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10.1 Introduction

A number of problems in science and technology can be formulated
into differential equations. The analytical methods of solving differential
equations are applicable only to a limited class of equations. Quite often
differential equations appearing in physical problems do not belong to any
of these familiar types and one is obliged to resort to numerical methods.
These methods are of even greater importance when we realize that com-
puting machines are now readily available which reduce numerical work
considerably.

Solution of a differential equation. The solution of an ordinary differen-
tial equation means finding an explicit expression for y in terms of a finite
number of elementary functions of x. Such a solution of a differential equa-
tion is known as the closed or finite form of solution. In the absence of such
a solution, we have recourse to numerical methods of solution.

Let us consider the first order differential equation

dy/dx =flx, y), given y(x,) =y, (1)
to study the various numerical methods of solving such equations. In most
of these methods, we replace the differential equation by a difference equa-
tion and then solve it. These methods yield solutions either as a power se-
ries in x from which the values of y can be found by direct substitution, or
a set of values of x and y. The methods of Picard and Taylor series belong
to the former class of solutions. In these methods, y in (1) is approximated
by a truncated series, each term of which is a function of x. The information
about the curve at one point is utilized and the solution is not iterated. As
such, these are referred to as single-step methods.

The methods of Euler, Runge-Kutta, Milne, Adams-Bashforth, etc. be-
long to the latter class of solutions. In these methods, the next point on the
curve is evaluated in short steps ahead, by performing iterations until suf-
ficient accuracy is achieved. As such, these methods are called step-by-step
methods.

Euler and Runga-Kutta methods are used for computing y over a lim-
ited range of x- values whereas Milne and Adams methods may be applied
for finding y over a wider range of x-values. Therefore Milne and Adams
methods require starting values which are found by Picard’s Taylor series
or Runge-Kutta methods.
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Initial and boundary conditions. An ordinary differential equation
of the nth order is of the form

F(x,y,dy / dx,d*y/dx”,---,d"y/dx") = 0 (2)
Its general solution contains n arbitrary constants and is of the form
Px,y.01,¢9,7,0,) =0 (3)

To obtain its particular solution, n conditions must be given so that the
constants ¢, ¢, ..., ¢, can be determined.

If these conditions are prescribed at one point only (say:x,), then the dif-
ferential equation together with the conditions constitute an initial value

problem of the nth order.

If the conditions are prescribed at two or more points, then the problem
is termed as boundary value problem.

In this chapter, we shall first describe methods for solving initial value
problems and then explain the finite difference method and shooting
method for solving boundary value problems.

10.2 Picard’s Method

dy
Consider the first order equation T flx,y) (1)

It is required to find that particular solution of (1) which assumes the
value y, when x = x . Integrating (1) between limits, we get

fidyxf fgpdcory yy [ floyde )

This is an integral equation equivalent to (1), for it contains the un-
known y under the integral sign.

As a first approximation y, to the solution, we put y =y in flx, y) and
integrate (2), giving

= Yo +f flxyo)dx

For a second approximation y,, we put y =y, in f(x, y) and integrate

(2), giving
Yy =y +ffcf”xy dx
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Similarly, a third approximation is
g =yo+ J | Sy
Continuing this process, we obtain y,, ., --- y where

Y =Yo + f‘o f(x’ Yn—1 >dx

Hence this method gives a sequence of approximations v, y,, y, -
each giving a better result than the preceding one.

NOTE Obs. Picard’s method is of considerable theoretical value, but
can be applied only to a limited class of equations in which the
successive integrations can be performed easily. The method can
be extended to simultaneous equations and equations of higher
order (See Sections 10.11 and 10.12).

EXAMPLE 10.1

Using Picard’s process of successive approximations, obtain a solution
up to the fifth approximation of the equation dy/dx = y + x, such that
y =1 whenx =0. Check your answer by finding the exact particular solution.

Solution:

(i) We have y=1 +fl (x +y)dx

X

First approximation. Put y = 1 in y + x, giving
n =1+f:0(1+x)dx=1+x+x2/2
Second approximation. Puty =1 +x + x%/2 in y +x, giving
=14 [ Q4xt@)de=1+x+2" +276

Third approximation. Put y = 1 +x +x* + x%6 in y +x, giving

. 3 4

=1+ [ A+x+2 +2B)de =1+ 20 +22 + — +—

Us fx0< x4+ 1" +x°/6)dx x+x 7 51
Fourth approximation. Put y =y, in y + x, giving

3 4
- i TR
y4—1+f0(1+2x+x L

, 2 xt 40
=l+x+a+—+—+—
3 12 120
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Fifth approximation, Put y =y, in y +x, giving
JE I 5
xtox
=14 (142 + 1
=1+ ( AR TR W

3 x4 x5 x6

Sldrt bt
3 12 60 720

(ii) Given equation
dy

—~ —y=x is a Leibnitzs linear in x

dx
Its, IF. being ¢ the solution is

ye™” =fxe_xdx+c
=—x —f dx+c——e_x—e_x+c
y=ce' —x—1
Since y = 1, when x =0, soc=2.

Thus the desired particular solution is

=2¢" —x—1
I ()
LR B
Or using the series: ¢ =1+x+—+—+—+--
2! 3! 4l
I RN N
We get y=l+x+i+ "t .. (3)

3 12 60 360

Comparing (1) and (3), it is clear that (1), approximates to the exact
particular solution (3) upto the term in x°.

NOTE Obs. At x =1, the fourth approximation y, = 3.433 and the fifth
T approximation y, = 3.434 whereas the exact value is 3.44.

EXAMPLE 10.2
Find the value of y for x = 0.1 by Picard’s method, given that
dy _y—x

= 0)=1.
dx y+x’y< )

Solution:

We have y = 1+f y+1 x
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First approximation. Put y = 1 in the integrand giving

12 =1+ Omdx_l‘l'f(

—1+|:—x+2log(1+x)] =1-x+2log(l+x)

Second approximation. Put y = 1 —x + 2 log(1 + x) in the integrand,
giving
r1—x+2log(l+x)—x«
01=x+2log(l+x)+x

x 2x
=1+ | |[1-—————— |
0[ 1+2log(1+x)}]

which is very difficult to integrate.

dx

y, =1+

Hence we use the first approximation and taking x = 0.1 in (i) we obtain

y(0.1)=1-1(0.1) +2log 1.1 =0.9828.

10.3 Taylor’s Series Method

d
Consider the first order equation d—y = f(x,y) (1)
X

Differentiating (1), we have d’ Z af +af dy ie. y' =f, +fy f (2)
dx®  ox oy dx

Differentiating this successively, we can get y".y" etc. Putting x = X,
and y =0, the

Values of (y)y,(y")y,(y")y can be obtained. Hence the Taylor’s series

RS TR
Sl g, + B2, 3)

gives the values of y for every value of x for which (3) converges.

Y=y, +x—x)y) +

On finding the value y, for x = x, from (3), y" y” etc. can be evaluated
at x = x, by means of (1), (2) etc. Then ¢ can be expanded about x = x . In
this way, the solution can be extended beyond the range of convergence of
series (3).
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Obs. This is a single step method and works well so long as
the successive derivatives can be calculated easily. If (x, y) is
somewhat complicated and the calculation of higher order
derivatives becomes tedious, then Taylor’s method cannot

be used gainfully. This is the main drawback of this method
and therefore, has little application for computer programs.
However, it is useful for finding starting values for the
application of powerful methods like Runga-Kutta, Milne and
Adams- Bashforth which will be described in the subsequent
sections.

EXAMPLE 10.3

Solve y" =x +y, y(0) = 1 by Taylor’s series method. Hence find the val-

uesof yatx=0.1 andx =0.2.

and

Solution:

Differentiating successively, we get

y'=x+y y'(0)=1 [ y(0)=1]
y=ley g0)=2
y'” = y” y”’(O) = 2
y'” = y/” y”’(O) = 2, etc.
Taylor’s series is
’ <x - xO >2 " <x - xO >3 m
Y=y, +x—x,)y) + Y (y")y + 31 (") +
Herex,=0,y,=1
_ x2 <x>3 (x)4
y=1 +x(1)+3(2)+?(2)+j(4)'“
, (0.1 (0.1
Thus  y(0.1)=14+0.1+(0.1)" + al + T

=1.1103

(0.2)° N (0.2)*
6

y(0.2)=1+0.2+(0.2)" + +oen

=1.2427
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EXAMPLE 10.4

Find by Taylor’s series method, the values of y atx = 0.1 and x = 0.2 to
five places of decimals from dy/dx = x*y — 1, y(0) = 1.

Solution:

Differentiating successively, we get

Yy =xy -1, (y),=-1 [ y(0)=1]
y” = 2xy + 1%y, (y”),=0
y”" =2y + 4wy +x2y”, (y”),=2

Y= 6y’ + 6xy” +x2y"", (y"),=—6, etc.

Putting these values in the Taylor’s series, we have

3 x (x)? (x)*
y—l+x(—1)+3(0)+?(2)+4—!(—6)+---
x3 x4
=l4+—x+—+--
3 4

Hence y(0.1) = 0.90033 and y(0.21) = 0.80227

EXAMPLE 10.5

Employ Taylor’s method to obtain approximate value of y at x = 0.2 for
the differential equation dy/dx = 2y + 3¢*, y(0) = 0. Compare the numerical
solution obtained with the exact solution.

Solution:
(a) We have y’ = 2y + 3e*; yy'(0) = 2y(0) + 3¢ = 3.

Differentiating successively and substituting x = 0, y = 0 we get

y” =2y  + 3¢, y”(0) =2y"(0) +3=9
Y =2y + 3%, y(0) = 27(0) +3=21
Y =2y + 3¢, y*(0) = 2y"(0) + 3 = 45 etc.
Putting these values in the Taylor’s series, we have
2 3 4
' L " x_ " x_ iv
y(x) =y(0)+xy'(0) + oY (0)+ NI (0)+ Y (0)+
—0+3xt 2 4 2y B
2 6 24

9 21 15
=3x+—2"+—x" +—at +--
2 6 8
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Hence 4(0.2) = 3(0.2) +4.5(0.2)* +3.5(0.2)° +1.875(0.2)" +---=0.8110 (i)

1 4

(b) Now ;—y —2y=3¢" is a Leibnitz’s linear in x
x

Its I.F. being e , , the solution is

ye ™ = fSex'e_Qx dv+c=-3¢"+cor y=-3¢"+ce™
Since y = 0 when x = 0, se=3.
Thus the exact solution is y = 3(e* — e*)

Whenx =0.2, y = 3(e** - e"?) = 0.8112 (ii)

Comparing (i) and (ii), it is clear that (i) approximates to the exact value
up to three decimal places

EXAMPLE 10.6
3 2
Solve by Taylor series method of third order the equation @ - ﬂ
y(0)=1foryatx=0.1,x=0.2andx=0.3 dx e’

Solution:
We have y'=(x3 +xy2)e’x; y (0)=0
Differentiating successively and substitutingx =0,y = 1.
y'= (3 + xyz)(—e*x) +(3x% + y2 +x2yy e
=(—x® —x® + 37 +y* + 2wyy)e™;  y"(0)=1
y" =(=x" —xy® + 32" + 4 + 2xyy)(—e )
+H=3x = (i* +x.20.y") + 6x + 2y
+2[yy +x(y”* +yy" e " (0)=-2

Substituting these values in the Taylor’s series, we have
2 3

y(x) = y(0) +x17/(0) + ;—!y”(O) + g—!y"'<o> oo

2 3
=1+x(0)+%(1)+%(—2)+---

2 3
X X
2 6
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1 1
Hence y(0.1)=1+§(0.1)2—§(0.1)3=1.005
y(0.2)=1+§(0.2) —§<0.2> =1.017
y(0.3)=1+§(0.3) —5(03=1.036

EXAMPLE 10.7

d
Solve by Taylor’s series method the equation d_y: log(xy) for y(1.1)
and y(1.2), given y(1) = 2. X

Solution:
We have y" =logx +log y; y'(1) = log 2
Differentiating w.r.t., x and substituting x = 1, y = 2, we get

11 1
"=—+—y y"=1+—log2
Y=y us gl

///_i_i_i //+ /_i ’
Y ) yy Yy yz Y

PEEPENE Y PR SR N | 2
y —1+2(1+210g2) 4(logz)

Substituting these values in the Taylor’s series about s = 1, we have

—_— 2 C — X
. 211) g+ 311—) y ')+

y)=y)+(x -1y 1)+

=2 +(x—1)log2+%(x—l)2 (1+%10g2)

1 1 1 1 2
+6(x 1) [ 2+410g2 4(log2) :l
(0.1)2( 1 ) (0.1)3[ 1 1 1 2}
1.1)=2+(0.Dlog2+—=~ [1+=log2|+—= | ——+—log2 ——(log2
- YD =2+0Dlog2+= 1+ log 5+ log2— (log2)

=2.036

_ @2( 1 )@3[_1 Losa L 2]
y(1.2)=2+(0.2)log2+—= |1+ log2 |+ == | =+ log2 4(logz)

=2.081
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Exercises 10.1

1.

