CHAPTER

NUMERICAL DIFFERENTIATION
AND INTEGRATION

Chapter Objectives

e Numerical differentiation

e Formulae for derivatives

e Maxima and minima of a tabulated function
® Numerical integration

e Quadrature formulae

e Errors in quadrature formulae

® Romberg’s method

e Euler-Maclaurin formula

e Method of undetermined coefficients
e Gaussian integration

® Numerical double integration

® Objective type of questions

8.1 Numerical Differentiation

It is the process of calculating the value of the derivative of a
function at some assigned value of x from the given set of values
(x,1,). To compute dy/dx, we first replace the exact relation y = f(x)
by the best interpolating polynomial y = ¢(x) and then differentiate
the latter as many times as we desire. The choice of the interpola-
tion formula to be used, will depend on the assigned value of x at

which dy/dx is desired.
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If the values of x are equispaced and dy/dx is required near the begin-
ning of the table, we employ Newton’s forward formula. If it is required
near the end of the table, we use Newton’s backward formula. For values
near the middle of the table, dy/dx is calculated by means of Stirling’s or
Bessel’s formula. If the values of x are not equispaced, we use Lagrange’s
formula or Newton’s divided difference formula to represent the function.

Hence corresponding to each of the interpolation formulae, we can de-
rive a formula for finding the derivative.

Obs. While using these formulae, it must be observed that the
table of values defines the function at these points only and
does not completely define the function and the function may
not be differentiable at all. As such, the process of numerical
differentiation should be used only if the tabulated values

are such that the differences of some order are constants.
Otherwise, errors are bound to creep in which go on increasing
as derivatives of higher order are found. This is due to the

fact that the difference between f(x) and the approximating
polynomial ¢(x) may be small at the data points but f'(x) — ¢’(x)
may be large.

NOTE

8.2 Formulae for Derivatives

Consider the function y = f(x) which is tabulated for the values x (= x, +
ih),i=0,1,2,...n

Derivatives using Newton’s forward difference formula

Newton’s forward interpolation formula (p. 274) is

p—1 ., plp—D(p—2)

y=y0+pAy0+—pp2‘ Ay, + 3] A3y0 +...
Differentiating both sides w.r.t. p, we have
dy 2p—1 , 3p°—6p+2
= Mo+ B+ Ay +
(x—xq)

Since

Therefore dp
x



NUMERICAL DIFFERENTIATION AND INTEGRATION ¢ 341

dy_dy dp_l 2p—1 , 3p2—6p+2 3
NOW g—d—p E—E A 0+ 2' A ?/0 +—3| A y()

49> —18p> +22p—6
L A4y0+”} (1)

Atx =x,, p =0. Hence putting p =0,

dy ! 12 13 L s L5 N ]
—=| = Ayy == A%y + Ay, —— Ay, + - Ay, —— Ay, + ..
(dx )x(} h [ Yo D) Yo 3 Yo 4 Yo 5 Yo 6 Yo (2)

Again differentiating (1) w.r.t. x, we get

Lzy_i(dy)@

dv®  dp d_p dx

1] 2 6p—6
:_{EAQ%"‘ P Ay, +

12p* = 36p> — 36p + 22 1
h 8, A4y0 +-

4!
Putting p = 0, we obtain
137

d? 1 11 5
(dxg) =h_2[A290 - A%y, +EA4% _EAS% +@A690 +] (3)

de h.’}
Otherwise: We know that 1 + A= E =¢"?

1, 1 1
hD=log(l+A)=A——A*+—A° —=A* +...
2 3 4

ZS
Similarly (ﬂ) = i[A?’yo - §A4y0 + ]

1 1., 1 1
D=— A——A2+—A3——A4+---]

or h[ D 3 4

_ 1

and D’ 2

1 1 1 1T 11
[A——A2 +=AP——A* +] =—2[A2 — A% +—A* +]
2 3 4 h 12
and D3=%[A3—§A4+---]
h” 2
Now applying the above identities to 1, we get

C(dy) _1 M, 1.5 1., 1. 1.4
Dy, i.e., (a)xo —EAyo _E[A yogA Yo —ZA Yo +EA Yo _EA Yo +...
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and

dx® h?

y) 1 3
(ﬁ] = h_S[AZyO - §A4y() + .. .]

d*y) 1 505, + 137 5
( ) [AZYIO Ar}yo‘*' A4yo__A Yo+ Ay, = ]

which are the same as (2), (3), and (4), respectively.

Derivatives using Newton’s backward difference formula

Newton’s backward interpolation formula (p. 274) is

+1)_. +1)p+2
plp )szn L P >V3yn b
A 31
Differentiating both sides w.r.t. p, we get
3p” +6p+2 -

y=y, +pVy, +

di 2n+1
Y_vy p

dp =Vt g Vit Yo +
Since p= ST therefore, @ _ 1
de h
3
NOW (l_y=(l_yd_p=l AV, +%V2 +MV3 +-.. (5)
de dp dx k| T el v 3! I

Atx=x,p =0. Hence putting p =0, we get

dy 1 1_, 1 _, 1 _4 1 5 1 56 i|
L =—| vy, +=V2y, +=V3y, +=V'y, +=Vy, +=Vy +---| (6
( dx )x, A [ Yn 9 Yn 3 Yn 4 Yn 5 Y 6 Yy (6)

Again differentiating (5) w.r.t. x, we have
Lzy d (dy) dp
dx®*  dp\dx)dx3

6p+6 6p° +18p +11
h2 |:V2y p3| Vsyn +%V4yn +:|

Putting p = 0, we obtain

d*y : 11 5
V3, + VP, +—Viy, +—=
(dx2 ] h2 |: Yn Yy 12 Yn 6

137
Voy, + ol ye ] 7
Yt g It @

d? 3
Similarly, (Kg) h3 |:V3_/ +§V4yn +. i| (8)

n
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Otherwise: We know that 1 -V =E1=¢"P

—hD =log(1-V)= —[V+%V2 +%V3 +%V4 +:-

or D=1[V+1V2+1V3+1V4+...]
h 2 3 4

1 1 1 ¥
D2=h—2[V+§V2+§V3+--} hz[v2+v3+ —V'+ ]

1 3
Similarly, D’ = ﬁ[VS +§V4 +]

Applying these identities to ¢ , we get

. dy 1 1_. 1 1 1
Dy ie. Y] =X vy, +2v2y, 42V, +2V'y, SV, +- V0 +}
I (dx)x h[ Un TGV TGV TN Y gV Y TGV

d*y 5 137
— Viy, +V° + V4 += V5 +—V° ]
(dxz )\ hz [ yn yn yn yn 180 yn
d’ 4
and (ﬁ) = his[v‘}yn +§V4yn + }

Xy

which are the same as (6), (7), and (8).
Derivatives using Stirling’s central difference formula

Stirling’s formula (p. 289) is

Ay, + A .
Y, = o + P( Yo 5 yl)_l_%Azy_l

A4y_2 +

PP D) (A Ay |t 1)
3! 2 41

Differentiating both sides w.r.t. p, we get

dp 2 I 3! 2

4]9'3 - 2p 4
1] A y—2 I
X=X dp 1

Since p=T, d—:Z
x
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dy dy dp 1|(Ay,+A 3p*—1
Now_/=_/._79=_( Yo ?/—1)+ PO
dc dp dx h[ 26 PEY1TT,

Ny + A%,
2

20" =p }
+——A 5 +...
12 Y_g

Atx =x, p =0. Hence putting p = 0, we get
(ﬂ) :l{Ayo +Ay, _lAgy—l +A%y, +LA59—2 +A%y +} (9)

e, h 2 6 2 30 2
d*y) 1 1 1
L — A2 _ A4 +_A6 —_ .
Similarly (_dxz ) el [ Y_y 2 Y_o 90 Y_3 } (10)

Derivatives using Bessel’s central difference formula
Bessel’s formula (p. 290) is

plp—1) A%y_, + A7y, +( _1)79@ I)As
21 2 2

Yy, = Yo +pAy, + 3 Yo

4p° —6p® —2p+2 Aty_, +A*
LAp=bpT =2p Yo Yor |

4! 2
Since p:m, @:l
h dx h
NOW ﬂ:ﬂ-@:l{A o +2p_1 Agy_l +A2y0
dx dp dx h 21 B
2 _ 1 ‘ \
+%A3 LA 6t = 2p 2 ATy ATy,
3! Y-1 1 5
Atx =x, p =0. Hence putting p = 0, we get
(d_z) ZE[A% _5(%%5&“ (11)
1 A4y_2 +A4y_1
12 2
Similarly

d> Al + A2 Ay, +A*
] e e o

Xo
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Derivatives using unequally spaced values of argument
(i) Lagranges’s interpolation formula is
(e —ag)-(v—x,)
flx)= P T———— _xn>f(x0)
(x —xp)x —x5)--(x —x,)
() =292 —x) () —x )
Differentiating both sides w.r.t. x, we get f (x).
(ii) Newton’s divided difference formula is
f(x) = f(xg) + (x = x)Af (xo) + (x — x )(x - xl)Azf(xo)
+(x —x)(x — 29 )(x — x2)A3f(x0) +--
Differentiating both sides w.r.t. x, we obtain
£'(x) = Af(x0) +[2x — (x +x;)] Azf(xo) +[3x2 —2x(xy +x; +x5)
Hxpx, 1,35 +x,05)] A flxy) +---

EXAMPLE 8.1
Given that
X: 1.0 1.1 1.2 1.3 1.4 1.5 1.6

y: | 7.989 8.403 | 8.781 9.129 9.451 9.750 | 10.031

find @and @at (@)x=1.1 (b)x=1.6.

dx dx2
Solution:
(a) The difference table is:
x y A A A A ~ AS
1.0 7.989
0.414
1.1 8.403 -0.036
0.378 0.006
1.2 8.781 -0.030 -0.002
0.348 0.004 0.001
1.3 9.129 -0.026 -0.001 0.002
0.322 0.003 0.003
14 9.451 —-0.023 0.002
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x y A A2 X At N A®
0.299 0.005
15 9.750 -0.018
0.281
1.6 10.031
We have

dy 1 1 1 1 1. 1
(_) =E[Ayo _EAZ% +§A390 +ZA4% +3A5?/o _gAﬁyo +} (i)

dx)

d? 1 11 5 137 .
and (dxy) =h—2[Azyo = Ay + Ay —€A5yo 50 —L A8y, —- ] (it)
x0

Here h=0.1,x,= 1.1, Ay, = 0.378, A%, = - 0.03 etc.

