—2(x—1);L](x,) =—2

(x—x) _x—05

Litn)= (x; —x0) S 1-05

=2 —L;L)(x,) =
Hermite’s interpolation formula in this case, is
P (x) = [1 - 2(x — )L/ (x0)][L(xo )P () + (x = 0 )[Llxg ) Py (x, )
H1-2(x—x )L’(xl)][L(xl )Pyl ) + (v —x)[Lx)Fy/'(x))
2(x-DJ (-16)

M+ (x-1)2x-1)3(-2)

=[1-2(x-0.5)(2)][-2(x - D) + (x - 0.5)[
H1-2(x-1)(2))2x -1)
=161 +4(x— 0.5](x> —2x+1) —164(x - 0.5)(x* ~2x +1)
H1 —4(x—1)]4x* —4x+1) —2(x—1)(42* - 4x+1)

Hence P(x)=-24x> +324x% —130x + 23

EXAMPLE 7.28

Apply Hermite’s formula to interpolate for sin (1.05) from the following
data:

X sin x CoS X
1.00 0.84147 0.54030
1.10 0.89121 0.45360
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Solution:

Here y(x) = sin x and y’(x) = cos x

so that y(x)) = 0.84147, y'(x,) = 0.54030, y(x ) = 0.89121,
y'(x,) = 0.45360

X—X
Also L,.(x(,>=ﬁ=11—10x,u(%)=—10
i 0
Li(xl)—%=—10+10x,u(xl)= 10
i 0

Hence the Hermite’s interpolation formula in this case is
P(x) =[1 - 2(x — x)L'(x)1[L(x) T y(xg) + (x — x0)[ L)y ()
H1 - 200 — 2 )L (e)JIL () Py ey ) + =)L) Py ()

=[1-2(x = 1)(-10)](11 - 10x)*(0.84147) + (x — 1)(~11 + 10x)* (0.54030)
H1-2(x—1.1)(10)](-10 +10x)?(0.89121)
+x—1.1)(=10 +10x)*(0.4536)

Putting x = 1.05 in P(x), we get
sin(1.05) =1-2(0.05)(~10)[-10(1.05) +11]*(0.84147)
+(0.05)(~0.5)* (0.54030) +[1 — 2(0.05)(10)](0.5)” x (0.89121)
+(=0.05)(0.5)*(0.4536) = 0.86742

EXAMPLE 7.29

Determine the Hermite polynomial of degree 4 which fits the following
data:

X: 0 1
y(x):
y'(x): 0 0
Solution:

Herex,=0,x,=1,x,=2,y(x) =0, y(x) =1, y(x,) =0 and yy'(x ) = 0,
y'(x) =0,y (x2)=0.
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Hermite’s formula in this case is
P(x) =1 - 2L§ (x))(x — x0 ][ Lo () Pyl ) + (x = x [ Lo (1) Py ()
H1— 2L (x))(x — x)IILI)F X y(xy) + (x — 2 )LL) Py (x))
H1 = 2L (x5 )(x — 2x5)]X [ Ly (1) F () + (x = x5 )[ Ly () Py (x5
Substituting the above values in P(x), we get
P(x)=[1-2L{(x,)(x - D][L, (x)F

(x—xo)(x—xz)

Where L, (x)= —x )(x1 —x2) =9y —22 and L, '(x1)= (2—296)1,_1 =0
Hence px) =L, ()fF = (2x— 22

EXAMPLE 7.30
Using Hermite’s intropolation, find the value of f(— 0.5) from the fol-
lowing
x: -1 0
|1 1
') | -5 1
Solution:

Herex,=—1,x,=0,x,=1;flx)) =1, flx)) = 1, flx,) =3 and f "(x ) = 5,
fa)=11(,)="7

Hermite’s formula in this case is

P(x)=U, fxg) + Vo f(xg) + U, fx) + Vi f'x) +Us flx) + Vo f'(x)  (0)
where U =[1- 2L (x,)(x — 0 )I[Ly (), Vi = (x = x [ Lo (0)]
Uy =[1 —2Lj(x))x —x)IL ()P V, = (v —x))[L; (x) P
Uy = (1= 2L (x,)(x = 251 Ly (x5) 2, Vi = (x = 2, )[ Ly (0)F
_ (x—x)(x—xy) =x(x—1) 1