10.

Using Picard’s method, solve dy/dx = — xy with x, = 0, y, = 1 up to the
third approximation.

. Employ Picard s method to obtain, correct to four places of decimals

the, solution of the differential equation dy/dx = x>+ y* for x = 0.4, given
thaty = 0 whenx =0.

. Obtain Picard’s second approximate solution of the initial value problem

y =x*(y*+ 1), y(0)=0.

. Find an approximate value of y whenx = 0.1, if dy/dx =x —y*and y = 1

atx =0, using
(a) Picard’s method (b) Taylor’s series.

. Solve y’=x +y given y(1) = 0. Find y(1.1) and y(1.2) by Taylor’s meth-

od. Compare the result with its exact value.

. Using Taylor’s series method, compute y(0.2) to three places of deci-

d
mals from d—y =1—2uxy given that y(0) = 0.
X

. Evaluate y(0.1) correct to six places of decimals by Taylor’s series

method if y (x) satisfies
y'=xy+1,y0)=1.

. Solve y" =y*+x, y(0) = 1 using Taylor’s series method and compute

y(0.1) and y(0.2).

. Evaluate y(0.1) correct to four decimal places using Taylor’s series

methods if dy/dx =x*+y?, y(0) = 1.

Using Taylor series method, find ¢(0.1) correct to three decimal places

given that dy/dx = e *—y?, y(0) = 1

10.4 Euler’s Method

d
Consider the equation e (1)

X

given that y(x ) = y Its curve of solution through P(x,, y )is shown dotted
in Figure.10.1. Now we have to find the ordinate of any other point Q on
this curve.



True value of
Q / y
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FIGURE 10.1

Let us divide LM into n sub-intervals each of width h at L , L, ---so that
h is quite small

In the interval LL,, we approximate the curve by the tangent at P. If the
ordinate through L meets this tangent in P (x, + h, ), then

y, =L P =LP+RP =y, +PR tan6
d
=Y +h(d_y) =1y, +hf(x.y0)
x

p
Let P Q, be the curve of solution of (1) through P, and let its tangent at
P, meet the ordinate through L, in P (x, + 2h, y,). Then

y2=y1+hf(x0+h,y]) (1)
Repeating this process n times, we finally reach on an approximation

MP of MQ given by
Yo = Yna + hf<x0 +n— 1h, yn71>

This is Euler’s method of finding an approximate solution of (1).

NOTE Obs. In Euler’s method, we approximate the curve of solution

by the tangent in each interval, i.e., by a sequence of short lines.
Unless h is small, the error is bound to be quite significant. This
sequence of lines may also deviate considerably from the curve

of solution. As such, the method is very slow and hence there is
a modification of this method which is given in the next section.
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EXAMPLE 10.8

Using Euler’s method, find an approximate value of y corresponding to
x =1, given that dy/dx =x + y and y = 1 when x = 0.

Solution:

We take n = 10 and h = 0.1 which is sufficiently small. The various cal-
culations are arranged as follows:

x y x +y = dyl/dx Old y + 0.1 (dy/dx) = new y
0.0 1.00 1.00 1.00 + 0.1 (1.00) =1.10
0.1 1.10 1.20 1.10 + 0.1 (1.20) = 1.22
0.2 1.22 1.42 1.22+0.1(1.42)=1.36
0.3 1.36 1.66 1.36 +0.1(1.66) =1.53
0.4 1.53 1.93 1.53+0.1(1.93)=1.72
0.5 1.72 2.22 1.72+0.1(2.22)=1.94
0.6 1.94 2.54 1.94+0.1(2.54)=2.19
0.7 2.19 2.89 2.19+0.1(2.89) =2.48
0.8 2.48 3.29 2.48+0.1 (3.29) =2.81
0.9 2.81 3.71 2.81+0.1(3.71)=3.18
1.0 3.18

Thus the required approximate value of y = 3.18.

NOTE Obs. In Example 10.1(Obs.), we obtained the true values of y
from its exact solution to be 3.44 where as by Euler’s method

y = 3.18 and by Picard’s method y = 3.434. In the above
solution, had we chosen n = 20, the accuracy would have been
considerably increased but at the expense of double the labor of
computation. Euler’s method is no doubt very simple but cannot
be considered as one of the best.

EXAMPLE 10.9

Given 4y — Y7 with initial condition y = 1 atx = 0; find y forx =0.1
dx  y+x
by Euler’s method.
Solution:

We divide the interval (0, 0.1) in to five steps, i.e., we take n = 5 and
h =0.02. The various calculations are arranged as follows:



432 ¢ NUMERICAL METHODS IN ENGINEERING AND SCIENCE

x y dy/dx Oldy + 0.02 (dy/dx) = new y
0.00 1.0000 1.0000 1.0000 + 0.02(1.0000) = 1.0200
0.02 1.0200 0.9615 1.0200 + 0.02(0.9615) = 1.0392
0.04 1.0392 0.926 1.0392 + 0.02(0.926) = 1.0577
0.06 1.0577 0.893 1.0577 + 0.02(0.893) = 1.0756
0.08 1.0756 0.862 1.0756 + 0.02(0.862) = 1.0928
0.10 1.0928

Hence the required approximate value of y = 1.0928.

10.5 Modified Euler’s Method

In Euler’s method, the curve of solution in the interval LL, is approxi-
mated by the tangent at P (Figure 10.1) such that at P , we have

Y=y, +hflx,y,) (1)
Then the slope of the curve of solution through P,

li.e., (dy/dx)P =flx,+h,y,)]
is computed and the tangent at P, to P Q, is drawn meeting the ordinate
through L, in
P (x,+2h,y,).
Now we find a better approximation yi” of y(x, + h) by taking the slope

of the curve as the mean of the slopes of the tangents at P and P , i.e.,

h
1/(1U =1 +§[f(x0>yo)+f(xo +h,y,)]

As the slope of the tangent at P1 is not known, we take ¢, as found in (1)
by Euler’s method and insert it on R.H.S. of (2) to obtain the first modified
value y (1)

Again (2) is applied and we find a still better value Yio) corresponding
to L, as

h
952) =Y +§[f(x0>y0)+f<xo +h,y§1))]
We repeat this step, until two consecutive values of y agree. This is then
taken as the starting point for the next interval L L.

Once y, is obtained to a desired degree of accuracy, y corresponding to
L, is found from (1).

y, =y, +hflx,+h,y)

and a better approximation yg) is obtained from (2)

h
gh' =g+ L (g +hoy) + S + 2Ry )]
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We repeat this step until 4, becomes stationary. Then we proceed to calcu-
late Yy, as above and so on.

This is the modified Euler’s method which gives great improvement in
accuracy over the original method.

EXAMPLE 10.10

Using modified Euler’s method, find an approximate value of y when

x = 0.3, given that dy/dx =x +y and y = 1 whenx = 0.

Solution:

The various calculations are arranged as follows taking h = 0.1:

% x+ty=y Mean slope Old y + 0.1 (mean slope) = new y
0.0 0+1 — 1.00 + 0.1 (1.00) = 1.10
0.1 0.1+1.1 %(14_1.2) 1.00+0.1(1.1)=1.11
0.1 0.1+1.11 %(1_*_1'21) 1.00 + 0.1 (1.105) = 1.1105
0.1 0.1+1.1105 %(1_'_1.2105) 1.00 + 0.1 (1.1052) = 1.1105

Since the last two values are equal, we take (0.1

)=1.1105.

0.1 1.2105 — 1.1105 + 0.1 (1.2105) = 1.2316
0.2 0.2+1.2316 %<1.12105 +1.4316) 1.1105 + 0.1 (1.3211) = 1.2426
0.2 0.2 + 1.2426 é<1~2105 +1.4426) 1.1105 + 0.1 (1.3266) = 1.2432
0.2 0.2 +1.2432 1.1105 + 0.1 (1.3268) = 1.2432

3(1.2105 +1.4432)

Since the last two values are equal, we take ¢(0.2) = 1.2432.

0.2 1.4432 — 1.2432 + 0.1 (1.4432) = 1.3875
0.3 0.3 +1.3875 %<1'4432 +1.6875) 1.2432 + 0.1 (1.5654) = 1.3997
0.3 0.3 +1.3997 1(1.4432 +1.6997) 1.2432 + 0.1 (1.5715) = 1.4003
0.3 0.3 + 1.4004 1.2432 + 0.1 (1.5718) = 1.4004

1(1.4432 +1.7004)

Since the last two values are equal, we take y(0.3) = 1.4004.
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Hence ¢(0.3) = 1.4004 approximately.

NOTE Obs. In Example 10.8, we obtained the approximate value of y

forx = 0.3 to be 1.53 whereas by the modified Euler’s method

the corresponding value is 1.4003 which is nearer its true
value 1.3997, obtained from its exact solution y = 2ex —x — 1 by

putting x = 0.3.

EXAMPLE 10.11
Using the modified Euler’s method, find ¢(0.2) and y(0.4) given
y'=y+e, y(0)=0.
Solution:
We have y’ =y +ex=f(x,y);x=0,y=0and h =0.2
The various calculations are arranged as under:
To calculate y(0.2):
% y+ex=y Mean slope Old y + h (Mean slope)
= new y
0.0 1 — 0+02(1)=02
0.2 0.2 +¢"2=1.4214 _ 0+0.2(1.2107) =0.2421
e L1 +1.4214)=1.2107 (1.2107)
s 0.2 —
0.2 10.2421 + ¢ =1.4635 %(1 +1.4635)=1.2317 0+0.2(1.2317) =0.2463
0.2 [0.2463+¢e"2=14677| 1 0+0.2(1.2338) =0.2468
E(l +1.4677)=1.2338
0.2 [0.2468 + ¢"% = 1.4682 _ 0+ 0.2 (1.2341) =0.2468
¢ L1 +1.4682) = 1.2341 (1.2341)
Since the last two values of y are equal, we take y (0.2) = 0.2468.
To calculate y(0.4):

x y+ex Mean slope Oldy + 0.2 (mean slope) new y
0.2] 0.2468 + ¢*% = 1.4682 — 0.2468 + 0.2 (1.4682) = 0.5404
04| 0. 04=9, p . . . =0.

0.5404 +¢" =2.0322 | 1(1 4682 49,0322) | 02468 +0.2 (17502) = 0.5068
=1.7502
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x y+ex Mean slope Oldy + 0.2 (mean slope) new y
0.4] 0.5968 + ¢4 = 2,0887 0.2468 + 0.2 (1.7784) = 0.6025
¢ 1(1.4682 +2.0887) (1.7784)
=1.7784
0.4] 0.6025 + ¢ = 2.0943 0.2468 + 0.2 (1.78125) = 0.6030
te 1(1.4682 +2.0943) +0.2( )
- 1.78125
0.4] 0.6030 + ¢! = 2.0949 0.2468 + 0.2 (1.7815) = 0.6031
te 1(1.4682 +2.0949) +0.2(L.7815)
- 1.7815
0.4] 0.6031 + " = 2.0949 0.2468 + 0.2 (1.7815) = 0.6031
+e 1(1.4682 +2.0949) +0.2 (1.7815)
- 1.7816

Since the last two value of y are equal, we take y(0.4) = 0.6031
Hence y(0.2) = 0.2468 an d y(0.4) = 0.6031 approximately.

EXAMPLE 10.12

Solve the following by Euler’s modified method:

dx

atx=1.2and 1.4 with h = 0.2.