Substituting these values in (i) and (ii), we get

(dy) 1 |:0 378—1( 0.03) +l<0.004)_l<_()_()()1)+l((),()03)} =3.952
dx) 0.1 2 3 4 5

dy) 1 11 5 _
(WJ = W[—0.03 =(0.004)+2(=0.001) = g(0.003)] =—-3.74

(b) We use the above difference table and the backward difference op-
erator V instead of A.

dy 1[ 1, 1_, 1 s R ]
2| =—|Vy, +=V?y, +=V’y, +=V°y, +=V°y, +-- j
(dx) R T I T T g Y )

d*y 2 1_, 5
+—= +—=
dnd (dxz )wl hZ |:V Yn yn 12V Yn 6

137
Vg oy | G

Here h=0.1, X, =1.6, Vy =0.281, V? =—().018 etc.

Putting these values in (i) and (ii), we get

d
(—y) _ ! [0281+1( 0.018) + - (0.05) +-(0.002)
dx ), 0.1 2 3 4

+é(0.003) + é(0.00Z)] =2.75
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dz
I = %[—0.018 +0.005+0.002)+2(0.003)
di* ) T (0.0) 12 6
+£(0.002)} =—0.715.
150
EXAMPLE 8.2

The following data gives the velocity of a particle for twenty seconds
at an interval of five seconds. Find the initial acceleration using the entire
data:

Time ¢ (sec): 0 5 10 15 20
Velocity v(m/sec): 0 3 14 69 228
Solution:
The difference table is:
t v Av Ao Ao Ao
0
3
5 3 8
11 36
10 14 44 24
55 60
15 69 104
159
20 228

dv
An initial acceleration ze(d—) at t = 0 is required, we use Newton’s
forward formula: t

(dv) =l(ADO —lAgoo +1A3’DO —1A4UO +)
-0 2 3 4

dt)_, h
dv 1 1 1 1
(E)FO = g|:3 - I(S) + E(SG) - 2(24{'

1
=_(3-4+12-6)=1

Hence the initial acceleration is 1 m/sec?.
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EXAMPLE 8.3
Find the value of cos (1.74) from the following table:

x: 1.7 1.74 1.78 1.82 1.86
sin x: 0.9916 | 0.9857 | 0.9781 | 0.9691 | 0.9584
Solution:
Let y = f (x) = sin x. so that f'(x) = cos x.
The difference table is
y Ay Ay Ay Ay
1.7 0.9916
—0.0059
1.74 0.9857 —0.0017
—-0.0076 0.0003
1.78 0.9781 -0.0014 —0.0006
—0.0090 —0.0003
1.82 0.9691 —0.0017
-0.0107
1.84 0.9584
Since we require f(1.74), we use Newton’s forward formula

Here h =0.04,x,= 1.7, Ay, = - 0.0059, A%, = - 0.0017 etc.

Substituting these values in (i), we get
/ 1 1 1 1
(ﬁ) - —[0.0059 — 2(=0.0017) +—(0.003) — —(—0.0006)}
dx) ., 0.04 B 3 4
1
= (0.007)=0.175
0.04

Hence cos (1.74) = 0.175

EXAMPLE 8.4

A slider in a machine moves along a fixed straight rod. Its distance x cm.
along the rod is given below for various values of the time ¢ seconds. Find
the velocity of the slider and its acceleration when t = 0.3 second.
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t= 0 0.1 0.2 0.3 0.4 0.5 0.6
x= 30.13 31.62 32.87 33.64 33.95 33.81 33.24
Solution:
The difference table is:
T X A A? AP A* A’ A°
0 30.13
1.49
0.1 31.62 —-0.24
1.25 -0.24
0.2 32.87 —-0.48 0.26
0.77 0.02 -0.27
0.3 33.64 —0.46 -0.01 0.29
0.31 0.01 0.02
0.4 33.95 -0.45 0.01
-0.14 0.02
0.5 33.81 —-0.43
-0.57
0.6 33.24

As the derivatives are required near the middle of the table, we use
Stirling’s formulae:

(dx) =1(Axo+M_1)_1(A3x-1+A3x-z)+L(M)+ (i)
ty

dt) h o 6 2 30 D
d’x) 1 1 1
(?) = h—2|:A2x_l - EA47€_2 + %A6x_3 .- ] (ll)

Here h=0.1,¢,=0.3, Ax,=0.31, Ax |, =0.77, A%x = - 0.46 etc.

Putting these values in (i) and (ii), we get

=5.33

(ﬁ) _ 1 0-31+0~77_1(0'01+0-02)+i(0~02‘0~27)_
di)os 01] 2 6\ 2 30\ 2

2
Ll [—0.46—i<—0.01)+i<0.29)—~.]=—45.6
), (01) 12 90

Hence the required velocity is 5.33 cm/sec and acceleration is
—45.6 cm/sec?.
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EXAMPLE 8.5
The elevation above a datum line of seven points of a road are given
below:
X 0 300 600 900 1200 1500 1800
y: 135 149 157 183 201 205 193

Find the gradient of the road at the middle point.
Solution:

Here h =300, x,=0, y, = 135, we require the gradient dy/dx at x = 900.

The difference table is
x y Ay Ay A%y Ay Ay
0 135
14
300 149 -6
8 24
600 157 18 -50
26 - 26 70
900 183 -8 20
18 -6 - 16
1200 201 - 14 4
4 -2
1500 205 - 16
- 12
1800 193

Using Stirling’s formula for the first derivative [(9) p. 000], we get

)= (Ayo+Ay_1)_ 1A%, +A, ), 1 ANy, +A%y
Y=y 26 6 2 30 9
=LFQS+26)—i(—6—26)+i(—16+70)]
300] 2 12 60
1

=——(22+2.666 +0.9) =0.085
300

Hence the gradient of the road at the middle point is 0.085.
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EXAMPLE 8.6
Using Bessel’s formula, find £(7.5) from the following table:

x: 7.47 7.48 7.49 7.50 7.51 7.52 7.53
f(x) 0.193 0.195 0.198 0.201 0.203 0.206 0.208
Solution:
Taking x, = 7.50, h = 0.1, we have p= 7% _*7 7.50
The difference table is h 0.01
x P y, A A2 AP IX N S
7.47 -3 0.193
0.002
7.48 -2 0.195 0.001
0.003 —0.001
7.49 -1 0.198 0.000 0.000
0.003 —-0.001 0.003
7.50 0 0.201 -0.001 0.003 -0.01
0.002 0.002 —0.007
7.51 1 0.203 0.001 -0.004
0.003 —0.002
7.52 2 0.206 —0.001
0.002
7.53 3 0.208

Using Bessel’s formula for the first derivative [(11) p. 000], we get
dy _1 [ L s 2 1 3 1 4
(dx)xo =2 Ao =By + Ay )+ Ay o (AT + ATy )

1 1
APy, ———(ASy .+ A° ]
1202 V-2 T g A s T A

d 1 1 1 1
(_y) = [0 002 —=(=0.001 +0.001) + — (0.002) + — (—0.004 + 0.003)
dx).. 001 4 12 24

1
—(= 0007)—2— 0010+0]

120
[ ASy ,=0]
=0.24+0+0.01666 —0.0416 + 0.00583 + 0.00416 = 0.223.
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EXAMPLE 8.7
Find f7(10) from the following data:

x: 3 5 11 27 34
Sflx): -13 23 899 | 17315 | 35606

Solution:

As the values of x are not equispaced, we shall use Newton’s divided

difference formula. The divided difference table is

B flx) 1st div ond div. 3rd div. 4th div.
diff. diff. diff. diff.
3 -13
18
5 23 16
146 0.998
11 899 39.96 0.0002
1025 1.003
27 17315 69.04
2613
34 35606

Fifth differences being zero, Newton’s divided difference formula for

the first derivative (p. 274), we get
x )flx,, x,,x,)

f ) =flxg, x) +
+ [3a?— 2x(x, + o, +x) + g +a )] x Al xg, x, 1)

= 3a%(x, + o +a, + ) + (x4 ax, + ax + agx +a g+ )

flag x, xp, x5, 1)

=11, x,= 27 and x = 10, we obtain

£7(0) =18+ 12 x 16 + 23 x 0.998 — 426 x 0.0002 = 232.869.

012
Putting x =3, x,

273

=5,x,

(20 —x,—

— (a2, + 2 XX + XXX+ XX x)]

0713

8.3 Maxima and Minima of a Tabulated Function

Newton’s forward interpolation formula is

Y=y, +pAy, +

pip—1)
21

Azyo +

plp—D(p—2)

AS
3!

yo + ...
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Differentiating it w.r.t. p, we get

2p—1 .,  3p°—6p+2
—==Ay, + Ayy +——TF—
dP Yo 9 Yo 6

APy +-- (1)

For maxima or minima, dy/dp = 0. Hence equating the right-hand side

of (1) to zero and retaining only up to third differences, we obtain
2p—1 3p” —6p+2

6

Ay, + APy, + APy, =0

. 1 ) 1 1
ie., (EASyO)pQ + (Azyo - AS%)P +(Ay, _EAzyo §A390> =0.

Substituting the values of Ay, A% , A%y, from the difference table, we
solve this quadratic for p. Then the corresponding values of x are given by
x =x, +p, at which y is maximum or minimum.

EXAMPLE 8.8

From the table below, for what value of x, y is minimum? Also find this
value of y.

Xx: 3 4 5 6 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224
Solution:
The difference table is
x y A A? A’
3 0.205
0.035
4 0.240 -0.016
0.019 0.000
5 0.259 -0.016
0.003 0.001
6 0.262 -0.015
-0.012 0.001
7 0.250 -0.014
-0.026
8 0.224
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Taking x, = 3, we have y, = 0.205, Ay, = 0.035, A%, = - 0.016 and
Ay, =0.