(xg — 2, )(xg — xp) 2 ,L(’)(x)=x—§

and  Lg(x)

) e
LI(X)_(xl_xo)(xl_xz)_l ¥ hbo =R

(x—xp)x—x;) _xlx+1) 1

(g = X0 )(xg —27) )

L2<x> =
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Substituting the values of L, Ly; Ly, L; and Ly, L), we get

Uy =[14+3(x+1)] #=i (3% —2x* — 50 + 402
Vi =(x+1) @=i (x5 —xt =4t +x2)
U=x'-2+1V1=2"-2"+x
U, =i (3x5 —2x* —5x° +4x2) V, =i (x5 —xt=2? +x2)

Substituting the values of U, Vo, U, V; U, V,in (i), we get
P(x)=i (3x5 —2xt — 553 +4x2)(1)+i (x5 —xt—a3 +x2)

+at — 2 + D)+ (x° =22 +0)(1)

1 p 1 .
_Z(st —2xt =543 +4x2)(3)+z( Pt = +2)()

=" —x® +a+1
Hence f(-0.5)=2(-0.5)* —(-0.5)* +(-0.5)+1=0.375

Exercises 7.5

1. Find the Hermite’s polynomial which fits the following data:

X: 0 1 2
Sflx): 1 3 21
fx): 0 3 36

2. A switching path between parallel rail road tracks is to be a cubic poly-
nomial joining positions (0, 0) and (4, 2) and tangents to the lines y =0
and y = 2. Using Hermite’s method, find the polynomial, given:

’

X Y Y
0 0 0
4 2 0
3. Apply Herm it e’s formula estimate the values of log 3.2 from the follow-
ing data:
x y=logx | y'=1x
3.0 1.0986 0.3333
3.5 1.2528 0.2857
4.0 1.3863 0.2500
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7.17 Spline Interpolation

In the interpolation methods so far explained, a single polynomial has
been fitted to the tabulated points. If the given set of points belong to the
polynomial, then this method works well, otherwise the results are rough
approximations only. If we draw lines through every two closest points, the
resulting graph will not be smooth. Similarly we may draw a quadratic curve
through points A, A | and another quadratic curve through A, |, A, such
that the slopes of the two quadratic curves match at A | | (Fig. 7.1). The
resulting curve looks better but is not quite smooth. We can ensure this
by drawing a cubic curve through A , A,  and another cubic through A _ |,
A, su ch that the slopes and curvatures of the two curves match at A _ .
Such a curve is called a cubic spline. We may use polynomials of higher
order but the resulting graph is not better. As such, cubic splines are com-
monly used. This technique of “spline-fitting” is of recent origin and has

important applications.

FIGURE 7.1

Cubic spline
Consider the problem of interpolating between the data points (x, y,),
(x,,4,),---(x,, y ) by means of spline fitting.

Then the cubic spline f(x) is such that

(i) flx) is a linear polynomial outside the interval (x, x ),
(it) f(x) is a cubic polynomial in each of the subintervals,
(iii) f (x) and f”(x) are continuous at each point.

Since f(x) is cubic in each of the subintervals f”(x) shall be linear.
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- Taking equally-spaced values of x so that x, | —x, = h, we can write

£ = [ =) 7C5) + =) (500

Integrating twice, we have

(x—x;)

JO=3 e ey

The constants of integration a, b, are determined by substituting the
values of yy = f(x) at x, and x, . Thus,

S )]ai (xi+1 - x) +b,(x—x;) (1)

1 n o, 1 R,
a; =E|:yi _3_! <xi>i| and b, =z[?/i+1 _yf <xi+1>:|

Substituting the values of ai, bi and writing /*(x,) = M,, (1) takes the form

i+l

o h2 X —x; h*
it (% ——Mi)+—l(yi+1 _FMHI) 2)

_(x[+1_x)3 (x_xi)3
Joy== g Mt M

h 6 h

2 2
. Xpy — X xX—X; h 1
"'f(l"):_( th ) Mz"'( 6h) Mi+1_E(Miﬂ_Mi)""E(?/zH_yz)