Solution:

=log(x +y),y(0)=2

The various calculations are arranged as follows:

x log (x +y) =y’ Mean slope Old y + 0.2 (mean slope) = new y
0.0 log (0 +2) — 2+0.2(0.301) = 2.0602
0.2 | log (0.2+2.0602) | 4(0.310=0.3541) 2+ 0.2 (0.3276) = 2.0655
0.2 | log (0.2 +2.0655) 1(0.301 +0.3552) 2+ 0.2 (0.3281) = 2.0656
0.2 0.3552 — 2.0656 + 0.2 (0.3552) = 2.1366
04 | log (0.4+2.1366) | 2(0:3552+04042) | o656 1 .9 (0.3797) = 2.1415
04 | log (0.4+2.1415) | 1(0.3552+0.4051) 2.0656 + 0.2 (0.3801) = 2.1416
0.4 0.4051 — 2.1416+ 0.2 (0.4051) = 2.2226
06 | log (0.6 +2.2206) | 2(04051+04506) | 5 1415 09 (0.4279) = 2.2272
0.6 | log (0.6+2.2272) | 5(0.4051+0.4514) 2.1416 + 0.2 (0.4282) = 2.2272
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x log (x +y) =y’ Mean slope Old y + 0.2 (mean slope) = new y
0.6 0.4514 — 2.2272 + 0.2 (0.4514) = 2.3175
0.8 | log (0.8 +2.3175) 5(0.4514 4+ 0.4938) 2.2272 + 0.2 (0.4726) = 2.3217
0.8 | log (0.8 +2.3217) 1(0.4514 +0.4943) 2.2272 + 0.2 (0.4727) = 2.3217
0.8 0.4943 — 2.3217 + 0.2 (0.4943) = 2.4206
1.0 | log(1+2.4206) $0.4943 4 0.5341) 2.3217 + 0.2 (0.5142) = 2.4245
1.0 | log (1 +2.4245) %(0.4943 +0.5346) 2.3217 + 0.2 (0.5144) = 2.4245
1.0 0.5346 — 2.4245 + 0.2 (0.5346) = 2.5314
1.2 | log (1.2+2.5314) | 3(0.5346+0.5719) 2.4245 + 0.2 (0.5532) = 2.5351
1.2 | log (1.2+25351) | $(0.5346 +0.5723) 2.4245 + 0.2 (0.5534) = 2.5351
1.2 0.5723 — 2.5351 + 0.2 (0.5723) = 2.6496
14 | log (1.4 +2.6496) | 1(0.5723+0.6074) 2.5351 + 0.2 (0.5898) = 2.6531
1.4 | log (1.4 +2.6531) %(0.5723 +0.6078) 2.5351 + 0.2 (0.5900) = 2.6531

Hence y(1.2) = 2.5351 an d y(1.4) = 2.6531 approximately.

EXAMPLE 10.13

Using Euler’s modified method, obtain a solution of the equation

dy/dx = x + ‘\/ﬂ

with initial conditions y = 1 at x = 0, for the range 0 £ x £ 0.6 in steps of 0.2.

Solution:

The various calculations are arranged as follows:

x = Mean slope Oldy +0.2
) |\/§| J (mean slope) = new y
0.0 0+1=1 — 1+02(1)=1.2
021 ol L(14+1.2954) 1+0.2 (1.1477) = 1.2295
 1.9954 = 1.1477
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x N +|\/§| =y Mean slope Old y +0.2
(mean slope) = new y
~ 1.3088 = 11544
= 1.3094 =1.1547
0.2 1.3094 — 1.2309 + 0.2 (1.3094) = 1.4927
0.4 04 +‘ (1'4927)‘ %(1'3094 +1.6218) 1.2309 + 0.2 (1.4654) = 1.5240
- 1.6218 = 1.4654
= 1.6345 =1.4718
- 1.6350 = 14721
0.4 1.6350 — 1.5253 + 0.2 (1.635) = 1.8523
0.6 0.6 +‘ (1.8523)‘ %(1.635 +1.961) 1.5253 + 0.2 (1.798) = 1.8849
= 1.9610 =1.798
0.6 0.6 +‘ (1.8849)‘ %(1.635 +1.9729) 1.5253 + 0.2 (1.804) = 1.8861
- 1.9729 = 1.8040
19734 = 1.8042

Hence y(0.6) = 1.8861 approximately.

Exercises 10.2

1. Apply Euler’s method to solve y" =x +y, 4(0) =0,

choosing the step length = 0.2. (Carry out six steps).

2. Using Euler’s method, find the approximate value of y when x = 0.6 of

dy/dx = 1 —2xy, given that y = 0 when x = 0 (take h = 0.2).

3. Using the simple Euler’s method solve for y at x = 0.1 from dy/dx = x +
y +xy, y(0) = 1, taking step size h = 0.025.
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.Solvey’=1-1y,y(0)=0

by the modified Euler’s method and obtain y atx = 0.1, 0.2, 0.3

. Given that dy/dx = x> + y and y(0) = 1. Find an approximate value of

4(0.1), taking h = 0.05 by the modified Euler’s method.

. Given ¢’ =x +sin y, y(0) = 1. Compute y(0.2) and y(0.4) with i = 0.2

using Euler’s modified method.

. Given ﬂ — Y7 with boundary conditions y = 1 when x = 0, find

dx y+x
approximately y forx = 0.1, by Euler’s modified method (five steps)

. Given that dy/dx= 2 + \[(xy) and y = 1 when x = 1. Find approximate

value of y at x = 2 in steps of 0.2, using Euler’s modified method.

10.6 Runge’s Method”
d
Consider the differential equation, d_y = f(x,y),ylx,) =1y, (1)
X
Clearly the slope of the curve through P(x, y ) is flx,, y,) (Figure 10.2).
Integrating both sides of (1) from (x, y,) to (x, + h, y, + k), we have
otk xo+h
[ dy= [ fleyx 2)
Yo Yo
//l]v
Y
=
yi)
0 L N M X
\U h
FIGURE 10.2

*Called after the German mathematician Carl Runge (1856-1927).
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To evaluate the integral on the right, we take N as the mid-point of LM
and find the values of fx, y) (i.e., dy/dx) at the points x, x + h/2, x, + h. For
this purpose, we first determine the values of ¢ at these points.

Let the ordinate through N cut the curve PQ in S and the tangent PT in
S,. The value of yis given by the point S,

y, =NS, =LP+HS, =y, +PH. tand

h
=y, +h(dy/dx), =y, +§f(x0,yo> (3)

Also yr =MT =LP+RT =y, + PR.tan0 =y, + hf (x, +y,).

Now the value of y at x, + h is given by the point 7" where the line
through P draw with slope at T(x, + h, y,) meets MQ.

o Slope at T=tan0'= f(x, +h,y;) = flx, +h,y, +hf (x,,y,)]
Yo =R+RT =y, + PR .tan0' =y, +hflx, +h,y, +hf(x,, y,)] (4)
Thus the value of flx, y) at P = flx, y,),
the value of f{x, y) at S = flx, + h/2, y)
and the value of flx, y) at Q =(x, + h, yQ)
where y, and Y, are given by (3) and (4).

Hence from (2), we obtain

xo+h h . i
k =fx0 f(x>?/>dx=g[fp +4f; +fQ:| by Simpson’s rule
h
=g[f<xo o)+ flxg + 2. y5) + (g + Py |

Which gives a sufficiently accurate value of k and also y =y, +k

The repeated application of (5) gives the values of y for equi-spaced
points.

Working rule to solve (1) by Runge’s method:

Calculate successively
ky = Nf(xo, yo),

1 1
kQ =hf(x0 +§hy0 +§k1)

k' =hf (x, +hy, +k,)
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and ky = hf (x +h,yy + k')

Finally compute, k= é(kl +4k, +ky)
which gives the required approximate value as y, =y, + k.
(Note that k is the weighted mean of k , k,, and k).

12

EXAMPLE 10.14

Apply Runge’s method to find an approximate value of y when x = 0.2,
given that dy/dx =x +y and y = 1 whenx = 0.

Solution:
Here we havex,=0,¢y,=1,h =02, flx,,y,) =1
k, = hf(x,, yo) = 0.2(1) = 0.200
k, =hf(x0 +éhy0 +%k1)= 0271(0.1,1.1) 0.240
k' =hf (x, +h,y, +k )=021(0.2,1.2) =0.280
md k= hf (x, +h,yy +K')=0.27(0.1,1.28) = 0.296
k= é(kl + 4k, +k, )= é(o.zoo +0.960 + 0.296) = 0.2426

Hence the required approximate value of y is 1.2426.

10.7 Runge-Kutta Method*

The Taylor’s series method of solving differential equations numerical-
ly is restricted by the labor involved in finding the higher order derivatives.
However, there is a class of methods known as Runge-Kutta methods which
do not require the calculations of higher order derivatives and give greater
accuracy. The Runge-Kutta formulae possess the advantage of requiring
only the function values at some selected points. These methods agree with
Taylor’s series solution up to the term in 2" where r differs from method to
method and is called the order of that method.

First order R-K method. We have seen that Euler’s method (Section
10.4) gives

Y1 = Yo +hf(x, yo) =yo +hyg [y =flx,y)]
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Expanding by Taylor’s series
2

h "
y1 = ylxy +h) =y, +hy, TS+

It follows that the Euler’s method agrees with the Taylor’s series solu-
tion upto the term in h.

Hence, Euler’s method is the Runge-Kutta method of the first order.
Second order R-K method. The modified Euler’s method gives

h
91=y+§[f(xo’yo)+f<x0+h’ yl)] (1)
Substituting y, =y, + hf(x,, y,) on the right-hand side of (1), we obtain

Y=y, +— [f0+f~c0+h y0+hf0] where  f, =(x,,y,) (2)
Expanding L.H.S. by Taylor’s series, we get
h2 hg "
?/1=y(xo+h)=yo+h?/(’)+§yg+ayo +- (3)

Expanding f(x, + h, y, + hf,) by Taylor’s series for a function of two
variables, (2) gives

y1:y0+g[fo {fo (%040 +h(a£)o+hfo(§];) +O0(h*)” H

- [hfo L hf, + b2 {(‘;{)O (af;)o} + o(;ﬁ)}
w [ Aley) _of

_ of
=y0+hfo+7f0+o(h3) 0 —a—x+f@]
2

! h "
=yo+hyo+ayo+o(h3) (4)

Comparing (3) and (4), it follows that the modified Euler’s method
agrees with the Taylor’s series solution upto the term in A2,

Hence the modified Euler’s method is the Runge-Kutta method of the
second order.

#*O(h?*) means “terms containing second and higher powers of h” and is read as order of h*
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= The second order Runge-Kutta formula is

1
Y1 = Yo +§(k1 +k2)
Where k =hf (x,,y,) and k, = hf(x, +h, y, +k)

(iii) Third order R-K method. Similarly, it can be seen that Runge’s meth-
od (Section 10.6) agrees with the Taylor’s series solution upto the term in /*.

As such, Runge’s method is the Runge-Kutta method of the third order.

= The third order Runge-Kutta formula is

1
Y1 =Yo +g(k1 + 4k, +k3)
1 1
Where, k; =hf(x,,y,), ks =hf | x, +§h,y0 +§k1

And kg =hf(xy +hoy, +k'), where k' =ky =hf (x, +h,y, +k,).

(iv) Fourth order R-K method. This method is most commonly used
and is often referred to as the Runge-Kutta method only.

Working rule for finding the increment k of y corresponding to an
increment h of x by Runge-Kutta method from

dy B ]
o Fley), ylxg)

is as follows:

Calculate successively k, = hf(x, y,),
1 1
k2 = hf(xo +§h,y0 +§k1)

1 1
k3 = hf(xo +§h,y0 +§k2)
and ky = hf(xo +h,y, +k3)
1
Finally compute k= g(k1 +2k, +2k; +k,)

which gives the required approximate value as y, =y, + k.

(Note that k is the weighted mean of k , k,, k., and k,).

o2y

NOTE Obs. One of the advantages of these methods is that the
operation is identical whether the differential equation is linear
or non-linear.
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EXAMPLE 10.15

Apply the Runge-Kutta fourth order method to find an approximate
value of y when x = 0.2 given that dy/dx =x + y and y = 1 when x = 0.