. Newton’s forward difference formula gives
-1
y=0.205 + p(0.035) + MT>(—0.016) (i)

Differentiating it w.r.t. p, we have

Z—z=0.035+ 291
For y to be minimum, dy/dp =0
5 0.035-0.008(2p —1)=0
which gives p = 2.6875

sox=x,+ph=3+26875x 1=56875.

(—0.016)

Hence y is minimum when x = 5.6875.

Putting p = 2.6875 in (i), the minimum value of y

1
= 0.205 + 2.6875 X 0.035 +§(2.6875 x 1.6875)(~ 0.016) = 0.262S.

EXAMPLE 8.9

Find the maximum and minimum value of y from the following data:

X: -2 -1 0 1 2 3 4
y: 2 -0.25 0 -0.25 2 15.75 56
Solution:

The difference table is

x y Ay Ay Ay A'y A%y
—2 2
—2.95
~1 |-095 25
0.25 ~3
0 0 ~05 6
~025 3 0
1 [ -025 25 6
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x y Ay A%y Ay A'y ANy
2.25 9 0
2 2 115 6
13.75 15
3 15.75 26.5
40.25
4 56

Taking x, = 0, we have y, =0, Ay, =-0.25, A% =2.5, A% =9, A"y =6.

Newton’s forward difference formula for the first derivative gives

dy 1 @2p=1) , 3p*—6p+2 5  4p°—18p> +22p—6 ,
E_z Yo — 9l AyO 31 AyO_ 41 AyO_'”
=%—0.25 p2l (2.5) +%(3x2 —6x+2)(9) +2—14(4x3 —18x” +22x — 6)(6)

1 ' . '
=E[—0.25 +25x—1.254+45> —9x4+3+1° =45 +55xr—1.5=2"—x

Fory to be maximum or minimum, d—y =0ie,x>—x=0
x

ie., x=0,1,-1

d*y _

dx®

=+ve forx=1

Now 3x2 —1=—veforx=0

=+veforx=—1.

x(x—1)
Yy =y, +xAy, o

Thus ¢ is maximum for x = 0, and maximum value = ¢(0) = 0.

Since A2y0 +---,y(0)=0

Also y is minimum for x = 1 and minimum value = y(0) = - 0.25

Exercises 8.1

1. Find ¢” (0) and y (0) from the following table:

ie: 0 1 2 3 4 5
4 S 15 7 6 2
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. Find the first, second and third derivatives of f(x) atx = 1.5 if

X 1.5 2.0 2.5 3.0 3.5 4.0

Sflx): 3.375 7.000 13.625 24.000 38.875 59.000

. Find the first and second derivatives of the function tabulated below, at

the pointx =1.1:

x: 1.0 1.2 1.4 1.6 1.8 2.0
Sflx): 0 0.128 0.544 1.296 2.432 4.00
. Given the following table of values of x and y
X: 1.00 1.05 1.10 1.15 1.20 1.25 1.30
y: 1.000 1.025 1.049 1.072 1.095 1.118 1.140
findﬂandﬂat (a) x =1.05. b)x=1.25 (c)x=1.15.
dx dx®
. For the following values of x and y, find the first derivative at x = 4.
x: 1 2 4 8 10
y: 0 1 5 21 27

. Find the derivative of f(x) at x = 0.4 from the following table:

X 0.1 0.2 0.3 0.4
Sflx): 1.10517 | 1.22140 | 1.34986 | 1.49182

. From the following table, find the values of dy/dx and d?y/dx* at x = 2.03.

X 1.96 1.98 2.00 2.02 2.04
y: 0.7825 0.7739 | 0.7651 0. 7563 0.7473

. Given sin 0° = 0.000, sin 10° = 0.1736, sin 20° = 0.3420, sin 30° = 0.5000,

sin 40° = 0.6428,
(a) find the value of sin 23°,

(b) find the numerical value of cos x at x = 10°

(c) find the numerical value of d?y/dx* at x = 20° for y = sin x.

. The population of a certain town is given below. Find the rate of growth

of the population in 1961 from the following table

Year: 1931 1941 1951 1961 1971

Population: 40.62 60.80 71.95 103.56 132.68
(in thousands)
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Estimate the population in the years 1976 and 2003. Also find the rate of
growth of population in 1991.

The following data gives corresponding values of pressure and specific
volume of a superheated steam.

v: 2 4 6 8 10
p: 105 42.7 95.3 16. 713

Find the rate of change of
(i) pressure with respect to volume when v =2,

(it) volume with respect to pressure when p = 105.

The table below reveals the velocity v of a body during the specified
time ¢ find its acceleration at¢ = 1.17

t: 1.0 1.1 1.2 1.3 1.4
v: 43.1 477 52.1 56.4 60.8

The following table gives the velocity v of a particle at time ¢. Find its

acceleration at ¢ = 2.

t: 0 2 4 6 8 10 12
v: 4 6 16 34 60 94 131

A rod is rotating in a plane. The following table gives the angle 6 (radi-
ans) through which the rod has turned for various values of the time ¢
second.

t: 0 0.2 0.4 0.6 0.8 1.0 1.2
0: 0 0.12 0.49 1.12 2.02 3.20 4.67

Calculate the angular velocity and the angular acceleration of the rod,
when ¢t = 0.6 second.

Find dy/dx at x = 1 from the following table by constructing a central
difference table:

X 0.7 0.8 0.9 1.0 1.1 1.2 1.3

y: 10.644218| 0.717356 0 |0.783327|0.841471|0.891207|0.932039 [0.963558

Find the value of f’(x) at x = 0.04 from the following table using Bessel’s
formula.

x: 0.01 0.02 0.03 0.04 0.05 0.06
Slx): 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148
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If y = flx) and y_denotes f{x,+nh), prove that, if powers of h above h°
are neglected.

dy 3 1 1
| =y =y ) ==y —y_y) +—(ys —y_s) |.
(dx )xo 4h |:(?/1 y_1) 5 (o —y_5) 45 (s y—3>]
[HINT: Differentiate Stiling’s formula w.r.t. x, and put x = 0]

Find the value of f*(8) from the table given below:

x: 6 7 9 12
f(x): 1.556 1.690 1.908 2.158
Given the following pairs of values of x and y:
x: 1 2 4 8 10
y: 0 1 5 21 27

Determine numerically dy/dx at x = 4.

Find f’ (6) from the following data:

X: 0 2 3 4 7 8
) 4 26 58 112 466 922
Find the maximum and minimum value of y from the following table:
X: 0 1 2 3 4 5
y: 0 0.25 0 2.25 16 56.25

Using the following data, find x for which y is minimum and find this
value of y.

X: 0.60 0.65 0.70 0.75
y: 0.6221 0.6155 0.6138 0.6170
Find the value of x for which f (x) is maximum, using the table
X: 9 10 11 12 13 14
) 1330 1340 1320 1250 1120 930

Also find the maximum value of f (x).

Numerical Integration

The process of evaluating a definite integral from a set of tabulated val-

ues of the integrand f(x) is called numerical integration. This process when
applied to a function of a single variable, is known as quadrature.
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The problem of numerical integration, like that of numerical differen-
tiation, is solved by representing f(x) by an interpolation formula and then
integrating it between the given limits. In this way, we can derive quadra-
ture formulae for approximate integration of a function defined by a set of
numerical values only.

8.5 Newton-Cotes Quadrature Formula

Let 1= flod

where f(x) takes the values y, y,, y,, --- y forx=x,x,x,, -~ x .

Let us divide the interval (a, b) into n sub-intervals of width h so that

x,=a,x, =x,+h,x,=x,+2h,--- x =x +nh=>b.Then
n 0
Y
/] y =flx)
Y, Y, Y, Y,
0 Xy x, +h x,+2h x, +nh X
FIGURE 8.1

1= [ fde=h [ fle, +rh)dr, Puttingx =x,+ rh, dx=hdr

n -1 . —-1(r—2
= hfo [y, + 1Ay, +r(1ﬂ2—!>A2yO +%A3yo
—1)(r—2)(r—3 —1)(r—20(r=3)(r—4
U T N el T O
+r(r—1)(r—2)(r6—' 3)(r—4)(r—>5) A6y0 +..}d1"

[by Newton’s forward interpolation formula]

Integrating term by term, we obtain

n(2n—23)
12

nin—2)°

fxo+nhf< ~)d =l +£A n
N AX= 1 Yo 5 Ao o4

“ Azyo + AS?/()
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4 3 2 A4
+(n 3n +11n _3"J Yo

5 2 3 41
5 3 2 5
34 50 A
LY W LN L P W el (1)
4 5!
6 5 3 2 AG
| A5 gy 2250 2T |A e
6 4 3 6!

This is known as Newton-Cotes quadrature formula. From this gen-
eral formula, we deduce the following important quadrature rules by taking
n=1,2,3, ...

I. Trapezoidal rule. Putting n = 1 in (1) and taking the curve through
(x,, y,) and (x, y,) as a straight line (Figure 8.2) i.e., a polynomial of first
order so that differences of order higher than first become zero, we get

A
4 }
0 x, X, X, X X, X

FIGURE 8.2

xo+2h h
Similarly f f)dx=h (y] + - Ay, ) = E@l +yy)

Adding these n integrals, we obtain

xo+nh h
S f@ds =l )+ 2y 4y oty )] ()

This is known as the trapezoidal rule.

NOTE Obs. The area of each strip (trapezium) is found separately.
= "= Then the area under the curve and the ordinates at x, and x  is

approximately equal to the sum of the areas of the n trapeziums.
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II. Simpson’s one-third rule. Putting n = 2 in (1) above and taking the
curve through (x, y,), (x, y,), and (x,, y7,) as a parabola (Figure 8.3), i.e., a
polynomial of the second order so that differences of order higher than the
second vanish, we get

57 i

i i
0 x, X, X, X, x, X

FIGURE 8.3

xo+2h 1 9 h
f\ f(x)dx = 2h(y, + Ay, +EA~90>:§(?/0 +4y, +y;)

Xo

Xo +4lz

h
Similarly f x)dx = E(yz +4y; +y,)

+2h

xo+nh h
[ fx)dx =2 (g2 +4y,-1 +y,), n being even.