To impose the condition of continuity of f(x), we get
f(x—&)=f(x+€e)ase >0

h 1 h 1
. €<2Mi +Mi—1)+z<yi ~ Y1) =_€<2Mi +Mi+1)+ﬁ<yi+l ~y;)
6
M, +4M; + M, =h_2<?/i71 —2y; + Y )i=1 ton -1 (3)
Now since the graph is linear for x < x, and x > x , we have
M,=0,M =0 (4)

(3) and (4) give (n + 1) equations in (n + 1) unknowns M, (i =0, 1,--- n)
which can be solved. Substituting the value of M, in (2) gives the concerned
cubic spline.
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EXAMPLE 7.31

Obtain the cubic spline for the following data

X 0 1 2
y: 2 -6 -8

Solution:

Since the points are equispaced with h = 1 and n = 3, the cubic spline
can be determined from M, +4M, + M, =6 (y, —2y, +y, ), i=1,2.

M,+4M +M,=6 (y,— 2y, +y,)

M, +4M,+M, =6 (y, -2y, +y,)

ie,  AM,+M, =36 M, +4M,="T2 [ M, =0, M,=0]

Solving these, we get M, =4.8, M, = 16.8.

Now the cubic spline in (x, <x <x, + 1) is
1 1 1
109G =) Mo e Mo (=) 3= M,
1
+(x _xi) Yir1 =My

6
Taking i = 0 in (A) the cubic spline in (0 <x < 1) is

) =é<1_ x)3(0)+%(x _0)° (4.8) + (1 x)(x — 0) ++[6 —%(4.8)
=0.8*-88x+2 (0<x<1)
Taking i = 1 in (A), the cubic spline in (1 <x <2)is

7(x) =%(2 —x)’(4.8) +é(x ~1’(16.8)+(2—x)[- 6 —%(4.8)]
+(x D[ 8-1(16.8)]
=23 - 5.84x2 - 1.68x + 0.8
Taking i = 2 in (A), the cubic spline in (2 <x < 3) is

f(x)=é(3 —x)3(4.8)+é(x—2)3(0)+(3—x)[— 8 —1(16.8)]

+Hx-2)[2-1(2)]
=~ 0.8% + 2.642° + 9.68x — 14.8
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EXAMPLE 7.32

The following values of x and y are given:

x: 1 2 3 4
y: 1 2 5 11

Find the cubic splines and evaluate y(1.5) and ¢’(3).

Solution:

Since the points are equispaced with & = 1 and n = 3, the cubic splines
can be obtained from

M _+4M +M, 6<911 2y +y, ) i=12.

M, +4M, +M = 6(y, +y2)

M, +4M,+ M, =6(y, +,)
ie., 4M, + M, =12, M1 + 4M2 =18 [+ M,=0,M,=0]
which give, M =2 M, =4.

Now the cubic spline in (x, <x <x, ) is

f(x)=%(xi+l_x)3Mi+é( ) M1+1+( z+1_x)[yi__Mij

1
+(x_xz')(%'+1 _EMHI) (A)
Thus, taking i =0,i =1, i =21in (A), the cubic splines are

%(x?’ —3x2 +5x)1 <x<2

|
flx)= g(x‘)’ —3x> +5x)2 <x<3

VI
(=207 —24% ~T6x+ 81)3<x=<4

y(1.5) =f(1.5) = 11/8

EXAMPLE 7.33

Find the cubic spline interpolation for the data:

x 1 2 3 4 5
f(x): 1 0 1 0 1
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Solution:

Since the points are equispaced with h = 1, n = 4, the cubic spline can
be found by means of

M, +4M, +M,,, =6(y, , — 20, +y0,),i=1,23
My +4M, +M, =6(y, -2y, +1,) =12
M, +4M, + M5 =6(y, — 2y, +y;)=-12
M, +4M;+ M, =6(y, —2y; +y,) =12
Since M,=y",=0and M, =y",=0
AM, + M, =12:M, +4M, + M, = —12;M, + 4M, =12
Solving these equations, we get M, = 30/7, M, = — 36/7, M, = 30/7

Now the cubic spline in (xi <x <xi+l) is

1 : 1 :
f) =€(xi+1 _x)S M, +E(x_xi )3 M.y +(xi+1 —x)