Solution:

Here x,=0,y,=1,h=02fx,y)=1
ky =hf(xg,y0) = 0.2X 1= 0.2000

k, =hf(x0 +éh,y0 +%k1) =0.2x% £(0.1,1.1) = 0.2400

ky = hf(xo +%h,yo +ék2) =0.2x% £(0.1,1.12) = 0.2440
and  k, =hf(x, +h,yy +k;)=02% £(0.2,1.244) = 0.2888
k=%(k1 T ok, + 2k, +k,)

1
= 6(0.2000 +0.4800 + 0.4880 + 0.2888)

= % % (1.4568) = 0.2428

Hence the required approximate value of y is 1.2428.

EXAMPLE 10.16

2 2
Using the Runge-Kutta method of fourth order, solve @= y2 —x2
with 4(0) = 1 atx = 0.2, 0.4. dey" +x
Solution:
2_ 2
We have f(x,y)= ?/2_2
Yy~ +x

To find y(0.2)
Hencex,=0,y,=1,h=0.2

ky, =hf(xy,y0)=0.21(0,1) = 0.2000

ky = hf | x, +%h,y0 +ék1)=O.2><f(0.1,1.1)=0.19672
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ky = hf | x, +%h,y0 +%k2)= 0.2£(0.1,1.09836) = 0.1967

ky = hf (x, + Iy, +k; ) =0.2£(0.2,1.1967) = 0.1891
k=%(k1 +2k, +2k; +k,)

=%[0.2 +2(0.19672) +2(0.1967) +0.1891] = 0.19599
Hence y(0.2) =y, +k = 1.196.
To find y(0.4):
Herex =0.2,y,=1.196,h =0.2.
ky =hf(x,,y,)=0.1891

ky, = hf(x1 +éh,y1 +%k1) =0.21(0.3,1.2906) = 0.1795
1 1
ky = hf(xl +§h,y1 +§k2) =0.21(0.3,1.2858) =0.1793

ky=hf (x, +h,y, +k;)=0.27(0.4,1.3753) = 0.1688

k==(k, +2k, +2k; +k,)

1
6

= é[0.1891 +2(0.1795) +2(0.1793) + 0.1688] = 0.1792
Hence (0.4)=y, +k=1.196+0.1792 = 1.3752.

EXAMPLE 10.17

Apply the Runge-Kutta method to find the approximate value of y for
x = 0.2, in steps of 0.1, if dy/dx =x + y*, y = 1 where x = 0.

Solution:
Given fl(x, y) =x + y*
Here we take h = 0.1 and carry out the calculations in two steps.
StepLx0=0,y0=1,h=0.1
ky = hf (x4, y,)=0.1£(0,1) =0.1000
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k, hf(x(, +éh,y0 +ékl)=0.1f(o.o5,1.1)=o.1152

ky hf(xo +=h,y, +;k ) 0.1£(0.05,1.1152) =0.1168
ky =hf (xy +h,yy +k; ) =0.1£(0.1,1.1168) = 0.1347
k=%(k1 +2k, + 2k, +k,)

1
= 6(0.1000 +0.2304 +0.2336 +0.1347) = 0.1165

giving y(0.1) =y, +k=1.1165
Step II. x, =x,+h=0.1,y=1.1165,h =0.1

ky = hf(x,,y,)=0.1£(0.1,1.1165) = 0.1347

hf( +— hy1+ k) 0.11(0.15,1.1838) = 0.1551

hf(xl +—hy, +— k ) 0.1£(0.15,1.194) = 0.1576

=hf(x; +h,y, +k;)=0.1£(0.2,1.1576) = 0.1823

k -é(k1 +2k, +2k; +k,)=0.1571

Hence y(0.2)=y, +k=1.2736

EXAMPLE 10.18
Using the Runge-Kutta method of fourth order, solve for y atx = 1.2,
1.4

From

dy 2xy+e glvenr—l yO—O

dx 2% +xe"
Solution:

2xy +e'

h: xYy)=— 4
We have f(x,y) FERE

To find y(1.2):
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Here x =1, y,=0, h=0.2
0+¢
k,=h R =02 =(.1462
1 =Nt (xo,y) 1+¢

h k 2(140.1)(040.073) !
ky=1 ( +-, +—1)=0.2
2 = | X0+ 300+ (14+0.1)° +(1+0.1)e*!
=(.1402

1 1
k3 =hf(x0 +§]’L,y0 +§k2)=0.2{
=0.1399
ky = hf (xy +h.y, +k3)=0.2{

=0.1348

2(1+0.1)(040.07) ™! }
1401 +(1+0.1)e"

2(1.2)(0.1399) "2
(1.2)* +(1.2)¢'?

1 1
and k= g(k1 +9k, +2ks +k, )= g[0.1462 +0.2804 + 0.2798 + 0.1348]
=0.1402

Hence y(1.2) =40 +k =0+ 0.1402 = 0.1402.
To find y (1.4):

Here x, =12y, =0.1402,h =02
ky =hf(x,y,)=021(1.2,0)=0.1348
ky = hf (x; +h/2,y, +k,/2) =02 £(1.3,0.2076) = 0.1303
ky = hf (x, +h/2,y, +k,/2) =02 £(1.3,0.2053) = 0.1301
ky =hf(x; +h,y, +k;)=0.2£(1.3,0.2703) = 0.1260
k:%(kl +2k, +2ky +k,)
= %[0.1348 +0.2606 + 0.2602 + 0.1260]

=0.1303
Hence y(1.4)=y, +k=0.1402 +0.1303 =0.2705.
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Exercises 10.3

1.

10.

11.

12.

Use Runge’s method to approximate y when x = 1.1, given that y = 1.2
when x =1 and dy/dx = 3x + .

. Using the Runge-Kutta method of order 4, find y(0.2) given that dy/dx =

3x + 42, y(0) =1 taking h = 0.1.

. Using the Runge-Kutta method of order 4, compute (0.2) and y(0.4)

f dy 5 B . B
rom 10 dx_x +y y(0) =1, taking h =0.1.

. Use the Runge Kutta method to find y when x = 1.2 in steps of 0.1, given

that dy/dx =x* +y*and y(1) = 1.5.

. Given dy/dx = x* +y, y(0) = 2. Compute y(0.2), y(0.4), and y(0.6) by the

Runge-Kutta method of fourth order.

. Find y(0.1) and y(0.2) using the Runge-Kutta fourth order formula,

given that y’ =2 —y and y(0) = 1.

. Using fourth order Runge-Kutta method, solve the following equation,

taking each step of h = 0.1, given y(0) = 3. dy/dx (4x/y —xy). Calculate y
forx=0.1 and 0.2.

. Find by the Runge-Kutta method an approximate value of y for x = 0.6,

given that iy = 0.41 when x = 0.4 and dy/dx = /(x +y)

. Using the Runge-Kutta method of order 4, find ¢(0.2) for the equation

Y _Y=* 0)=1.Take h=0.2.

dx y+x

Using fourth order Runge-Kutta method, integrate

y'=-22" +12x" — 20x +8.5, using a step size of 0.5 and initial condition
ofy=1atx=0.

Using the fourth order Runge-Kutta method, find y at x = 0.1 given that
dy/dx =3¢ + 2y, y(0) =0 and h =0.1.

Given that dy/dx = (y* — 2x)/(y* +x) and y = 1 atx =0, find y forx = 0.1,
0.2, 0.3, 0.4, and 0.5.
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10.8 Predictor-Corrector Methods

If x,  and x, are two consecutive mesh points, we have x, =x,_ + h. In
Euler’s method (Section 10.4), we have

yi=yi_1+hf(x0+i—_lh,yi_l); i=1,23--- (1)
The modified Euler’s method (Section 10.5), gives

Yi =Yia +g|:f<xi—l i)t f<xi>?/i):|

The value of y, is first estimated by using (1), then this value is inserted
on the right side of (2), giving a better approximation of ¢/.. This value of ¢,
is again substituted in (2) to find a still better approximation of ¢y . This step
is repeated until two consecutive values of i, agree. This technique of refin-
ing an initially crude estimate of y, by means of a more accurate formula
is known as predictor-corrector method. The equation (1) is therefore
called the predictor while (2) serves as a corrector of y..

In the methods so far described to solve a differential equation over an
interval, only the value of y at the beginning of the interval was required. In
the predictor-corrector methods, four prior values are needed for finding
the value of y at x. Though slightly complex, these methods have the ad-
vantage of giving an estimate of error from successive approximations to y,.

We now describe two such methods, namely: Milne’s method and
Adams-Bashforth method.

10.9 Milne’s Method

Given dy/dx = flx, y) and y =y, x = x; to find an approximate value of
y for x =x, + nh by Milne’s method, we proceed as follows:
The value y, = y(x,) being given, we compute
y, =y, +h),y, =yl +2h), y, =ylx, + 3h),
by Picard’s or Taylor’s series method.

Next we calculate,

Jo= Feg yo) Ji=fa + hoy ). fy =1, + 20, y,). fy = flag + 3R, y,)

Then to find y, = y(x, + 4h), we substitute Newton’s forward interpola-
tion formula

fley)= fo +nAfy + n=1)n-2

n(n—1

>A2fo+n< )A3f0+
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In the relation

xo+4h
Ys=yo + fxo flx,y)dx

xo+4h n(n—l)
Yy :yo+fx0 (f0+”Afo+ 5 A*f, +)Jx

[Put x =x, +nh, dx = hdn]

=4 +f04(f0 npfy + 20 g +)(In

2

=1, +h(4f0 +8Af, +%Azf0 +)

Neglecting fourth and higher order differences and expressing
Afy,A® f, and A’ £, and in terms of the function values, we get

4h
yip) =Y +?(2f1 - +2f3)
which is called a predictor.

Having found y,, we obtain a first approximation to
fi=flxg +4hy,)

Then a better value of ¢, is found by Simpson’s rule as

. h
?/Sx) =Yy +§(f2 +4f; +f4)

which is called a corrector.

Then an improved value of f, is computed and again the corrector is
applied to find a still better value of y7,. We repeat this step until y7, remains
unchanged. Once y, and f, are obtained to desired degree of accuracy, y_ =
y(x, + 5h) is found from the predictor as

4h
?/Fsm =y +?(2f2 -f +2f4)

and f, = flx, + 5h, ) is calculated. Then a better approximation to the value
of , is obtained from the corrector as

. h
yg) =Ys +§(f3 +4f, +f5)

We repeat this step until iy, becomes stationary and, then proceed to
calculate ¢ as before.
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This is Milne’s predictor-corrector method. To insure greater accuracy,
we must first improve the accuracy of the starting values and then sub-
divide the intervals.

EXAMPLE 10.19

Apply Milne’s method, to find a solution of the differential equation
y'=x-y’in the range 0 <x < 1 for the boundary condition y = 0 atx = 0.

Solution:
Using Picard’s method, we have
y=y(0)+ f;f(x, y)dx, where f(x,y)=x— y’
To get the first approximation, we put y = 0 in f(x, y),
2
.. x X
Giving v, =O+f0 'xdx=?

To find the second approximation, we put

X T4 TZ TS
Giving ¢, :fo (x—’—)dx=’——’—

4 2 20
Similarly, the third approximation is
2 5\2 2 5 8 1
X X X X X X X
= x—|———| |dx=——-—t+——-—— i
w=J, [” (2 20) ] "7 72 720 160 4400 W

Now let us determine the starting values of the Milne’s method from
(i), by choosing h = 0.2.

x, = 0.0, y,=0.0000, £, =0.0000
x, =02, y,=0.020,  f=0.1996
x,= 0.4, y,=0.0795  f,=0.3937
x, = 0.5, y,=0.1762,  f,=0.5689

Using the predictor, 4 =y, + %(2 fi—f+2f)

=08 ¢/ =03049,  f,=0.7070
. h
and the corrector, yff) =y, +§( fot+4fs+ f4), yields

g =03046  f,=0.7072 (ii)
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Again using the corrector,
y'" =0.3046, , which is the same as in (ii)

Now using the predictor,
4h
?/E;p) = +?(2f2 -f +2f4)

x=0.1, g =04554  f,=0.7926
h
and the corrector 3 =y, +§(f3 +4f, + f5) gives
ys' =04555  f.=0.7925
Again using the corrector,
y¥ =0.4555, a value which is the same as before.
Hence y(1) = 0.4555.

EXAMPLE 10.20

Using Milne’s method find y(4.5) given 5xy” + y* — 2 =0 given y(4) = 1,
y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143; y(4.4) = 1.0187.