Adding all these integrals, we have when n is even
xo+nh h
fx f(x)dx= [(yo +Y o )+ Ay 4yt Y )2V oY g+ V)] (3)

This is known as the Simpson’s one-third rule or simply Simpson’s rule
and is most commonly used.

Obs. While applying (3), the given interval must be divided
into an even number of equal subintervals, since we find the
area of two strips at a time.

NOTE

II1. Simpson’s three-eighth rule. Putting n = 3 in (1) above and taking
the curve through (x, y,): i = 0, 1, 2, 3 as a polynomial of the third order
(Figure 8.4) so that differences above the third order vanish, we get

Y, o 7 Ys

0 xl) xl xZ x.’S xn x

FIGURE 8.4

xo+3h 3 3 1
fx fx)dx=3h (yo + EA% + ZAQ% + gASyo

0
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3h
= ?Wo +3y; + 3y, +ys3)
Similarly,

xo+5h 3h
fx0+3h f)dx = g(y3 + 3y, +3ys +y4) and so on.
Adding all such expressions from x to x, + nh, where n is a multiple of
3, we obtain
xo+nh Bh
S e =gy )+ g by s bety) ()

+2<y3 + Ys +oeet ?/n—3>]

NOTE Obs. While applying (4), the number of sub-intervals should be
taken as a multiple of 3.

IV. Boole’s rule. Putting n = 4 in (1) above and taking the curve (x, y,),
i=0,1,2,3,4as apolynomial of the fourth order (Figure 8.5) and neglect-

ing all differences above the fourth, we obtain

)

T '_1/() yl yz y3 y4

0 x, X, X, X, X, X
FIGURE 8.5

xo+4h 5 2 7
fl fl)dx= 4h(y0 +2Ay, +§A2y0 = gASyO + %A4y()

= %Wyo =32y, + 12y, +32y5; +Ty,)

x0+8h o2h
Similarly f\ +4h = —5(7y4 +32y5 + 12y, + 32y, + Tyg) and so on.
Adding all these mtegrals from x, to x, + nh, where n is a multiple of 4,
we get

2h
fxo+nh fx)dx=— 7% +32y, +12y, + 32y, + 14y, + 32ys; (5)
+12¢5 + 32y, + 14y +

This is known as Boole’s rule.

Obs. While applying (5), the number of sub-intervals should be
NOTE .
taken as a multiple of 4.
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V. Weddle’s rule. Putting n = 6 in (1) above and neglecting all differ-
ences above the sixth, we obtain
123
60
11 1 41 )

xo+6h 9 2 3 4
S fwde=6h| y, +3ay, Ay ANy + Ay

0

+—APxy +———A°
20" 0T a0 M0

41 4
If we replace EA(’yO by%AGyo, the error made will be negligible.
xo+6h 3h
S flod =00 +5y1 + s + By + 4y + 545 + )

Xo

Similarly

xp+12h 3h
fx0+6h S =75 +5yz + ys +6yy + 410 + 5411+ y1z) and s0 on.

Adding all these integrals from x, to x, + nh, where n is a multiple of 6,
we get

xo+nh 3h
fx(] f<x>dx=ﬁ<yo +5y1 +y2 +6y3 +y4 +5y5 +296 +5y7 +y8 +) <6)

This is known as Weddle’s rule.

Obs. While applying (6), the number of sub-intervals should
be taken as a multiple of 6. Weddle’s rule is generally more
accurate than any of the others. Of the two Simpson rules, the
1/3 rule is better.

NOTE

EXAMPLE 8.10

dx

Evaluate f 0 by using

01 +42

(i) Trapezoidal rule,

(i1) Simpson’s 1/3 rule,

(#i) Simpson’s 3/8 rule,

(iv) Weddle’s rule and compare the results with its actual value.
Solution:

Divide the interval (0, 6) into six parts each of width i = 1. The values
of f(x)=

T+2 are given below:
x
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X 0 1 2 3 4 5 6
flx) 1 0.5 0.2 0.1 ]0.0588 | 0.0385| 0.027
=Yy Yo Y, Ys Ys Y, Ys Ys
(i) By Trapezoidal rule,
dx h

f‘im:E
0

[(yo +y6) +2(yy +ys +ys +y, +y5)]

= %[(1 +0.027)+2(0.54+0.24+ 0.1+ 0.0588 + 0.0385)] = 1.4108.
(it) By Simpson’s 1/3 rule,

fﬁi=ﬁ[<yo +1j6) + 4y, 5 +ys) + 2y +y,
01+x> 3

= é[(l +0.027)+4(0.54+ 0.1+ 0.0385) + 2(0.2 + 0.0588)] = 1.3662.
(iti) By Simpson’s 3/8 rule,

f6 dx 3h

0 TaaE s Wotye)+ 3y +ys +yy+ys)+2y;]
= %[(1 +0.027) +3(0.5 + 0.2 +0.0588 +0.0385) +2(0.1)] = 1.3571

(iv) By Weddle’s rule,

6 dx  3h
fom=ﬁ[?/o +5y1 +ys +6ys +y, +5ys + el

=0.3[1+5(0.5)+ 0.2 + 6(0.1) + 0.0588 + 5(0.0385) + 0.027] = 1.3735

6 d
Also fo 1_:;2 =|talr1_1 x|8 =tan~' 6=1.4056

This shows that the value of the integral found by Weddle’s rule is the
nearest to the actual value followed by its value given by Simpson’s 1/3 rule.

EXAMPLE 8.11
2
X

1
Evaluate the integral f .

de using Simpson’s 1/3 rule. Compare
the error with the exact value.

+x

Solution:

Let us divide the interval (0, 1) into 4 equal parts so that h = 0.25.

Taking y= i i & we have
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X 0 0.25 0.50 | 0.75 1.00
y: 0 ]0.06153]0.22222]0.39560| 0.5
Yo LA Yy Y3 Yy

By Simpson’s 1/3 rule, we have
2

flx_gdl _ﬁ[(yo +y,) +2y,) + 4y, +ys3)]

014«
_025
= [(0+0.5)+2(0.22222) + 4(0.06153 +0.3956)]

O 25
3 ——[0.5+0.44444 +1.82852] = 0.23108

1

Also dx = l|1og<1 +2%)| = L1oge2=023108
3 o 3

Thus the error = 0.23108 — 0.23105 = — 0.00003.

EXAMPLE 8.12

Use the Trapezoidal rule to estimate the integral f ex’dx taking the
number 10 intervals.

Solution:
Lety =ex?, h=0.2 and n = 10.

The values of x and y are as follows:

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1 1.0408 | 1.1735 | 1.4333 | 1.8964 | 2.1782 | 4.2206 | 7.0993 |12.9358|25.5337|54.5981

/o Y, Y, Ys Y, Ys Ys Ys Y Yy Yy

By the Trapezoidal rule, we have

I h
foe'zd“g[(yo +y10) + 20 Yz Fys +ys T ys Ty Ty s Ty)]

0.2
= 7[(1 +54.5981) + 2(1.0408 +1.1735 +1.8964 + 2.1782

+4.9206 +7.0993 +12.9358 + 25.5337)]
2 2
Hence f e dx=17.0621.
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EXAMPLE 8.13

06
Use Simpson’s 1/3rd rule to find f . e 2y by taking seven ordinates.
Solution:

Divide the interval (0, 0.6) into six parts each of width & = 0.1. The val-

2
X

uesof y=f(x) =e

are given below:

x 0 0.1 0.2 0.3 0.4 0.5 0.6

x? 0 0.01 0.04 0.09 0.16 0.25 0.36

y 1 0.9900 | 0.9608 | 0.9139 | 0.8521 | 0.7788 | 0.6977
Yo Y Yy Ys Yy Ys Ys

By Simpson’s 1/3rd rule, we have

2

_ h
e " dx :§[<yo +yg) +4(y, +ys +ys)+ 2y, +y,)l

0.6 _o01
f 3 —[(14+0.6977) + 4(0.99 + 0.9139 + 0.7788) + 2(0.9608 + 0.8521)]

0
0.1 0.1
= ?[1.6977 +10.7308 + 3.6258] = ?(16.0543) =0.5351.

EXAMPLE 8.14

14 ,
Compute the value of f 0 (sinx—logx+e")dx using Simpson’s 3/8
rule. '

Solution:
Let y =sinx —loge x + e*and h = 0.2, n = 6.

The values of y are as given below:

X 0.2 0.4 0.6 0.8 1.0 1.2 1.4
e 3.0295 | 2.7975 | 2.8976 | 3.1660 | 3.5597 | 4.0698 | 4.4042
Yo Y, Y, Ys Y, Ys Ye

By Simpson’s 3/8 rule, we have

14
f ydx— [(yo +y6) +2(ys) + 3y +yo +ys +ys5)]

= %(0.2)[7.7336 +2(3.1660) + 3(13.3247)] = 4.053
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14
Hence fo , (sinx —loge" +e")dx = 4.053.

Obs. Applications of Simpson’s rule. If the various ordinates
in Section 8.5 represent equispaced cross-sectional areas, then
Simpson’s rule gives the volume of the solid. As such, Simpson’s
rule is very useful to civil engineers for calculating the amount
of earth that must be moved to fill a depression or make a dam.
Similarly if the ordinates denote velocities at equal intervals

of time, the Simpson’s rule gives the distance travelled. The
following Examples illustrate these applications.

NOTE

EXAMPLE 8.15

The velocity v(km/min) of a moped which starts from rest, is given at
fixed intervals of time t (min) as follows:

t: 2 4 6 8 10 12 14 | 16 18 20
v 10 18 25 29 32 20 11 5 2 0

Estimate approximately the distance covered in twenty minutes.
Solution:

If s (km) be the distance covered in ¢ (min), then 5 =0

|S|fgo :fOZOUdt=%[X+4-0+2-E], by Simpson’s rule
Here h=2,0v,=0,v,=10,v,= 18, v, = 25 etc.

X=v,+v,=0+0=0

O=v, +to,+v,+v +0,=10+25+32+11+2=80

E=v,+v,+v,+0,=18+29+20+5="72

2
Hencetherequired distance = |s|t220 = 5(0 +4x80+2x72)=309.33km.
EXAMPLE 8.16

The velocity v of a particle at distance s from a point on its linear path
is given by the following table:

s (m): 0 2.5 5.0 75 1100 | 125 | 150 | 17.5 | 20.0
v (m/sec):| 16 19 21 22 20 17 13 11 9
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Estimate the time taken by the particle to traverse the distance of 20
meter, using Boole’s rule.