1 1
(yi _gMi )"' (x_xi)(yiﬂ _ng j (A)
Taking i = 0, in (A), the cubic spline in (1 <x <2) is
1 1
y= E[(xl - x)3 M, +(x— xo)3 Ml] +(x, - x)(y() _EMO)

+=m){n —

=2 [@= 0" (0)+(x=x) B0/ 7] +(2- x)(l -5 )

1(30
+(x—1]0-=|=
« )( 6(7))
ie., y=071x"-2.140+ 0420 +2 (1 <x<2)

Taking i = 1 in (A), the cubic spline in (2 <x < 3) is

T )
+(x—2)(1—é(—%]j
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ie., y=-157x%+11.57x* - 27x +20.28. (2<x<3)
Takingi =2in (A), the cubic spline in (3 <x <4) is

L

—

o]
-1

ie., y=157x"-16.71 x>+ 57.86x — 64.57 (3<x<4)
Taking i = 3 in (A), the cubic spline in (4 <x < 5) is

:_(1_x)3( )+(5—x)3(——)+(x H()

ie., y=—0.71x" + 2.14x> — 0.43x — 6.86. (4<x<5)

Exercises 7.6

1. Find the cubic splines for the following table of values:

x: 1 2 3
y: -6 -1 16
Hence evaluate (1.5) and y’(2).

2. The following values of x and y are given:

X 1 2 3 4
y: 1 5 1| s
Usin g cubic spline, show that
(i) y(1.5) = 2.575 (it) y'(3) = 2.067.
3. Find the cubic spline corresponding to the interval [2,3] from the
following table:
x: 1 2 3 4 5
y: 30 15 32 18 25

Hence compute (i) y(2.5) and (ii) y'(3).

7.18 Double Interpolation

So far, we have derived interpolation formulae to approximate a func-
tion of a single variable. In the case of functions, of two variables, we inter-
polate with respect to the first variable keeping the other variable constant.
Then interpolate with respect to the second variable.
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Similarly, we can extend the said procedure for functions of three vari-

ables.

7.19 Inverse Interpolation

So far, given a set of values of x and y, we have been finding the value
of y corresponding to a certain value of x. On the other hand, the process
of estimating the value of x for a value of y (which is not in the table) is
called inverse interpolation. When the values of x are unequally spaced La-
grange’s method is used and when the values of x are equally spaced, the
Iterative method should be employed.

7.20 Lagrange’s Method

This procedure is similar to Lagrange’s interpolation formula (p. 207),
the only difference being that x is assumed to be expressible as a polynomial
iny.

Lagrange’s formula is merely a relation between two variables either of
which may be taken as the independent variable. Therefore, on interchang-
ing x and y in the Lagrange’s formula, we obtain

xz(y—yl)(y—yz)---(y—yn)onr =) =y)=,)
Y=y)=»)=y,) W=y =) (1=y,)
N =)@ =) —y.1)

D =200 =2y = V)

1

EXAMPLE 7.34

The following table gives the values of x and y:

x: 1.2 2.1 2.8 4.1 4.9 6.2

y: 4.2 6.8 9.8 13.4 15.5 19.6

Find the value of x corresponding to y = 12, using Lagrange’s tech-
nique.

Solution:

Herex, =12,x =21,x,=28x,=41,x,=49,x,=62andy =42,
y,=68,y,=98,y,=134,y,=155,y,=19.6.
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Taking y = 12, the above formula (1) gives