Solution:
We have y'=(2- y2 V5x = f(x) [say]
Then the starting values of the Milne’s method are
x, =0, y,=1, f0=%=0.05
x, =41,  y,=10049,  f =0.0485
x,=42,  y,=10097,  f,=0.0467
x, =43,  y,=10143,  f,=0.0452
x, =44,  y,=10187, £ =0.0437
Since y, is required, we use the predictor
ygp)=yl+%(2f2—f3+2f4') (h=0.1)

i 4(0.1
=45,y =1.0049 + %(2 X 2.0467 — 0.0452 + 2 X 0.0437) = 1.023
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92 —(1.023)?
f=220 (22OBN
Sxs 5%x4.5

Now using the corrector 3 =y, +%( fo+4f, + f5). we get

. 0.1
ye =1.0143+ ?(0.0452 +4x0.0437 +0.0424) = 1.023

Hence y(4.5) =1.023

EXAMPLE 10.21

Giveny'=x(x*+y?) e™ y(0) =1, find y atx = 0.1, 0.2, and 0.3 by Taylor’s
series method and compute (0.4) by Milne’s method.

Solution:
Given y(0)=1andh=0.1
We have y'(x) = x(x? + yz e y'(0)=0
y"(x)= [(xS +ay?)e )+ (3% +y” + x(Zy)y’)]e_‘
=e¢ " [—x3 —xy® +327 +y” + 2xyy’:| ; y"(0)=1
y"(x)=e" [—xS - xyz +3x% + y2 + 2xyy’ — 6x — 2yy' — 2xy 2 nyy']
y(0)=2

Substituting these values in the Taylor’s series,

2 3
x ’ x_ " x_ m e
—y(0)+ﬁy (0)+ T (0)+ STV (0)+

y(0.1)=1+ 01(o)+ (0.1) (1)+ (0.1 (=2) +---

=1+0.005—-0.0003 =1.0047, i.e., 1.005
Now taking x=0.1,4(0.1) =1.005, h = 0.1
y/(0.1)=0.092,4" (0.1) = 0.849, " (0.1) = —1.247

Substituting these values in the Taylor’s series about x = 0.1,

y02)=9(01)+ % y(01)+(01)2 "(01)+(01)3 §7(0.1) 4+

=1.018
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Now taking x=0.2,4(0.2)=1.018, h=0.1
y'(0.2)=0.176,5"(0.2) = 0.77,4"(0.2) = 0.819

Substituting these values in the Taylor’s series

n (O ) ” (()']‘)3 m
y(0 y(O 2)+ y (0.2)+—~— (0.2)+Ty (0.2)+--
=1.018 + 0.0176 + 0.0039 +0.0001
=1.04
Thus the starting values of the Milne’s method with & = 0.1 are
x, = 0.0, Yy, =1 f0=y0=0
x, =01, y, = 1.005 f,=0.092
x,=02,  y,=1018 £,=0176
x,=03,  y, =104 £,=026

' 4
Using the predictor, yff) =y, +?h(2f1 —f+2f;)

=1+4(0.1)

= 1.09.
v=04 y/'=109,  f,=y(04)=0.362

[2(0.092) — 0.176 + 2(0.26)]

h
Using the corrector, yif) =1, +§(f2 +4f, + f4), yields

0.1
y\ =0.018 +75(0.176 + 4(0.26) + 0.362) = 1.071
Hence y(0.4)=1.071

EXAMPLE 10.22

Using the Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3
given that dy/dx = xy + % y(0) = 1. Continue the solution at x = 0.4 using
Milne’s method.

Solution:
We have fl, y) =xy +y*
To find y(0.1):
Herex,=0,y,=1,h=0.1.
ky = hf (x4, y,) = (0.1) X £(0,1) = 0.1000
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k, =hf(x0 +éh,yo +ékl)= (0.1)x £(0.05,1.05) =0.1155

ky = hf(xo +%h,y0 +%k2)= (0.1)%x £(0.05,1.0577) = 0.1172
ky =hf (xy +h,yy +k;) = (0.1)% £(0.1,1.1172) = 0.13598
k:é(kl +2k, +2ky +k,)
= %(0.1 +0.231 +0.2343 +0.13598) = 0.11687

Thus y(0.1)=y, =y, +k=1.1169
To find ¢(0.2):
Herex, =0.1, y, = 1.1169, h=0.1

ky = hf (x5, ) =(0.1)% £(0.1,1.1169) = 0.1359

k, —hf(xl +—h,y, + lk ) (0.1)x £(0.15,1.1848) = 0.1581

hf(xl +=h,y, + ;k ) (0.1)x £(0.15,1.1959) = 0.1609
ky=hf (x, +hy, +k;) =(0.1)x £(0.2,1.2778) = 0.1888

k =%(k1 +2k, +2k; +k, ) =0.1605

Thus 4(0.2)=y,=y, +k=12773.
To find y(0.3):
Herex,=0.2,y,=1.2773,h =0.1.

ky =hf(xy,y,) =(0.1)x £(0.2,1.2773) = 0.1887
k, =hf(x2 +éh,y2 +ék1)= (0.1)%x £(0.25,1.3716) = 0.2224
ky = hf(x2 +%h,y2 +%k2) =(0.1) £(0.25,1.3885) = 0.2275

ky = hf (xy + Iy, +k; ) =(0.1) £(0.3,1.5048) = 0.2716
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k= é(kl +2k, + 2k, +k, ) = 0.2267

y(0.3)=yy =y, +k=1.504

Now the starting values for the Milne’s method are:

x,=0.0 y, = 1.0000 £,=1.0000
x,=0.1 y,=1.1169 f,=1.3591
x, =02 y, = 12773 £,=1.8869
x, =03 y, = 15049 £=27132
Using the predictor

4h
yfxp) =Y +?(2f1 —f +2f3)

v, =04 yP =18344 f, =4.0988

and the corrector,
. h
951) =Y +§(f2 +4f; +f4)

g =1.2773 + %[1.8869 +4(2.7132) + 4.098]
=1.8397  f,=4.1159.
Again using the corrector,
Y\ =1.2773+ %[1.8869 +4(2.7132) + 4.1159]
=1.8391  f,=4.1182 (i)

Again using the corrector,
. 0.1
gy =1.2773+ ?[1.8869 +4(2.7132) + 4.1182]

= 1.8392 which is same as (i)
Hence y(0.4) =1.8392.

Exercises 10.4

d
1. Given d—y =+ y, y(0) = 2. The values of y(0.2) = 2.073, y(0.4) = 2.452,
X

and y(0.6) = 3.023 are gotten by the R.K. method of the order. Find
(0.8) by Milne’s predictor-corrector method taking i = 0.2
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. Given 2 dy/dx = (1 +x*)y* and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12,

y(0.3) = 1.21, evaluate y(0.4) by Milne’s predictor corrector method.

. Solve that initial value problem

dy 2
=1+ 0)=
I xy”,y(0)

for x = 0.4 by using Milne’s method, when it is given that

X 0.1 0.2 0.3
y: 1.105 1.223 1.355

. From the data given below, find y at x = 1.4, using Milne’s predictor-

corrector formula: dy/dx = x* + y/2:

x=1 1.1 1.2 1.3
y=2 2.2156 | 2.4549 | 2.7514

d
. Using Taylor’s series method, solve Z_y =y + 2, y(0)=1;atx=0.1,

dx
0.2, 0.3. Continue the solution at x = 0.4 by Milne’s predictor-corrector
method.

My =2e"—y, y(0) =2,y(0.1) =2.01, 4y(0.2) = 2.04, and y = 2.09, find

y(0.4) using Milne’s predictor-corrector method.

. Using the Runge-Kutta method, calculate y (0.1), y(0.2), and (0.3)
d 2
given that Y xyz =1. y(0) = 0. Taking these values as starting val-
dx 1+«

ues, find y(0.4) by Milne’s method.

10.10 Adams-Bashforth Method

dy
Given ——f x,y) and y, =y(x,), we compute

Yoy =ylxg —h),y_y = ylxy —2h),y_s3 = ylx, — 3h)

by Taylor’s series or Euler’s method or the Runge-Kutta method.

Next we calculate

for=flg =hy_y), fo = flxg —2h,y_y), fy = flxg = 3h,y_3)

Then to find y,, we substitute Newton’s backward interpolation formula

nn+1) nn+1)(n+2
flxy)= fo +nVfy + szo TV fo
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xo+h
in ylzyo"‘fx Jxy) (1)
n(n+1)
=Y +f ( Jo+nVfy + szo )d
[Put x = x, + nh, dx = hdn]
1 n(n+1)
:y0+hf0(f0+an0+ szo+...)dn
_ Yor v 5 w2p 23v3r 4o
—?/0+h(fo+2vfo+12v fo"‘SV fot )
Neglecting fourth and higher order differences and expressing
Vf,, V2 f, and V° £, in terms of function values, we get

h
Y1=Yot (55f0 59f_1 +37f, _9f—3) (2)
This is called the Adams—Bashfoﬂh predictor formula.
Having found y, we find f, = flx, + h,, y,).

Then to find a better value of y1, we derive a corrector formula by sub-
stituting Newton’s backward formula at f1, i.e.,

fleg=fi+nvf + 1

+1>V2f1 +---)dx

[Put x =x +nh, dx=h dn]
0 n+1
=yo+f_1(f1 nVf; + V2f1 y

1 1 _. 1
=y +h| f; == Vf ——=V2f, ——V° +)
Yo (fl B 't 12 fo 94 h
Neglecting fourth and higher order differences and expressing
Vf,,V?f, and V* f, and in terms of function values, we obtain

?/ =y, t+ " (9ﬁ +19f, =51, +9f—2)

which is called the Adams*-Moulton corrector formula.

+1 +2
nntint2gsp

in (1)

3 n(n
Y =Y +fo (f1 +nVf, +
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Then an improved value of f1 is calculated and again the corrector (3) is
applied to find a still better value y1. This step is repeated until 4y, remains
unchanged and then we proceed to calculate y, as above.

NOTE Obs. To apply both Milne and Adams-Bashforth methods, we
require four starting values of y which are calculated by means
of Picard’s method or Taylor’s series method or Euler’s method
or the Runge-Kutta method. In practice, the Adams formulae
(2) and (3) above together with the fourth order Runge-Kutta
formulae have been found to be the most useful.

EXAMPLE 10.23

Given %:xz (1+y) and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548,
X

y(1.3) = 1.979, evaluate y(1.4) by the Adams-Bashforth method.
Solution:
Here f(x, y) =x*(1 + y)
Starting values of the Adams-Bashforth method with & = 0.1 are

x=1.0, y_, = 1.000, f5=(10)*1 + 1.000) = 2.000
x=11, y,=1233,  f,=2702

x=12, y =1548,  f =3669

x=1.3, y,=1.979, f,=5.035

Using the predictor,

, h
1P =t 5y 07 47101

x, =14, yﬁ’”) =2573 f, =7.004

Using the corrector
. h
=y +ﬂ(9f1 +19f, =51+ f2)

0.1
Y\ =1.979 +54 (9X7.004 +19X5.035 53,669 +2.702) = 2575

Hence y(1.4) = 2.575
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EXAMPLE 10.24

If dy =2¢"y, y(0) = 2, find y(4) using the Adams predictor corrector

dx

formula by calculating y(1), y(2), and y(3) using Euler’s modified formula.