Solution:
If t sec be the time taken to traverse a distance s (m) then o =0
or dr 1 (say)
— =—=y/(say),
ds v yisay
s=20 _ (20
then 2 _fo yds
Here h=25andn =8.
FPPRIE S R SO B |
1 11 _1
Ys 17>y6 13 Y7 11>y8 9
. By Boole’s Rules, we have
_ 20 o2h
t=" = J, yds =25 (T + 321 + 312y, + 14y +32y; + 12y +32y; + 14y ]

=&5>Hi)+sz(i)+12(i)+32(i)+14(i)+32(i)
45 16 19 21 22 20 17

el

Hence the required time = 1.35 sec.

1
= 5(12.11776) =1.35

EXAMPLE 8.17

A solid of revolution is formed by rotating about the x-axis, the area
between the x-axis, the lines x = 0 and x = 1 and a curve through the points
with the following co-ordinates:

x: 0.00 0.25 0.50 0.75 1.00
y: 1.0000 | 0.9896 | 0.9589 | 0.9089 | 0.8415

Estimate the volume of the solid formed using Simpson’s rule.
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Solution:
Here h =0.25,y,=1, y, = 0.9896, y, = 0.9589 etc.
. Required volume of the solid generated
1 h . . .
=) i de=ae Sl +yst) 4 s 2007

= O35 11 4 0.84157) +41(0.9596)° +(0.9089)°) +2(0.9589)’]

0.25x%3.1416
=—+———[1.7081 +7.2216 +1.839]

=0.2618(10.7687) = 2.8192.
Exercises 8.2

1
1. Use trapezoidal rule to evaluate f o Oy considering five sub-intervals.

1 dx
2. Evaluate f 0T4x applying
(i) Trapezoidal rule
(i1) Simpson’s 1/3 rule
(#1) Simpson’s 3/8 rule.

3. Evaluate f : de
014+«

using

(i) Trapezoidal rule taking h = 1/4.

(i1) Simpson’s 1/3rd rule taking h = 1/4.

(iti) Simpson’s 3/8th rule taking h = 1/6.

(iv) Weddle’s rule taking h = 1/6.

Hence compute an approximate value of @ in each case.

4. Find an approximate value of loge 5 by calculating to four decimal

places, by Simpson’s 1/3 rule, f 5_dx
equal parts. 0 dx+5

dividing the range into ten

4
5. Evaluate f . ¢"dx by Simpson’s rule, given that
e=2.72,¢*=17.39, ¢*=20.09, ¢* =54.6

and compare it with the actual value.

6 X
6. Find fo li- . dx using Simpson’s 1/3 rule.
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2
7. Evaluate f . e 2dkx, using Simpson’s rule. (Take h = 0.25)
8. Evaluate using Simpson’s 1/3 rule,

T
(i) f o sinxdx, taking eleven ordinates.

(ii) f (:T/lecos 0de, taking nine ordinates.

9. Evaluate by Simpson’s 3/8 rule:
9 dx
() f 0141

(ii) f 0:1/2 sin x dx

. a/2 sin
(i) fo e dx

7 \
(iv) f o (1 +3cos”0) db, using six ordinates

10. Given that

X 4.0 4.2 44 4.6 4.8 5.0 5.2
logx: | 1.3863 | 1.4351 | 1.4816 | 1.5261 | 1.5686 | 1.6094 | 1.6487

52
evaluate f \ logxdx by

b
¢) Simpson’s 3/8 rule,
d) Weddle’s rule.

Also find the error in each case.

a) Trapezoidal rule
)

Simpson’s 1/3 rule,

(
(
(
(

/2
11. Use Boole’s five point formula to compute f . J(sinx) / dx
12. The table below shows the temperature f (¢) as a function of time:

t: 1 2 3 4 5 6 7
f#): 81 75 80 83 78 70 60

1 7
Using Simpson’s 3 rule to estimate f ) f(t)dt.
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A curve is drawn to pass through the points given by the following table:

x: 1 1.5 2 2.5 3 3.5 4
y: 2 2.4 2.7 2.8 3 2.6 2.1
Estimate the area bounded by the curve, x-axis and the linesx =1, x = 4.

A river is 80 feet wide. The depth d in feet at a distance x feet. from one

bank is given by the following table:

x 0 10 20 30 40 50 60 70 80
y: 0 4 7 9 12 15 14 8 3

Find approximately the area of the cross-section.

A curve is drawn to pass through the points given by the following table:

X 1 1.5 2 2.5 3 3.5 4
y: 2 2.4 2.7 2.8 3 2.6 2.1

Using Weddle’s rule, estimate the area bounded by the curve, the x-axis,
and the linesx =1, x = 4.

A curve is given by the table:

X 0 1 2 3 4 5 6
y: 0 2 2.5 2.3 2 1. 71. 5

The x-coordinate of the C.G. of the area bounded by the curve, the end
ordinates, and the x-axis is given by Ax = . xydx, where A is the area.
Find x by using Simpson’s rule.

A body is in the form of a solid of revolution. The diameter D in cms of
its sections at distances x cm. from one end are given below. Estimate
the volume of the solid.

X 0 2.5 5.0 75 10.0 12.5 15.0
D: 5 5.5 6.0 6.75 6.25 5.5 4.0

The velocity v of a particle at distance s from a point on its path is given

by the table:

s ft: 0 10 20 30 40 50 60
v ft/sec:| 47 58 64 65 61 52 38

Estimate the time taken to travel sixty feet by using Simpson’s 1/3 rule.
Compare the result with Simpson’s 3/8 rule.
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19. The following table gives the velocity v of a particle at time ¢:
t (seconds): 0 2 4 6 8 10 12
v (m/sec.): 4 6 16 34 60 94 136

Find the distance moved by the particle in twelve seconds and also the
acceleration at ¢t = 2 sec.

20. A rocket is launched from the ground. Its acceleration is registered
during the first eighty seconds and is given in the table below. Using

Simpson’s 1/3 rule, find the velocity of the rocket at ¢ = 80 seconds.

t (sec): 0 10 20 30 40 50 60 70 80

f(cm/sec?.): 30 31.63 | 33.34 | 35.47 | 37.75 | 40.33 | 43.25 | 46.69 | 50.67

21. A reservoir discharging water through sluices at a depth i below the
water surface has a surface area A for various values of h as given below:

h (ft.): 10 11 12 13 14

A (sq. ft.):| 950 1070 1200 1350 1530

If ¢ denotes time in minutes, the rate of fall of the surface is given by
dh/dt = — 48\ h/A.

Estimate the time taken for the water level to fall from fourteen to ten
feet above the sluices.

8.6 Errors in Quadrature Formulae

The error in the quadrature formulae is given by

E= fbydx — be(x)dx
where P(x) is the polynomial representing the function y = f(x), in the in-
terval [a, b].
Error in Trapezoidal rule. Expanding y = f(x) around x = x by Taylor’s
series, we get

4 (x_x())Q ”
= Yo Tx—a +——y, +...
A T (1)
xo+h xo+h , (x —x, )2 )
fx ydx=fx [y + (x = x¢)y, +Ty0 +...Jdx (2)

2 3
=g0h+§y0 +§y0 +...
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Also A, = area of the first trapezium in the interval [x,,x,]= éh(go +1y,) (3)
! h2 ”
Puttingx =x, +h and y =y, in (1), we get y, =y, +hy, +2—!y0 +...

Substituting this value of i, in (3), we get

1 .
A1=§h Yo +yo +hy, +§yo +... (4)
h2 ’ h3 A
=h?/0+?yo +ﬁyo +..
.. Error in the interval [xo,xl]=J:_xI ydx — A, [(2) - (4)]
1 1 . o
=§_ﬁh8y0 +...=—Ey0 +...
[

i.e., Principal part of the error in [xy,x,]= ~ 1o

3
Hence the total error E = —}ll—z[yo" +y oty

Assuming that y"(X) is the largest of the n quantities Yo sY1 e Yoy We
obtain

3 _ 2
E<‘%y”<x>=—%y"<x> [+ nh=b—a.(5)

Hence the error in the trapezoidal rule is of the order h2.

Error in Simpson’s 1/3 rule. Expanding y = f(x) around x = x, by Taylor’s
series, we get (1).

. Over the first doubt strip, we get
Xy xo+2h ' (x —X )2 "
ft ydx=f‘ Yo +(x—xy)y, + 2'0 Yo +}Ix (6)

Xo

Loy A 8K 16R 320
T T T Ty 0 T

Also A, = area over the first doubt strip by Simpson’s 1/3 rule
1
= gh@o +4y, +y,) (7)

Yo't
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Puttingx =x, +h and y =y, in (1), we get
! hz 3 "
1 = Yo +hy, +2_!?/”+§?/0 +...
Again putting x =x,+ 2h and y =y, in (1), we have

. 4R* o, S8R,
Ya =y +2hy, +?yo +?yo +...

Substituting these values of yy, and y, in (7), we get
h S
Ar =310 H 4 Yo Fhyy +rye |y,
’ 4]12 " 8h3 "
+(2hy0 +2—!y0 +?y0 +):|

, 4R, 2h* . BR
=2hyo+2h2% +T?/0 +T90 +§yo +--

(8)
- Error in the interval [x, x,]
% 4 5 i
= _d—Az———hs ”“+... 6—8
[ o= = (5=, [(6)-(8)]
i.e., Principal part of the error in [x, x,]
_ 4 5 5 v __ h5 iv
_(15 18)h Jo = Tgp
5
Similarly principal part of the error in [xy,x,]= —%yg’” and so on.
5
Hence the total error E = —%[yoi” +yy" 44y 2n—1)]
Assuming the y*(X) is the largest of y . y,*, ..., y*, ,, we get
nh® (b-ah*
—_ w = 7 W '.'2 hzb— 9
E<=—1"(X) ALY [+ 2n a..(9)]

i.e., the error in Simpson’s 1/3 -rule is of the order h*.