_(12-6.8)(12—-9.8)(12-13.4)(12—15.5)(12~19.6)
T (4.2-6.8)(4.2-9.8)(4.2—13.4)(4.2—15.5)(4.2-19.6)
(12-4.2)(12-9.8)(12 - 13.4)(12 - 15.5)(12 - 19.6)
(6.8—4.2)(6.8—9.8)(6.8—13.4)(6.8—15.5)(6.8—19.6)
(12-4.2)(12-6.8)(12 - 13.4)(12 - 15.5)(12 — 19.6)
(9.8—4.2)(9.8—6.8)(9.8—13.4)(9.8— 15.5)(9.8 — 19.6)
(12-4.2)(12 - 6.8)(12—9.8)(12 —15.5)(12 — 19.6)
(13.4—-4.2)(13.4—6.8)(13.4-9.8)(13.4—15.5)(13.4 - 19.6)
(12-4.2)(12 - 6.8)(12—9.8)(12 — 13.4)(12 - 19.6)
(15.5—4.2)(15.5—6.8)(15.5—9.8)(15.5— 13.4)(15.5— 19.6)
(12-4.2)(12 - 6.8)(12—9.8)(12 —13.4)(12 - 15.5)
(19.6—4.2)(19.6 — 6.8)(19.6 — 9.8)(19.6 — 13.4)(19.6 — 15.5)

=0.022 - 0.234 + 1.252 + 3.419 — 0.964 + 0.055 = 3.55

EXAMPLE 7.35

Apply Lagrange’s formula inversely to obtain a root of the equation
flx) =0, given that f{30) = - 30, f(34) = - 13, f(38) = 3, and f (42) = 18.

Solution:
Herex, =30, x, =34, x, = 38, x,= 42
andy,=-30,y, =-13,y,=3,y,=18
It is required to find x corresponding to y = f(x) = 0.
Taking y = 0, Lagrange’s formula gives
W)y = )y —ys) o Gy gy —ys)

(o =y)o = y2)lyo = y2) ™" (g1 = yo)n —ya)-(yl —y5) ™

+ vy —y)ly=ys) o gy )y —y)

(Yo = Yo )ys =y )ys — y3) (5 = Yo )ys =y )ys —ys)
_13(=3)(-18) 30(=3)(~18)
~(—17)(—33)(—48) X304 17(~16)(-31)

30(13)(-18) % 30(13)(=3)

33(16)(—15) 48(31)(15)
=—0.782 + 6.532 + 33.682 — 2.202 = 37.23.

Hence the desired root of f(x) = 0 is 37.23.

X 34

X 42
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7.21 lterative Method

Newton’s forward interpolation formula (p. 274) is

(p—1 . (p—D(p—2)
= yo +pAyy + A%y + EE P E Ay, 4

From this, we get

1
p:_‘:yp_y0+

p@—DM%+p@—Mp—DN%+”}
Ay,

2! 3!

(1)

Neglecting the second and higher differences, we obtain the first ap-

proximation to p as

P =y, _yo)/Ayo

(2)

To find the second approximation, retaining the term with second dif-

ferences in (1) and replacing p by p , we get

_ Pl(Pl_l) P
Ps —A—%[yp ) +TA 0

(3)

To find the third approximation, retaining the term with third differ-

ences in (1) and replacing every p by p,, we have

pa (P2 — ;?(Pz -2) A%]

P2 (Pz - 1)

— _ 2
Ps—AyO[yp Yot Ay, +

and so on. This process is continued till two successive approximations of p

agree with each other

NOTE Obs. This technique can be equally well be applied by starting
with any other interpolation formula.

This method is a powerful iterative procedure for finding the
roots of an equation to a good degree of accuracy.

EXAMPLE 7.36

The following values of y = f(x) are given

x: 10 | 15 | 20
y: | 1754 | 2648 | 3564
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Find the value of x for y = 3000 by iterative method.
Solution:

Taking x, = 10 and h = 5, the difference table is

x y Ay Ay
10 1754
894
15 2648 22
916
20 3564

Here y,= 3000, y, = 1754, Ay, = 894 and A%y0 = 22.

The successive approximations to p are

1
— (3000 1754)=1.39
P1=5o5 )

1.39(1.39-1)

Py = @[3000 —1754— ><22] =1.387

1.387(1.387—1)
2

1
Ps =@[3000—1754— ><22}=1.3871

We, therefore, take p = 1.387 correct to three decimal places. Hence
the value of x (corresponding to y = 3000) = x, + ph = 10 + 1.387 x 5 =
16.935.

EXAMPLE 7.37

Using inverse interpolation, find the real root of the equation 3 + x —
3= 0, which is close to 1.2.