Solution:

We have f(x, y)=2¢"y

2e'y

Mean slope

Oldy + h (mean slop) = new y

4

2+0.1(4) =24

0.1 2001(2.4) = 5.305

1(4+5.305) = 4.6524

2+ 0.1 (4.6524) = 2.465

0.1 2¢"1(2.465) = 5.449

2(F+27902) = TA5%

2+ 0.1 (4.7244) = 2.472

0.1 2¢°1(2.4724) = 5.465

1(4+5.465) = 4.7324

2+ 0.1 (4.7324) = 2.473

0.1 2¢"1(2.478) = 5.467

L(445.467) = 4.7333

2+ 0.1 (4.7333) =2.473

0.1 5.467

2+ 0.1 (5.467) =3.0199

0.2 | 2°%3.0199) = 7.377

1(5.467 +7.377) = 6.422

2473+ 0.1 (6.422) = 3.1155

0.2 7.611 %(5.467+7.611)=6.539 2.473 4+ 0.1 (6.539) = 3.127
0.2 7.639 1(5.467 +7.639) = 6553 2.473 +0.1 (6.553) = 3.129
0.2 7.463 — 3.129 4+ 0.1 (7.643) = 3.893

0.3 2¢"3(3.893) = 10.51

1(7.643+10.51)=9.076

3.129 4+ 0.1 (9.076) = 4.036

0.3 10.897 %(7.643 +10.897) =9.266 3.129 + 0.1 (9.2696) = 4.056
0.3 10.949 %(7.643 +10.949) = 9.296 3.129 + 0.1 (9.296) = 4.058
0.3 10.956 3.129 4+ 0.1 (9.299) = 4.0586

1(7.643+10.956) = 9.299

To find y(0.4) by Adam’s method, the starting values with h = 0.1 are

x=0.0 y, =24 f,=4

x=0.1 Y, = 2473 f,=5467
x=02 y ,=3.129 f,=7643
x=0.3 y, = 4.059 £,=10.956




460 ¢ NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Using the predictor formula

h
?/g =y, t+ (55ﬁ) 591 +371, _9f—3)

=4.059 + 5(55 x10.957 — 59 X 7.643 + 37 X 5.467 — 9 X 4)
=5.383
Now x=04 y, =5383 f, =2¢"*(5.383)=16.061

Using the corrector formula

. h
yﬁ ) =Y +ﬂ(9f1 19/, =5/ +f_2)

0.1
=4.0586 + 5(9 x16.061+19x10.956 —5X 7.643 + 5.467)

=5.392
Hence y(0.4) = 5.392

EXAMPLE 10.25

Solve the initial value problem dy/dx = x - y(0) = 1 to find y(0.4) by
Adam’s method. Starting solutions required are to be obtained using the
Runge-Kutta method of the fourth order using step value h = 0.1

Solution:

We have f(x, y) = x — .
To find ¢(0.1):
Herex,=0,y,=1,h=0.1.

ky = hf(xy,y,)=(0.1) £(0,1)= —0.1000
hf( += hy0+ k) (0.1) £(0.05,0.95) = —0.08525
hf(x0+ —h,y, += k) (0.1) £(0.05,0.9574) = —0.0867

L =hf (xg +hyy +ky ) =(0.1) £(0.1,0.9137) = -0.07341

k==(k, + 2k, +2k; +k,)0=—0.0883

|~
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Thus y(0.1)=y, =y, +k=1-0.0883= 09117
To find ¢(0.2):
Herex, =0.1,,=0.9117,h=0.1
k, =hf (x,,y,)=(0.1)x £(0.1,0.9117) = —0.0731

of |, += hy1+ k) (0.1) £(0.15,0.8751) = 0.0616

hf(x +%h,y1 +ékz)= (0.1) £(0.15,0.8809) = 0.0626
L =hf(x, + oy, + k) =(0.1)% £(0.2,0.8491) = 0.0521

k= é(k1 +2k, + 2k, +k, ) =0.0623

Thus  4(0.2) =y,=y, +k=0.8494.
To find y(0.3):
Herex,=0.2,y,=0.8494, h =0.1.
ky =hf(xy,y,) =(0.1) % £(0.25,0.8494) = 0.0521

ky = hf | x, +éh,y2 +%k1 ) =(0.1) £(0.25,0.8233) = 0.0428

ky = hf(ac2 +%h,y2 +%k2) =(0.1) £(0.25,0.828) = 0.0436
ky =hf (x, +h,y, +k; ) =(0.1) £(0.3,0.058) = 0.0349

k= %(k1 +2k, +2ky +k, ) =0.0438

Thus  y(0.3)=y; =y, +k=0.8061

Now the starting values for the Milne’s method are:

x,=0.0 y, = 1.0000 f =0.0-(0.1)>=1.0000

x, =01 y,=0.9117 £f,=0.1-(0.9117)* = -0.7312
x,=0.2 y,=0.8494 f —(0.8494)> = -0.5215
x,=0.3 y,=0.8061 f —(0.8061)> = -0.3498
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Using the predictor,
h
ygp) =Yo +i(55f0 =591 +37f_,— 9f—3)
x=04
g =0.8061 + %(55(—0.3498) —59(—0.5215) +37(—0.7312) — 9(—1))
=0.7789 f, =—0.2.67

Using the corrector,

. h
=y +Q(9f1 +19f, =51+ f2)

0.1
i =0.8061 +a[9(—0.2067) +19%(—0.3498) — 5(—0.5215) — 0.7312]

=0.7785
Hence y(0.4) =0.7785

Exercises 10.5

1. Using the Adams-Bashforth method, obtain the solution of dy/dx =x —1?
atx = 0.8, given the values

X 0 0.2 0.4 0.6

K 0 0.0200 0.0795 | 0.1762

2. Using the Adams-Bashforth formulae, determine (0.4) given the dif-

ferential equation dy/dx = lxy and the data:
2

x: 0 0.1 0.2 0.3
y: 1 1.002 |51.0101| 1.0228
3. Given y’ =x* —y, y(0) = 1 and the starting values y(0.1) = 0.90516,

4(0.2) =0.82127, 4(0.3) = 0.74918, evaluate y(0.4) using the Adams-
Bashforth method.

4. Using the Adams-Bashforth method, find y(4.4) given 5xy” +y* =2,
y(4) =1,y(4.1) = 1.0049, y(4.2) =1.0097 and y(4.3) =1.0143.

5. Given the differential equation dy/dx = x*y + x* and the data:

x 1 1.1 1.2 1.3

y: 1 1.233 1.548488 | 1.978921
determine y(1.4) by any numerical method.
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6. Using the Adams-Bashforth method, evaluate y(1.4); if y satisfies dy/dx
+y/x=1x%and y(1) =1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.

10.11 Simultaneous First Order Differential Equations

The simultaneous differential equations of the type

dy _
dz

and —=¢(x,y,z) (2)
dx

with initial conditions y(x ) =y, and z(x ) = z, can be solved by the meth-
ods discussed in the preceding sections, especially Picard’s or Runge-Kutta
methods.

Picard’s method gives
=0+ [ flygzoldn z =2y + [ ¢y,
vo =y + [ flayrzdz =z + [ ple.yy.z )
Us =t + [ Flrya.zadn. 25 =70 + [ pla.yn.2 )

and so on.

(it) Taylor’s series method is used as follows:

If h be the step-size, y, = y(x, + h) and z, = z(x, + h). Then Taylor’s al-
gorithm for (1) and (2) gives

h? n®

Y1 = Yo +hyg +gy<’§'+§y8’+--- (3)
2 23

7 =7 +hz +§Z(’)’ +§z(’;’+... (4)

Differentiating (1) and (2) successively, we get y”, z”, etc. So the values

Yo.Y0-yo - and zy,z(,z0 - are known. Substituting these in (3) and (4), we
obtain y , z, for the next step.
Similarly, we have the algorithms
2 3
Yo =ty Fhy + i oy e
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9 3
Zg =z thay +—z] +—z/+- 6
2 =3 AT T (6)
Since y, and z, are known, we can calculate y;,y{,--- and z{,z],---. Sub-

stituting these in (5) and (6), we get i, and z,.

Proceeding further, we can calculate the other values of y and z step

by step.
(iti) Runge-Kutta method is applied as follows:

Starting at (v, y,, z,) and taking the step-sizes for x, y, z to be h, k, |
respectively, the Runge-Kutta method gives,

ky = hf (xq,y9,70)
b, =he(xy,10,7)

1 1 1
k2 =hf(x0 +§h,y0 +§kl,zo +§ll)

1 1 1
ly =h¢(x0 +§h,y0 +§k1,z0 +§l1)

1 1
hf( +— hy(,+2k2,zo+2l )

h¢(x +— hy0+1k7,z0+;l )

1 1
k, :hf(xo +§h,yO +Ek3,z0 +EZS)
1 1 1
L =h¢(x0 +§h:yo +§ks:zo +§ls)
1
Hence Y =Y +g(k1 +2k2 +2k3 +k4)
and 2 =1, +%(z1 +2l, +2, +1,)

To compute y, and z,, we simply replace x,, y,, z, by x, y,, z, in the
above formulae.

EXAMPLE 10.26

Using Picard’s method, find approximate values of y and z correspond-
ing to x = 0.1, given that y(0) = 2, 2(0) = 1 and dy/dx =x + z, dz/dx = x — .
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Solution:

Herex,=0,y,=2,z,=1,
d

and —y=f(x,y,z)=x+z
dx
%=¢(x,y,z)=x—y2

y=y,+ f: flx,y,2)dx and z=z, + f: o(x,y,z)dx
First approximations

X x 1 9
=y, + X, 10,20 M =2+ +de=24x+=2"
Y1=Yo fxl)f(qt Yo» 3o )dx fo(x Jdx Ty

x x 1
Z =z0+fx0¢(x,yo)zo)dx=1+f0(x—4)dx=1—4x+§x2

X

Second approximations

x x 1
Yo =Yy +fx0f(x,y1,z1)dx=2+fo (1—4x+§x2)dx

3., 2
=9t b
2

6
p x 1 .\
=2+ | olvy,z)dx=1+ [ [x—|2+x+—x
2 =20 fxo ¢<l N 71)dx fx() |:x ( * 21: ) }Ix
3 4 -/5
s
2 4 20

Third approximations

x 3 5
yg=y0+fx0f(x,y2,z2)dx=2+x—§x —gx —Zx —%x —Ex

Z3 =% +fx D(x, 15,75 )dx
= 1—4x+§x2 +§x3 +1x4 —2/5 +ix6 —ij
2 3 12 60 12 252
and so on.
When x=0.1
y, = 2.105, y,=2.08517, y, =2.08447

z, = 0.605, z,=0.58397, z,=0.58672.
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Hence y(0.1) = 2.0845, z(0.1) = 0.5867

correct to four decimal places.

EXAMPLE 10.27

Find an approximate series solution of the simultaneous equations dx/
dt = xy + 2t, dy/dt = 2ty + x subject to the initial conditionsx =1, y = -1,
t=0.

Solution:

x and y both being functions of ¢, Taylor’s series gives

2 3

t t
and x(t) = x, +tx;, +§x(’)’ +§x(’)"+--~ (i)

2 3
Y= yo +tyo +Syo +ry0 T

Differentiating the given equations

x' =y +2t (i)
y' =2ty +x (i)
w.r.t. t, we get
xrr:xy’+x'y+2 yrr=2ty,+2y+x, <1V>
x/" = (xy” + x’y/) + x"y + xry/ yw — 2ty/l + zy/ + 2?/’ + xr/
Puttingx, = 1, y,=—1,t,=0in (i), (iii), and (iv), we obtain
x,=—1+2(0)=-1 yo =1
xXo = XYy +x0y + 2 Yo =0 +2y, +x;
=11 +(-D(-1)+2=4 =2(-1)+(-1)=-3

1 =3+ D) +4(-1)-1=-9 | yy=2+2+4=Setc

Substituting these values in (i), we get
t* 3 s 3,
x(t)=1—t+4—+(=9) =+ =1—t+2——t" +--
21 31 2

t2 t3 3 . 4
xB)=14t+3—+8— 4 =14+t ——t>+—> +--
21 3! 2 3
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EXAMPLE 10.28

Solve the differential equations

d
d—Z=1+xz,%=—xyforx=0.3

using the fourth order Runge-Kuta method. Intial values are x = 0,
y=0,z=1

Solution:

Here  f(x,y, 2)=1 + xz, ¢(x, y, z) =—xy
x,=0,y,=0,z,=1. Let us take h = 0.3.
k, =hf(x,y,z)=03£(0,0,1)=03(1+0)=0.3.