Error in Simpson’s 3/8 rule. Proceeding as above, here the principal part
of the error in the interval [x, x.]
3h°

- iv 10
s Y (10)
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Error in Boole’s rule. In this case, the principal part of the error in the
interval

8h" .
X, x| =———y" 11
[x,, x,] o5 (11)
Error in Weddle’s rule. In this case, principle part of the error in the
interval
h7
[XO, x6] = Eyoib‘ (12)

8.7 Romberg’s Method

In Section 8.5, we have derived approximate quadrature formulae with
the help of finite differences method. Romberg’s method provides a simple
modification to these quadrature formulae for finding their better approxi-
mations. As an illustration, let us improve upon the value of the integral

I= fﬂb f(x)dx,

by the Trapezoidal rule. If I, I, are the values of I with sub-intervals of
width i, h, and E , E, their corresponding errors, respectively, then

b—ah? b—alh? , -
E1=_%y”(x),Eg=—( il; 2 y/r<X>

Since y"(X) is also the largest value of y"(x), we can reasonably assume that

y"(X) and y"(X) are very nearly equal.

E _M E, hy

=— or =
E, h3 E,—E  hy—h

Nowsince I=1,+E, =1, +E,,

E,—-E =1-1, (2)
From (1) and (2), we have
h’
hy* , I,hy® — Lk,
Hence I=I +E =1, +W(11 —1,) ie., 1=W (3)

which is a better approximation of I.
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1
To evaluate I systematically, we take h, = h and hy = Eh

2 2 _
so that (3) gives [ = L <h/2>2 122}12 = 4y, —1,
(h/27—=h 3

i.e., I(h,h/2)=%[4l(h/2)—1(h)] (4)

Now we use the trapezoidal rule several times successively halving h
and apply (4) to each pair of values as per the following scheme:

I(h)
I(h, h/2)
I(h/2) I(h, h/2, h/4)
I(h/2, h/4) I(h, h/2, h/4, h/8)
I(h/4) I(h/2, h/4, h/8)
I(h/4, h/8)
I(h/8)

The computation is continued until successive values are close to each oth-
er. This method is called Richardson’s deferred approach to the limit and
its systematic refinement is called Romberg’s method.

EXAMPLE 8.18
1
Evaluate
fo 1

dx

correct to three decimal places using Romberg’s
+x

method. Hence find the value of log_ 2.
Solution:

Taking h = 0.5, 0.25, and 0.125 successively, let us evaluate the given inte-
gral by the Trapezoidal rule.

(i) When h = 0.5, the values of y = (1 +x)™" are:
X 0 0.5 1
y: 1 06666 05

I= 02—5(1 +0.5+2%0.6666) = 0.7083.

(i) When h = 0.25, the values of y = (1 +x) are:

X 0 0.25 0.5 0.75 1
y: 1 0.8 10.6666 | 0.5714| 0.5
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I= O'T%[(l +0.5)+2(0.8 +0.666 + 0.5714)] = 0.697

(iti) When h = 0.125, the values of y = (1 +x)™" are:

x: 0 0.125 | 0.25 | 0.375 | 0.5 | 0.625| 0.75 | 0.875

y: 1 0.8889| 0.80. | 7272 |0.6667|0.6153 | 0.5714 | 0.5333

0.5

A2
I= %5[(1 +0.5) +2(0.8889 + 0.8 + 0.7272 + 0.6667

+0.6513 4+ 0.5714 + 0.5333)]
=0.6941

Using Romberg’s formulae, we obtain

Ihh/2) =%[4I(h/2) — ()= %[4 % 0.697 — 0.7083] = 0.6932
Ith/2,h/4)= %[41(}1 /4)—1(h/2)]= é[ll X 0.6941 — 0.697] = 0.6931

I(h,h/2,h/4) =%[41(h/2,h/4)—1(h,h/2)] =0.6931

) 1 dx
Hence the value of the integral f 0 Tax =0.693
x

1 dx 1
Also e |log(1 + x)|0 =log2

Hence from (i) and (ii), we have

EXAMPLE 8.19

log, 2 = 0.693.

Use Romberg’s method to compute f ! dx - correct to four decimal
places. Ol+x

Solution:

We take h = 0.5, 0.25 and 0.125 successively and evaluate the given

integral using the Trapezoidal rule.

(i) When h = 0.5, the values of y = (1 +x%)" are

x 0 0.5 1.0

y: 1 0.8 0.5
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I= O?5[1 +2x%0.8%0.5)=0.775

(i) When h = 0.25, the values of y = (1 +x2)™" are

x: 0 0.25 0.5 0.75 1.0
E 1 0.9412 | 0.8 0.64 0.5

0.25
= T[l +2(0.9412 + 0.8+ 0.64) +0.5] = 0.7828

(iii) When h = 0.125, we find that I = 0.7848

Thus we have

I(h) =0.7750, I1(h/2) = 0.7828, I(h/4) = 0.7848

Now using (4) above, we obtain
I(h,h/2)= é[41(h /2)=1(h)]= %(3.1312 —~0.775) = 0.7854
]

I(h/2,h/4)= 3 (4I(h/4)—=1(h/2)]= é(3.1392 —0.7828)=0.7855

I(h,h /2,h/4)= é[4l(h /2,h/4)=1(h,h/2)]= é(3.142 —0.7854) = 0.7855

.. The table of these values is

0.7750
0.7854

0.7828 0.7855
0.7855

0.7848

Hence the value of the integral = 0.7855.

EXAMPLE 8.20

05(
Evaluate the integral f ( X

- )Jx using Romberg’s method, correct
to three decimal places. 0 \sinx
Solution:

Taking h = 0.25, 0.125, 0.0625 successively, let us evaluate the given
integral by using Simpson’s 1/3 rule.
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are

(i) When h = 0.25, the values of ¥ =

sinx

x: 0 0.25 0.5
y: 1 1.0105 1.0429
Yo A Yy

. By Simpson’s rule,
2
I= %[(yo o)+ Ay ] = —035 [(14+1.0429) +1.0105]
=0.5071

(i) When h = 0.125, the values of y are

x: 0 0.125 0.25 0.375 0.5
y: 1 1.0026 1.0105 1.1003 1.0429
Yo LA Y, Ys Y,

. By Simpson’s rule

h
1=§[<yo +y,) 4y, +ys)+2y,]

A2
= %[(1 +1.0429) +4(1.0026 +1.1003) + 2(1.0105)]

=0.5198
(iti) When h = 0.0625, the values of y are
x: | 0 10.0625| 0.125 [0.1875| 0.25 [0.3125|0.1875|0.4375| 0.5
y: | 1 10.0006 | 1.0026 | 1.0059 | 1.0157 | 1.0165 | 1.1003 | 1.0326 | 1.0429
Yo Y Yy Ys Yy Ys Ys Yz Ys

. By Simpson’s rule:

h
I=§[(yo +ys)+ 4y, +ys +ys o)+ 2y, +yy +ye)]

_ 0.0625

=(0.510253

+2(1.0026 +1.0105 +1.1003)]

[(1+1.0429)+ 4(1.0006 +1.0059 +1.0165 +1.0326
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Using Romberg’s formulae, we obtain

h h
I(h,—)= 3[41(2) 1(11)]—0.5241

9
]l)=1{41(ﬁ)—1(hﬂ 0.5070
4 3174 9

h

2’

b1 [4I(ﬁ ﬁ)_l(hg)]: 05013

h
16

I(h.

4 3 2°4

Hence f ( )dr =0.501
sin x

8.8 Euler-Maclaurin Formula

Taking AF(x) = f(x), we define the inverse operator A™ as
Flx)=A"f(x) (1)
Now F(x,) - F(x,) = AF(x,)) =flx,)
Similarly, F(x,) - F(x,) =flx,)
F(x )-F(x, )=flx )
Adding all these, we get

x,) = Flxy) = E flx; (2)

i=0

where x, x, .....,x, are the (n + 1) equispaced values of x with differ-
ence h.
From (1), we have
=A" f()=E+D" fx)=("" -1 fx) [ E = ehD]
KD* h’D’ B
Kl+hD+ o T +-~~)—1} flx)
-1
_ | P D .
(hD) [l+ 5l + al + flx) 3)

212 414
;D [l_h_D WD* ‘D

32 12 720
1 1 h m
= fde = flo+ —%f

+--~i|f(x)
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Puttingx =x and x =x, in (3) and then subtracting, we get

Fis, )= Fle) = [ flde =2 {f(x,)= fleg) +2,)
+0 ‘ <4)
h&
)=l )= )

.. From (2) and (4), we have

n—1 1 h
Ef f f)ds =G, ) = flaeg )+ [f x,)

2
h3
f )= 5 L") = o)1+
n=1
e e 3 ) 5= Sl )

~f g o ) = g )T

=§[f<x(,>+zf<x1>+2f<x2>+---+2f<x,,_1>+f<xn>1

h h®
ol ) = flxg)l+ =5

12 oLy = [ ()] -+

xo_nh
Hence fxo ydx =g[yo +2y, + 2y, +--+2y,_, +y,] (5)
2 4
) h

—E% — Y H%Q/n

nm "

-y )t...

which is called the Euler-Maclaurin formula.

Obs. The first term on the right-hand side of (5) represents the
approximate value of the integral obtained from trapezoidal
rule and the other terms denote the successive corrections to
this value. This formula is often used to find the sum of a series
of the form

NOTE

ylx,) +ylx,+h) + ... +yx, +nh).

EXAMPLE 8.21

Using the Euler-Maclaurin formula, find the value of loge 2 from

1 dx
fO 1+xx
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Solution:

Taking y = X, =0,n=10,h =0.1, we have

(1+x)
-6

(1+4x)? 1+t

Then the Euler-Maclaurin formula gives

1 dx 0.1[ 1 2 2 2 2
[l +

"

y':— y =

— - + -
1+0 1+01 1402 1403 1+0.1

0l+x 2
2 2 2 2 2 1 i|
+ + + + + +
1405 1406 1407 1408 1409 1+1

O Vi e e O (U8 Vi e A
12 |a+0* 1+07%] 720 |(1+1)* a+0)*
=(0.693773 —0.000625 + 0.000002 = 0.693149
1 dx 1 B
Also fo To.= |log(1 + x)|0 =loge
Hence log 2 = 0.693149 approx.