Solution:
The difference table is
x y Y=x3+x—3 Ay A%y Ay A'y
1 -0.2 -1 0.431
0.066
1.1 |-0.1 —-0.569 0.497 0.006
0.072 0
1.2 0 -0.072 0.006
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x y Y=x+x—3 Ay A%y A%y Aty
0.569
1.3 0.1 0.497 0.078
0.647
1.4 0.2 1.144

Clearly the root of the given equation lies between 1.2 and 1.3. Assum-
ing the origin at x = 1.2 and using Stirling’s formula

Ay +Ay_; 2* o, x(x® =1) ANy + A%y,
=y, +x— L T A%+ X
Yy=yoTx 5 5 &Y 6 5

569 +0. x> 2 _ 006 +0.
0=-0.072 + x.05692—0467+%(0.072) +x(x l)(O 006 : 0 006)

, we get

(y=0)
or 0=-0.072+0.532x +0.036x> + 0.001x° (i)
This equation can be written a s
. 20072_0036 , 0001 ,
0532 0.532°  0.532

" First approximation x = gol =0.1353

532

Putting x =x" on R.H.S. of (i), we get
Second approximation

x?=0.1353 - 0.067(0.1353)> — 1.8797(0.1353)° = 0.134
Hence the desired root =1.2 + 0.1 x 0.134 = 1.2134.

Exercises 7.7

1. Apply Lagrange’s method to find the value of x when f(x)=5 from the
given data:
X: 5 6 9 11
f (x): 12 13 14 16
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2. Obtain the value of t when A = 85 from the following table, using La-
grange’s method:

t: 2 5 8 14

A: 94.8 87.9 81.3 68.7

3. Apply Lagrange’s formula inversely to obtain the root of the equation
flx) =0, given that f{(30) =- 30, f(34) =—13, f(38) =3 and f(42) =

4. From the following data:

X: 1.8 2.0 2.2 2.4 2.6
2.9 3.6 4.4 55 6.7,
ﬁnd x when y = 5 u sin g the iterative method.

5. The equation x® — 15x + 4 = 0 ha s a root close to 0.3. Obtain this root
upto four decimal places using inverse interpolation.
6. Solve the equation x = 10 log x, by iterative method given that

x| 1.35 1.36 1.37 1.38
log x: | 0.1303 | 0.1355 | 0.1367 | 0.1392

7.22  Objective Type of Questions

Exercises 7.8

1. Select the correct answer or fill up the blanks in the following question:
Newton’s back war d interpolation formula is.........

2. Bessel's formula is most appropriate when p lies between
(@)—0.25and0.25 (b)0.25and0.75 () 0.75 an d 1.00

3. Form the divided difference table for the following data:
X 5 15 22
y: 7 36 160

4. Interpolation is the technique of estimating the value of a function for

5. Bessel’s formula for interpolation is......

6. The four divided differences forx, x, x,, x,, x, =.......
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12.

13.
14.
15.

16.

17.

18.

19.
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. Stirling’s formula is best suited for p lying between......

. Newton’s divided differences formula is.......

. Given (x,, y,), (x, 1), (x,, y,), Lagrange’s interpolation formula is.......
10.
11.

Iff(0) =1,f(2) =5, f(13) =10 and f(x) = 14, thenx =......

The difference between Lagrange’s interpolating polynomial and
Hermite’s interpolating polynomial is.......

Ify(1) =4, y(3) =12, y(4) = 19 and y(x) = 7, find x using Lagrange’s

formula.
Extrapolation is defined as.......
The second divided difference of f (x) = 1/x, with arguments a, b, ¢ is......

The Gauss-forward interpolation formula is used to interpolate values of
y for

(@0<p<l1 b)-1<1<0
€)0<p<-a d)—a<p<0
Given

x: 0 1 3 4

g | -12 | o 6 12

Using Lagrange’s formula, a polynomial that can be fitted to the data
is......

The nth divided difference of a polynomial of degree n is

(a) zero (b) a constant
(c) a variable (d) none of these.

The Gauss forward interpolation formula involves

(a) differences above the central line and odd differences on the cen-
tral line

(b) even differences below the central line and odd differences on the
central line

(¢c) odd differences below the central line and even differences on the
central line

(d) odd differences above the central line and even differences on the
central line.

Differentiate between interpolation polynomial and least square polyno-
mial obtained for a set of data.