I, =he(xy,y0,7) =0.3(-0% 0)=0
1 1 1
kQ =hf(x0 +§h,y0 +§k1,z0 +§ll)
=(0.3) £(0.15,0.15,1) = 0.3(1 4 0.15) = 0.345
1 1 1
l, = h¢(x0 +§h’!/0 +§k1>z0 +§ll)
=(0.3)[-(0.15)(0.15)] = —0.00675

2

1 k. l
ks =hf(x0 +§h,y0 +Ez,z0 +;)
=(0.3) £(0.15,0.1725,0.996625)
=0.3[1+0.996625 x 0.15] = 0.34485

2 2
=0.3[-(0.15)(0.1725)] = —0.007762

L =h¢(x0 +éh,y0 +k—2,z0 +l—2)

ky = hf (xo +h,yy +kyz +13)
=0.31(0.3,0.34485,0.99224) = 0.3893

L =he(x, +h,yy +ks,z +15)
=0.3[-(0.3)(0.34485)] = —0.03104

Hence y(x, +h)=y, +é(k1 +2k, +2k; +k,)
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ie., 7(0.3)=0+ %[0.3 +2(0.345) + 2(0.34485) + 0.3893] = 0.34483

and z(x+h)=y0+%(ll+212+2l3+l4)

ie. 2(0.3)=1+ é[o +2(=0.00675) + 2(0.0077625) + (—0.03104)]
=0.98999

10.12 Second Order Differential Equations

Consider the second order differential equation

dy dy
ot
By writing dy/dx = z, it can be reduced to two first order simultaneous
differential Equations
d
dy_ d=
dx dx
These equations can be solved as explained above.

fx, y, z)

EXAMPLE 10.29

Find the value of y(1.1) and y(1.2) from y” + %" =x3; y(1) = 1, y'(1) =
1, using the Taylor series method

Solution:
Let y’ =z so that y” =z’

Then the given equation becomes z” + y*x = z*

y =z
7=t -y (i)
such that y(1)=1,2(1)=1,h=0.1. (ii)
Now from (i) ¢y’ =zy"=zy"=7" (iii)

Z, = xs - yZZ,Z” = 3x2 - yQZ/ - 2yz2 ( y/ = z)
and from (ii) 2" =6x— (yzz” +2yy'z') — Z(y’zz + ygzz’) (iv)
=6x— (=" +2¢427) — 2(z3 + 2yzz’)
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Taylor’s series for y(1.1) is
2 3

y(1.1)=y(1) +hy'(1) + l 31 y”(l)+h' y'"(l)+

Also y)=1Ly(1)=Ly"1)=7'1)=0,y"(1)=2"(1)=1

(0 1)2 0. 1)3

y(1.1)=(1)+0.1(1) (0)+ ( (0)=1.1002.

Taylor’s series for z(1.1) is
2 3

2(1.1)=z(Q1) + hz'(1) + }; Z"(l)+h (1) +....

Here 2)=17z(1)=0,z"(1)=1,z"(1)=3

2 3
z(1.1)=(1)+0.1(0) + (021) (1)+ (061) (3)=1.0055
Hence y(1.1) = 1.1002 and z(1.1) = 1.0055.

EXAMPLE 10.30

Using the Runge-Kutta method, solve y” = xy"* — y* for x = 0.2 correct
to 4 decimal places. Initial conditions arex =0,y =1, ¢y’ = 0.

Solution:
Let dy/dx =z =f(x, y, z)
d )
Then d_z =xz" —y” = Plx,y.3)
We havex,=0,y,=1,2,=0,h=0.2
. Runge-Kutta formulae become
k, =hflx,, vy, z,)=0.2(0)=0
1 1 1
k2 =hf X, +§h,y0 +§k1,zo +§ll
=02(~ 0.1)=- 0.02
1 1 1
k3 =hf(x0 +§]’l,y0 +§k2,zo +§lz)
=0.2(= 0.0999) = —0.02
ky =hf(x, +h,yy +ks.z0 +15)
=0.2(— 0.1958) = -0.0392
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k= %(kl +2k, + 2k +k,)=0.0199
ll = hf(xo, y()’ ZO) = 02<_ 1) - 02

1 1 1
L, =h¢(x0 +§h,y0 +§k1,z0 +§l1)
=0.2(=0.999) = —0.1998
1 1 1
13 =h¢(x0 +§h,y0 +§k2,z0 +§lg)
=0.2(- 0.9791) =-0.1958

L =h¢(x0 +h,yy +ks. 2 +ls)
=0.2(0.9527) = -0.1905

z=%(z1 2L, +21, +1,) = —0.1970
Hence atx = 0.2,
y=y,+k=1-00199 = 09501
and y =2=20+1=0-0.1970 = - 0.1970.

EXAMPLE 10.31

Given y” +xy" +y =0, y(0) = 1, 4’(0) = 0, obtain y for x = 0(0.1) 0.3 by
any method. Further, continue the solution by Milne’s method to calculate
y(0.4).

Solution:

Putting y” = z, the given equation reduces to the simultaneous equa-
tions
Ztaz+y=0,y" =z (1)

We employ Taylor’s series method to find y.
Differentiating the given equation n times, we get
Y,otx +ny +y =0
At x=0,(y, ,),=—m+1y),
y(0)=1, gives y,(0)=—1,y,(0)=3,y,(0)=-5x 3, ...
and  y,(0) =0 yields y,(0) =y (0) = ...... =0.
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Expanding y(x) by Taylor’s series, we have
2 &

y(x) = y(0) +xy, (0) +z—!y2<0>+’3—!y3<0) +oe

ﬁ E 4_w 64...

Y= T 2
and 2(x)=y'(x) =—x +%x3 —éx5 +--=—ay, (3)
From (2), we have
2
y(0.1)= 1—%+%(0.1)‘1 —--=0.995
p) 4
(() 2)_1_@4_%_...:0.9802
2 8
2 4 6
y(0.3)=1— 037  (03) (03" _ ) gs6
2 8 48

From (3), we have
z(0.1) =-0.0995, z(0.2) = - 0.196, 2(0.3) = — 0.2863.
Also from (1), 2’(x) = — (xz + y)
z’(0.1)=0.985,z°(0.2) =-0.941, z’(0.3) = - 0.87.
Applying Milne’s predictor formula, first to z and then to y, we obtain
2(0.4)=z(0)+ %(0.1){22«.'(0.1) ~2(0.2)+22'(0.3)}

=0+ (%4){— 179 + 0.941-1.74} = -0.3692
4 ,
and y(0.4)=y(0) +§(O.1){2y'(0.1) —y(02)+2¢/(0.3)} [y =xz]
=0+ (%) {~0.199+0.196 — 0.5736} = 0.9231

Also  2(0.4) = — {x(0.4) 2(0.4) + y(0.4)}
=—{0.4(- 0.3692) + 0.9231} = - 0.7754.
Now applying Milne’s corrector formula, we get
2(0.4)=2(0.2) +%{z’(0.2) +42'(0.3) +2'(0.4)}

0.1
=-0.196 + (?) {-0.941 - 3.48 - 0.7754} = —0.3692
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and  y(0.4)=y(0.2)+ %{y'(O.Z) +44/(0.3) +'(0.4)}

1
=0.9802 + (0?) {-0.196 —1.1452 — 0.3692} = 0.9232

Hence y(0.4) =0.9232 and z(0.4) = — 0.3692.

Exercises 10.6

1

. Apply Picard’s method to find the third approximations to the values of y

and z, given that
dy/dx =z, dz/dx = x*(y + z), giveny = 1, z = 1/2 when x = 0.

. Using Taylor’s series method, find the values of x and ¢ for ¢ = 0.4,

satisfying the differential equations
dx/dt =x +y +t, d*y/dt* = x — ¢ with initial conditionsx =0,y =1,
dy/dt =—1att=0.

. Solve the following simultaneous differential equations, using Taylor

series method of the fourth order, forx =0.1 and 0.2:

dy dz
L+ ===y (0)=1.
Rt ay xy;y(0)

. Find y(0.1), 2(0.1), y(0.2), and 2(0.2) from the system of equations: " =

x+2z,2" =x—y*given y(0) = 0, 2(0) = 1 using Runge-Kutta method of the
fourth order.

. Using Picard’s method, obtain the second approximation to the solution
of
de sdy 1
I _3d so that ¢ (0)=14'(0)==.
dx* xdx Y y(0)=1y'(0) 2

. Use Picard’s method to approximate y when x = 0.1, given that

d2y d*y dy
+2x—>+2x—=+y=0and y=0.5
dx2 dx® xd y=randy

when x = 0.

dy
“dx=0.1

. Find y(0.2) from the differential equation y” + 3xy” — 6y = 0 where y(0)

=1,4'(0) = 0.1, using the Taylor series method.

. Using the Runge-Kutta method of the fourth, solve y” =y +xy’, y(0) =

y’(0) =0 to find (0.2) and y’(0.2).
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9. Consider the second order initial value problem y” — 2y + 2y = ¥ sin t
with y(0) =- 0.4 and yy’(0) = — 0.6. Using the fourth order Runga-Kutta
method, find (0.2).

10. The angular displacement 6 of a simple pendulum is given by the equa-

tion
o g
F +%Sll’l¢ =0

where [ =98 cm and g = 980 cm/sec®. If 0 = 0 and dO/dt = 4.472 at t = 0,
use the Runge-Kutta method to find 6 and d6/dt when ¢ = 0.2 sec.

11. In a L-R-C circuit the voltage v(t) across the capacitor is given by the
equation ,
d~v dv
LC—+RC—
e’ dt
subject to the conditions ¢ = 0, v = v, dv/dt = 0.
Taking h = 0.02 sec, use the Runge-Kutta method to calculate v and
dv/dt when t = 0.02, for the data v, = 10 volts, C = 0.1 farad, L = 0.5 henry
and R = 10 ohms.

+0v=0

10.13  Error Analysis

The numerical solutions of differential equations certainly differ from
their exact solutions. The difference between the computed value yi and the
true value y(xi) at any stage is known as the total error. The total error at
any stage is comprised of truncation error and round-off error.

The most important aspect of numerical methods is to minimize the
errors and obtain the solutions with the least errors. It is usually not pos-
sible to follow error development quite closely. We can make only rough
estimates. That is why, our treatment of error analysis at times, has to be
somewhat intuitive.

In any method, the truncation error can be reduced by taking smaller
sub-intervals. The round-off error cannot be controlled easily unless the
computer used has the double precision arithmetic facility. In fact, this er-
ror has proved to be more elusive than the truncation error.

1. .
The truncation error in Euler’s method is Ehzyn”’, i.e., of (h?) while

that of modified Euler’s method is éhsynm, ie., of (h?)
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Similarly in the fourth order of the Runge-Kutta method, the trunca-
tion error is of O(h).

In the Milne’s method, the truncation error

due to predictor formula = = ynh5

and due to corrector formula = ——Oy“h5

i.e., the truncation error in Milne’s method is also of O(h?).

Similarly the error in the Adams-Bashforth method is of the fifth order.

Also the predictor error T, and the corrector error T are so related that
197, ~~251T.

The relative error of an approximate solution is the ratio of the total
error to the exact value. It is of greater importance than the error itself for
if the true value becomes larger, then a larger error may be acceptable. If
the true value diminishes, then the error must also diminish otherwise the
computed results may be absurd.

EXAMPLE 10.32
Does applying Euler’s method to the differential equation
dy/dx = f(x, y), y(x,) = y,, estimate the total error?

When flx, y) = —y, y(0) = 1, compute this error neglecting the round-off
error.

Solution:
We know that Euler’s solution of the given differential equation is
y =y +hflx .y )wherex =x +nh.

’

2 €., yn+1 = yn + hyn <1>
Denoting the exact solution of the given equation at x =x by y(x ) and
expanding y(x . ) by Taylor’s series, we obtain

2

y<xn+1)=y(xn)+hy’<xn)+%,y"(§ )x, <E <x, +1 (2)

The truncation error T =y(x, ) -y = (1/2)h*y " (C )

n

Thus the truncation error is of O(h?) as h — 0.
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To include the effect of round-off error R , we introduce a new ap-
proximation ¢y which is defined by the same procedure allowing for the
round-off error.

yn+l = yn + hf(xn?yn ) - Rn+] <3)
- The total error is defined by
En+1 = y< n+l) yn+1 [<2> - ('3)]

2

h —
=y, ) +hy'e, )+ 2oy (E) =y, + (0, = B

= [y<xn) - ?;,, ] + h [h’/(xn) - f<xn >Yn )] + Tn+1 + Rn+1

Assuming continuity of ﬁf/ﬁy and using Mean-Value theorem, we have

flayle )] —fla,y ) =lylx )—y I fylx , ), where  lies between y(x )

andy, .
.. (4) takes the form
By =ly,) -7, [1 +f, (5, &)+ Ty + Ry
or E =E | 1+hf JJ+T . +R (5)

n+l n’ n n+l n+1

(4)

This is the recurrence formula for flndmg the total error. The first terms
on the right-hand side is the inherited error, i.e., the propagation of the er-
ror from the previous step y toy

n+l’
(b) We have dy/dx = -y, y(0) =
Taking h = 0.01 and applying (1) successively, we obtain
4(0.01)=1+0.01(-1)=0.99
4(0.02) = 0.99 + 0.01 (- 0.99) = 0.9801
(0.03) = 0.9703, 4(0.04) = 0.9606
.. The truncation error
T . =1/2)hy”(€)=0.000054E ) <5 x 10° y(x ) [ dy/dx is — ve]
ie., T, <5x107y(0)=5x 107
T,<5x107°y(0.01)=5x 107 (0.99) < 5 x 10-5
T,<5x 107 4(0.02) =5 x 107 (0.9801) < 5 x 10-5

T, <5 %107 4(0.03) =5 x 107 (0.9703) < 5 x 10-5 etc.