EXAMPLE 8.22

Apply the Euler-Maclaurin formula to evaluate

I S S S I
. 512 53% 55 7 997
Solution:
1 ! _2 nm _24
Taking y=—,x,=51,h=2,n =24, we have y =—5,y" =—~

2 2
x x x
Then the Euler-Maclaurin formula gives

f99@_%[i+i+i+ +L+L]
5142 2[51%2 532 557 7 977 99?

27 [—2 -2 } N @) [—24 _ —24]

12 199° 51°] 720[99° 51°
IS S T +L_lf9%
512 53 55 997 2Js51 47

+1(L+L)+1(L_L)_E(L_L)+
2\512  99%) 3\51° 993) 30\51° 99°

1 1 99

—=|  +0.000243 + 0.0000022 —...=0.00499 approx.

Xls1




NUMERICAL DIFFERENTIATION AND INTEGRATION © 383

8.9 Method of Undetermined Coefficients

This method is based on imposing certain conditions on a preassigned
formula involving certain unknown coefficients and then using these condi-
tions for evaluating these unknown coefficients. Assuming the formula to
be exact for the polynomials 1, x, %4, x" respectively and taking . for y(x ), we
shall determine the unknown coefficients to derive the formulae.

Differentiation formulae. We first derive the two-term formula by as-
suming

Y, =agy, +ay, (1)
where the unknown constants @, a, are determined by making (1) exact for
y(x) =1 and x respectively.

So, putting y(x) = 1, x successively in (1), we get
O=a,+a and 1 =ayx +a,(x,+h)
where a,=1handa,=-1/h.
1
Hence Yo =7 (1 = o) (2)
The three-term formula can be derived by taking
Yo = a1y +agyy +ary, (3)

where the unknowns a_, a, a, are determined by making (3) exact for y(x)

=1, x, 2%, respectively.

O=a, +a,+a

l=a (x,—h)+apx,+a(x,+h)
and 2, =a  (x,—h)?+apx®+a(x,+h)

To solve these equations, we shift the origin to x i.e., x,= 0. As such, Yo
being slope of the tangent to the curve y = f(x) at x = x, remains unaltered.
Thus the equations reduce to

a,+a,+a =0,
—a ,+a,=1/handa +a =0,

giving a,=-1/2h,a,=0,a,=1/2h

1
Hence Yo = E(% —y-1), (4)



384 « NuMERICAL METHODS IN ENGINEERING AND SCIENCE

Similarly for second order derivative, taking

Yo =a_yy, +agy, +ay,

and making it exact for y(x) = 1, x, x* and putting x, = 0, we get

n 1
Yo =h_2<yl —2yy +y_y) (5)
Integration formulae. The two-term formula is derived by assuming
xo+h
fx ydx = agy, +ayy, (6)

where the unknowns a0, a1 are determined by making (6) exact for
y(x) =1, x respectively.

So putting y(x) = 1, x successively in (6), we get
xo+h
a, +a, =f~ l-dx=h

1

xo+h
ayxy +a,(x, +h)= f‘0+ x-dx =§[(x0 +h)? —xg]

Yo
To solve these, we shift the origin to x and take x, = 0.
.. The above equations reduce to

1 1 1
ay +a;, =h and a; =—h, whence a, =—h,a, ==h
2 2 2

xo+h

Hence f - ydy =%(y0 +y,) which is trapezoidal rule. (7)

The three-term formula is derived by assuming

xo+h
f ydx=a_yy_, +ayy, +ayy, (8)

xo—h
where the unknowns a_, a,, a, are determined by making (8) exact for y/(x)
=1, x, x*respectively.

So putting y = 1, x, x? successively in (8), we obtain

xg+h
a_, ta,+a =f:0 1-dx=2h

¢o—h

xg+h -
a_,(xy —h)+ayx, +alx, +h)= fx(: xdx :%Kx() +h)2 —(x, —]1)2]
a—l<x0 _h>2 +a0x02 +al<x0 +h>2 — fxo‘*'h

Xo—h

oy = é[(xo +h)® = (x, —h)*]
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To solve these equations, we shift the origin to x, and take x, = 0.
. The above equations reduce to

2
a +a,+a =2h —-a +a =0and a_, +q =§h

1 4
Solving these, we get a_, = Eh =a,,a, = Eh

xo+h J
Hence f _+] ydx = %(y_l + 4y, +y,) which is Simpson’s rule. 9)

X

8.10 Gaussian Integration

So far the formulae derived for evaluation of f ’ f(x)dx, required the

values of the function at equally spaced points of the interval. Gauss derived
a formula which uses the same number of functional values but with differ-
ent spacing and yields better accuracy.

Gauss formula is expressed as

f_llf(x)dx=w1f(x1)+w2f(x2)+---+wnf(x”)=zwif(xi) (1)
i=1

where wi and i are called the weights and abscissae, respectively. The ab-
scissae and weights are symmetrical with respect to the middle point of the
interval. There being 2n unknowns in (1), 2n relations between them are
necessary so that the formula is exact for all polynomials of degree not ex-
ceeding 2n — 1. Thus we consider

f(x)=00 +clx+czx+...+czn_]x2n—1 )
Then (1) gives
1 1
f_1f<x)dx = f_1<00 + X + CoX + ... +02n_1x2n—1 )dx <3)

2¢, + 2 + 2 +
— C —C —C e
0 Fgt
Putting x =x,in (2), we get

2n—1

_ ' 2 3
flx;)=cy+ex; Fegx; +e5x) +...4 ¢y, x;
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Substituting these values on the right hand side of (1), we obtain

1 : e
f_lf(x)dx =wl(cy +¢,x, + x> +e3x)” +.ooy, 10"

. 2 3 2n—1
+wy(c,+cx,+c,x+exj’+ . +e,  x7)
. 2 3 . 2n—1
+w,(c,tcx,+e,x’+exl’+ . +e,  x2)

102 3 2n -1
+wn(c,+cxn +c,xn’+can’+ ... +c, x> 1)

=c,(w, +w,+w,+ - +w ) +c (wx +wx,+wx,+ - +w x)

.2 24 2L J a2
+e, (wx +w,x+w xS+ - +w x )
PPN

- 2n—1 s oA 2n—1 N 2n -1 .. 2n—1
+te, (wa ' rw, a2 rw e e w x ) (4)

But the equations (3) and (4) are identical for all values of ¢, hence
comparing coefficients of ¢, , we obtain 2n equations in 2n unknowns w, and
x (=12, ... n).

w; twy twy+---+ w, =

WX FWwyXy +w3xy +---+w,x, =
02+ wyx,” +wgxs” oot =
WXy T WoXy T W33 w,x, =

oA 2n—1 . 2n—1 2n—1 . 2n—1 _
w; X, + wyx, + wyxsy +---tw,x, = 0]

The solution of the above equations is extremely complicated. It can
however, be shown that x, are the zeros of the (n + 1)th Legendre polyno-
mial.

Gauss formula for n = 2 is

[ _11 Fla)dx = w, flx,) + 1w, flxy)

Then the equations (5) become
w; tw, =2

WX, T+ wyx, =0
2
2 2
wx;” Fwyxy =§

wyx,” + wyx,” =0
Solving these equations, we obtain

w=w,=1,x=- 143 and X, = 1A,
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Thus Gauss formula for n = 2 is

S flde= f=14E)+ £0/5) )

which gives the correct value of the integral of f(x) in the range (- 1, 1)
for any function up to third order. Equation (6) is also known as Gauss-
Legendre formula.

Gauss formula forn = 3 is

Lo (A8

which is exact for polynomials upto degree 5.

The abscissae xi and the weights wi in (1) are tabulated for different
values of n. The following table lists the abscissae and weights for values of
n from 2 to 5.
TABLE 8.1 Gauss integration: Abscissae and Weights

N X, w,
2 -0.57735 1.0000
0.57735 1.0000
3 —0.7746 0 0.55555
0.00000 0.88889
0.77460 0.55555
4 —0.86114 0.34785
—0.33998 0.65214
0.33998 0.65214
0.86114 0.34785
5 —0.90618 0.23693
—0.53847 0.47863
0.00000 0.56889
0.53847 0.47863
0.90618 0.23693
Gauss formula imposes a restriction on the limits of integration to be from

—1to 1.

b
In general, the limits of the integral f . f(x)dx are changed to—1to 1
by means of the transformation

1 1
==(} b 8
X 2( 1)u+2( +a) (8)
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EXAMPLE 8.23
Evaluate (! i

using Gauss_%olr_riﬁﬁzla forn=2andn=3.

Solution:

(i) Gauss formula for n = 2 is

= (——)+f( ls)where f =

LR 3435
(—14/3)? 1+1/( 4 4 7

(ii) Gauss formula for n = 3 is

AT It e
0
2

8 5(§+§)=§+5_=1.5833.
8 8) 9 T

Thus I==1)+—
9 9

EXAMPLE 8.24

Using the three-point Gaussian quadrature formula, evaluate f L dx

0
Solution: T4

We first change the limits (0, 1) to — 1 to 1 by (8) above, so that
1 1 1
= (1= 0u=(1+0)==(u+1).
2( >u2( ) 2<u )
1
1 dx f §du _fl du
0].+Y - ;(U‘l’l) _lu+3

Gauss-formula for n = 3 is

I=§f(0)+gf( \/7)+f(\/7) where f(x) 1-|-1x2

Thus I=§(l)+§{ L + L }
9\3) 9|(3/5+3 (3/5)+3
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= i + 2—5 =0.29629 + 0.39682 = 0.6931
27 63
Otherwise (using the table):
1
I=w, f(u)+w, f(uy)+w, f(uy) where f(u;)= 3

Using the abscissae and weights corresponding to n = 3 in the above table,
we obtain

1 1 1
=————(0.555) + ——(0.8889) + ——————(0.555)
3—0.7746 3-0 3+0.7746

=0.4497 X 0.5555 + %(0.8889) +0.2649 X 0.5555 = 0.6931.

EXAMPLE 8.25

Evaluate f ﬂdx by the Gaussian three-point formula.
014 (x+1)*

Solution:

Changing the limits of integration 0 to 2 to — 1 to 1 by

2-0 2+0

(b au+—= (b+ a)=——u+——=u+l
2 2 2

2x +2x+1 f (u+1) +2u+1)+1du [+ dx = du]
01+ x+1 - 1+(w+1+w)?

lu +4u+4
_f L(u+2)* _f fw

2
=w, f(uy) +w, f(uy) +ws f(uy) where f(u ):%
4 4
Now JO=5r 3=
— 2
f_(i)= G759 +2° _ 15016 _
V5) =375 42 +1 3.2548
f ﬁ _ BT+ 7694 _ o
5) [JB/5) +2]' +1 60.2652
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Using the three-point Gaussian formula, we have

=" fldu :§f<0>+gf[(—\/§)+f (\/% ﬂ

- §(i) +2[0.4614+0.1277) = 0.5365
ol17)" 9

Solution:

Changing the limits of integration (0.2 to 1.5) to (- 1, 1) by
2(b a)u+— (b+a) 2(15 0.2)u+— (15+02)
=0.65u+0. 85
I= f - dx—065f ~(065u+085)2 7, —065f flu)d

so that f{u) = ¢~ (065 + 0852

Now f(0) 650)+0852= ().4855,

(=375) = F(=0.7746) = ¢ 1065-0TH6+085F — ) 9959
f
F(J375) = £(0.7746) = ¢ 10BOTH+0SE _ ) 1607

Using the Gauss three-point formula, we have

1= fldu=—fO)f(—375) + f(3/5)]

5 5
= 5(0.4855) + 5[0.8869 +0.1601]=0.4316 + 0.5187 =1.0133

1.5 2
Hence f e dr=0.65(1.0133) = 0.65865.

Exercises 8.3

1. Obtain an estimate of the number of sub-intervals that should 2be cho-
sen so as to guarantee that the error committed in evaluating f dx/x by
trapezoidal rule is less than 0.001.

2. Evaluate f ? de using the Romberg’s method. Hence obtain an ap-
0x" +4

proximate value of 7.
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. Apply Romberg’s method to evaluate f 452 log x dx, given that

x: 4.0 4.2 44 4.6 4.8 5.0 5.2
log x: | 1.3863 | 1.4351 | 1.4816 | 1.526 | 1.5686 | 1.6094 | 1.6486.

. Using the Euler-Maclaurin formula, find the value of f e sin x dx cor-
0

rect to five decimal places.

. Using the Euler-Maclaurin formula, prove that

2

\ N 1
(@) Exz _ n(n+1)6(2n+1) ) ng ={n(n2+ )}

1

. Apply the Euler-Maclaurin formula, to evaluate

1 1 1 1
400 402 404 500
1 1 1 1
(b) + +

(201)* (203>  (205)* +"'+(299)2

. Assuming that f Oh y(x)dx = hiayy, + ayy,) +h*(byy, + by, ) derive the

quadrature formula, using the method of undetermined coefficients.

. Using the Gaussian two-point formula compute

n 2
@ [ s )y =iy

1

. Using three point Gaussian quadrature formula, evaluate:

@ ) [ Lax O -

2 x 11428 dx.
Evaluate the following, integrals, using the Gauss three-point formula:
4 5 4
(a) fz 1+ x")dx (b) J, (2x2 )dx

1
Using the four point Gauss formula, compute f . xdx correct to four
decimal places.
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8.11  Numerical Double Integration

The double integral
d rb
1= "] fleydsdy

is evaluated numerically by two successive integrations in x and y directions
considering one variable at a time. Repeated application of trapezoidal rule
(or Simpson’s rule) yields formulae for evaluating I.

Trapezoidal rule. Dividing the interval (e, b) into n equal sub-intervals
each of length h and the interval (¢, d) into m equal sub-intervals each of
length k, we have:

x=x,+ih,x,=a,x =b.
y_,‘ = y() +]k’ y() =c, ym = d
Using trapezoidal rule in both directions, we get

1= U0+ S+ 2 o)+ e+t Sl )My

hk
= Lo+ fon) 4 2for + fon +oeat fyom =)

+f,0+ f,,)+2(f + fra +.oo+ fam=1)
n—1

+22{<fi0 + fin) 2 [0 + fio +.. F fim—=1)}]
i=1

Whereflj = flx,, yj).
Simpson’s rule. We divide the interval (a, b) into 2n equal sub-intervals
each of length h and the interval (¢, d) into 2m equal sub-intervals each of
length k. Then applying Simpson’s rule in both directions, we get
Yjn Xit1 h Y+
S [ pydedy =7 77 UG+ 4 F o) + Fla,y)ldy
Yj-1 Xi—1 3 Yj-1
hk ,
= EKfi—l,j—l +4fi )+ fia >+l )+4(f; )j-1 +4fi,j + fi,j+1>
Hfisrsjor T4 J+ i )]
Adding all such intervals, we obtain the value of I.
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EXAMPLE 8.27
2 dxd, y

Using trapezoidal rule, evaluate I = f f

vals.

taking four sub-inter-

Solution:

Taking h = k = 0.25 so that m = n = 4, we obtain

1
I=64 f11 +f17 +2f1125>+f<1>1'5)+f(1,1,75)>

oy T foo +2(fe10s + fors + f(2,1.75)
+2{f1os1) + fuos2) T2 Gas105F fGasis T faosims)
+fasn + fase F2(fus105 + fusis + fusims)

+famsn + famse 2 a1 + fumsis T fumsims)l]
=0.3407

EXAMPLE 8.28

Apply Simpson’s rule to evaluate the integral

26 4.4 dxdy
I= fZ f4 XYy
Solution:

Taking h = 0.2 and k = 0.3 so that m =n =2, we get
h

I= 9@f42+4f423+f426

+4{f(4.2,2)+41(4.2,2.3) + (4.2,2.6)}
+F(4.4,2)+41(4.4,2.3)+ (4.4,2.6)]

036 [0.6559 +4(0.6246) + 0.5962]

=%x3 7505 = 0.025

Exercises 8.4

1. Evaluate f 01 f 01 xe’ dxdy using the Trapezoidal rule (h =k =0.5).
2. Apply the Trapezoidal rule to evaluate

f f dxdy taking two sub-intervals.
\/7



394 « NUMERICAL METHODS IN ENGINEERING AND SCIENCE

o [ nyd*dy | takingh =k =0.25
(1+x%)

3. Evaluate f ? f ? fx,y)dxdy the Trapezoidal rule for the following data:
0Jo

y/x 0 0.5 1 1.5 2
0 2 4 5
3 6 9 11
2 4 6 8 11 14

4. Using the Trapezoidal and Simpson’s rules, evaluate

1l
f . f . ¢™dxdy taking two sub-intervals.

5. Using Simpson’s rule, evaluate

8 (3 dxdy
2 flzsf;szz ff01+i+y »taking h =k =0.5.

8.12 Objective Type of Questions

Exercises 8.5

Select the correct answer or fill up the blanks in the following questions:

1. The value of 1 dx
0]+«

(a) 0.96315 (b) 0.63915
(c) 0.69315 (d) 0.69351.

by Simpson’s rule is

2. Using forward differences, the formula for f (@) = ....... )

3. In application of Simpson’s 1/3rd rule, the interval h for closer approxi-
mation should be ...... )

4. f(x) is given by

x: 0 0.5 1
fl): 1 0.8 0.5
then using Trapezoidal rule, the value of f 01 flx)dxis...... .
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If x: 0 0.5 1 1.5
' flx): 0 0.25 1 2.95 4,
then the value of f ’ f(x)dx by Simpson’s 1/3rd rule is ... .
0
. Simpson’s 3/8 rule states that ..... .
. For the data:
t: 3 6 9 12
y(t): -1 1 2 3

2
the value of f ; y(t)dt when computed by Simpson’s 1/3 rule is
(a) 15 (b) 10 (€)0 (d) 5.

. While evaluating a definite integral by Trapezoidal rule, the accuracy

can be increased by taking ..... )

9. The value of f 01 . fxxg by Simpson’s 1/3 rule (taking n = 1/4) is ..... )
10. For the data:
x: 2 4 6 8
f): 3 5 6 7,
f 28 f(x)dx when found by the Trapezoidal rule is
(a) 18 (b) 25 (c) 16 (d) 32.
11. Givenf, . f, - oo fro frio frar fa Jor foos then the Trapezoidal rule for evalu-

12.

13.

14.
1S.

ating I = fhf% f(x,y)dxdy is
Xo Yo

Gaussian two-point quadrature formula states that ....... .

d

The expression for (d—Z) using backward differences is ..... )

(=1,

The number of strips required in Weddle’s rule is ...... )

The error involved in Simpson’s 1/3 rule is
h3 " h5 iv 3h5 iv 8h7 vl
(d)—ﬁf (X) (b)—%f (X) (CF@J[ (X) <d>_Ef (X)
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16.
17.

18.

19.
20.

21.

22

24.

25.
26.
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The expression for Romberg integrationis I = ......

The number of strips required in Simpson’s 3/8 rule is a multiple of
(a)1 b) 2 (c)3 (d) 6.
Add two terms to the Euler—Maclaurin formula

xo+nh h
fx ydx=§(y0+2yl+2y2+...+2yn_]+yn)—...

By the Gauss three-point formula, f _11 fx)dx =

The order of error in the Trapezoidal rule and Simpson’s 1/3 rule is ...
and ....., respectively

6 4 16 1 1
If yo =Ly, =E,yz =g,ys =%,y4 =§ and h =Zthen using the Trap-

ezoidal rule, f jydx =....
(

. The total error E in Trapezoidal rule = ...... )

23.

X

Using Simpson’s 1/3 rule, fold— =...(takingn =4)
Ify,=1,4,=0.5,4,=0.2,y, =xO.1, y,=0.06,y,=0.04 and y,= 0.03, then

N

y by Simpson’s 3/8 rule = .......
Iff(0)=1,f(1)=2.7,f(2)=74,f(3)=20.1,f (4) =54.6 and h = 1, then
f;f(x)dx by Simpson’s 1/3 rule = ..... .

Simpson’s 1/3 rule and direct integration give the same result if ...... )

Whenever the Trapezoidal rule is applicable, Simpson’s 1/3 rule can also
be applied. (True or False)