476 * NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Also 1 +hf(x ,y )=1+0.01(-—1)=0.99.

Neglecting the round-off error and using the above results, (5) gives
E,=0,E,=E0(0.99) + T, <5 x 10 = 0.00005
E,=E(099)+T, <5 x 10-5+5 x 107 = 0.0001
E,=E(099)+T, < 10-4+5 x 10°=0.00015
E,=E(0.99)+T, <15 x 104 +5 x 10 = 0.0002 etc.

NOTE Obs. The exact solution is y = ™.
Actual error in y(0.03) = e*% - 0.9703 = 0.00014
and actual error in y(0.04) = e — 0.9606 = 0.00019.
Clearly the total error E, agrees with the actual error in 1(0.04).

10.14 Convergence of a Method

Any numerical method for solving a differential equation is said to be
convergent if the approximate solution y approaches the exact solution
y(x,) as h tends to zero provided the rounding errors arise from the initial
conditions approach zero. This means that as a method is continually re-
fined by taking smaller and smaller step-sizes, the sequence of approximate
solutions must converge to the exact solution.

Taylor’s series method is convergent provided f(x, i) possesses enough
continuous derivatives. The Runge-Kutta methods are also convergent un-
der similar conditions. Predictor corrector methods are convergent if f{x, )
satisfies the Lipschitz condition, i.e.,

| fley) - fley) [<kly-7 |,

k being a constant, then the sequence of approximations to the numeri-
cal solution converges to the exact solution.

10.15 Stability Analysis

There is a limit to which the step-size h can be reduced for controlling
the truncation error, beyond which a further reduction in i will result in
the increase of round-off error and hence increase in the total error. This
behavior of the error bound is shown in Figure 10.3.

In such situations, we have to use stable methods so that an error intro-
duced at any stage does not get magnified.



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS © 477

A method is said to be stable if it produces a bounded solution which
imitates the exact solution. Otherwise it is said to be unstable. If a method
is stable for all values of the parameter, it is said to be absolutely or uncon-
ditionally stable. 1f it is stable for some values of the parameter, it is said to
be conditionally stable.

The Taylor’s method and Adams-Bashforth method prove to be rela-
tively stable. Euler’s method and the Runge-Kutta method are condition-
ally stable as will be seen from Example 10.23.

The Milne’s method is however, unstable since when the parameter is
negative, each of the errors is magnified while the exact solution decays.

Error

Round-off error

Optimum, h
FIGURE 10.3

EXAMPLE 10.33
Does applying Euler’s method to the equation
dy/dx = Ay, given y(x,) =y,

determine its stability zone? What would be the range of stability when
A=-17

Solution:
We have y' =y, ylx,) =y, (1)
By Euler’s method,

y =y  +hy =y +ihy =1+Ah)y [by (1)
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Multiplying all these equations, we obtain

y,=(1+Ah)"y, (2)
Integrating (1), we get y = ce™
Using  y(x)) =y, y, = ce™" sy =yt
In particular, the exact solution through (x , y ) is
Yy = yoel(m_xo) = yoeinh [ x =x,+nh]
2 n
or Yo = yole™)" =y, {1 +Ah+ ('1}21) + } (3)
Unstable AL (Ah)

Stable

) U Rﬂ(/lh):

FIGURE 10.4
Clearly the numerical solution (2) agrees with exact solution (3) for
small values of /. The solution (2) increases if |1 + Ah| > 1.

Hence |1 + Ah|< 1 defines a stable zone.
When A is real, then the method is stable if [1 + Ah| < 1i.e. =2 <Ah <0
When A is complex ( = a +ib), then it is stable if
1+ (a+ib)h|<lie (1+ah)*+ (bh)?<1

e, (x+1)2+y, <1, [where x = ah, y =bh.]
i.e., Ah lies within the unit circle shown in Figure 10.4.

When 4 is imaginary (=ib), |1 +Ah| = 1, then we have a periodic-stability.
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Hence Euler’s method is absolutely stable if and only if
(i) real : =2 < Ah = 0.

(it) complex A: Ah lies within the unit circle (Figure 10.4), i.e., Euler’s
method is conditionally convergent.

When A = — 1, the solution is stable in the range — 2 < - h < 0
ie.0<h <2.

Exercises 10.7

1. Show that the approximate values ¢, obtained from ¢” = ¢ with y(0) = 1
by Taylor’s series method, converge to the exact solution for i tending to
zero.

2. Show that the modified Euler’s method is convergent.

3. Starting with the equation ¢y’ = Ay, show that the modified Euler’s
method is relatively stable.

4. Apply the fourth order Runge-Kutta method to the equation dy/dx = uy,
y(x,) =y, and show that the range of absolute stability is

~2.78 < uh < 0.

5. Find the range of absolute stability of the equation
y’ + 10y =0, y(0) = 1, using
(a) Euler’s method, (b) Runge-Kutta method.
6. Show that the local truncation errors in the Milne’s predictor and cor-

rector formulae are

%hSy“ and —%h‘sy“ ,respectively.

10.16 Boundary Value Problems

Such a problem requires the solution of a differential equation in a
region R subject to the various conditions on the boundary of R. Practical
applications give rise to many such problems. We shall discuss two-point
linear boundary value problems of the following types:

W Ly

e +/l(~c)—+,u(r)y v(x) with the conditions y(x,) =
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ylx,)=b.

4
(ii) dy +A(x)y = u(x) with the conditions y(x,) = y(x,) = a and

et

yx,)=y'(x )=b.

There exist two numerical methods for solving such boundary value
problems. The first one is known as the finite difference method which
makes use of finite difference equivalents of derivatives. The second one is
called the shooting method which makes use of the techniques for solving
initial value problems.

10.17 Finite-Difference Method

In this method, the derivatives appearing in the differential equation
and the boundary conditions are replaced by their finite-difference ap-
proximations and the resulting linear system of equations are solved by any
standard procedure. These roots are the values of the required solution at
the pivotal points.

The finite-difference approximations to the various derivatives are
derived as under:

If y(x) and its derivatives are single-valued continuous functions of x
then by Taylor’s expansion, we have

h’ h®
y(x+h)=y(X)+hy'(x)+gy"(x)+ay’”(x)+... (1)
! h2 " h3 "m
and y(x—h)=y(x)+hy (x)+§y (x)+3—!y (x)+-- 2)

Equation (1) gives
y =2y 40 -] -5y () - -

ie., y'(x)=%[y(x+h)—y(x)]+0(h)

which is the forward difference approximation of y’(x) with an error of the

order h.
Similarly (2) gives

y () =7y = y(x=1)]+ o)
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which is the backward difference approximation of y’(x) with an error of

the order h.
Subtracting (2) from (1), we obtain

y'(x) =$[y(x +h)—y(x—h)]+O(h?)

which is the central-difference approximation of y’(x) with an error of the
order h% Clearly this central difference approximation to ¢’(x) is better than
the forward or backward difference approximations and hence should be
preferred.

Adding (1) and (2), we get
1 .
y'(x) = h—g[y(x +h) - 2y(x) + y(x —h) |+ O(h*)
which is the central difference approximation of y”(x). Similarly we can de-
rive central difference approximations to higher derivatives.

Hence the working expressions for the central difference approxima-
tions to the first four derivatives of y, are as under:

.1
Y = %W:‘H ;1) (3)

n 1
Yy = h_g(yi+1 -2y, + yi—l) (4)
m 1
Y = Q_h;a(ywz =2y 2y — yz’—Z) (5)
iv 1
Y = h_4(yi+2 4y, +6y;, -4y, , + ?/i_z) (6)

NOTE Obs. The accuracy of this method depends on the size of the
sub-interval h and also on the order of approximation. As we
reduce h, the accuracy improves but the number of equations to
be solved also increases.

EXAMPLE 10.34

Solve the equation y” = x + y with the boundary conditions y(0) =
y(1)=0.
Solution:

We divide the interval (0, 1) into four sub-intervals so that h = 1/4 and
the pivot points are at x,=0,x =1/4,x,=1/2,x,=3/4, and x, = 1.
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Then the differential equation is approximated as
hiz[yHl -2y, + yi—l] =x;ty;

or 16y, —33y,+16,_ =x,i=1,2,3.

Using iy, =y, = 0, we get the system of equations

16y, — 33y, = i;16y3 - 33y, + 16y, = %;— 33y5 + 16y, =§

Their solution gives
y,=-0.03488, y, = - 0.05632, y, = — 0.05003.

sinh x
sinh1
each nodal point is given in the table below:

=, the error at

NOTE Obs. The exact solution being y(x) =

x Computed value y(x) Exact value y(x) Error
0.25 —0.03488 —0.03505 0.00017
0.5 —0.05632 —0.05659 0.00027
0.75 —0.05003 —0.05028 0.00025

EXAMPLE 10.35
Using the finite difference method, find ¢(0.25), 4(0.5), and ¢(0.75) sat-

d2
isfying the differential equation —Z +y = x, subject to the boundary condi-
tions ¢(0) =0, y(1) =2. dx
Solution:

Dividing the interval (0, 1) into four sub-intervals so that i = 0.25 and
the pivot points are at x, =0, x, =0.25,x,=0.5,x,=0.75, and x, = 1.

The given equation y”(x) + y(x) = x, is approximated as

1
h_z[%ﬂ -2y, +’i-1]+’i=xi

or 16y, — 31y, + 16y, =x, (i)
Using y,=0andy, =2, (i) gives the system of equation,
(i = 1) 16y, - 31y, = 0.25; (if)
(i =2) 16y, - 31y, + 16y, = 0.5 (iid)

(i=3) 3231y, + 16y,=0.75, i.e., - 31y, + 16y, = — 31.25 (iv)
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Solving the equations (ii), (iii), and (iv), we get
y, =0.5443,y, = 1.0701, y, = 15604
Hence y (0.25) = 0.5443, 4(0.5) = 1.0701, y(0.75) = 1.5604

EXAMPLE 10.36

Determine values of y at the pivotal points of the interval (0, 1) if y
satisfies the boundary value problem " + 81y = 81x2 y(0) = y(1) = y”(0) =
y” (1) =0. (Take n = 3).

Solution:

Here h = 1/3 and the pivotal points are x, = 0, x = 1/3,x, = 2/3, x, = 1.
The corresponding y-values are y (= 0), y, y,, y,(=0).

Replacing y" by its central difference approximation, the differential
equation becomes

h%(yHQ — 4y 6y, -4y, | + yi_2)+ 81y, =Slx}
or Yo~y +Ty -4y  +y ,=xi=12
At i=1y,—4y,+Ty —4y +y-1=1/9
At i=2,y4—4y3+7y2—4y1+y0=4/9

Using y, =y, =0, we get — 4y, + Ty, +y-1=1/9 (i)
y,+7y,—4y, =4/9 (i1)
Regarding the conditions y,” =1.,” = 0, we know that
a1
Yi' =35 Wi =295 + i)

Ati=0,  y"=9(@y, -2y, +y-Dory-l=—y [ y,=y, =

0
Ati=3,  y"=9y, -2y, ty)ory,=-y,  [vy,=y,"=0] ()
Using (iii), the equation (i) becomes

~ 4y, + 6y, =1/9 (v)
Using (iv), the equation (i) reduces to
6y, —4y,=4/9 (vi)

Solving (v) and (vi), we obtain
y,=11/90 and y, = 7/45.

Hence y(1/3) = 0.1222 and y(2/3) = 0.1556.
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EXAMPLE 10.37 A

d

The deflection of a beam is governed by the equation d_i‘/ + 81y = p(x),
x

where f(x) is given by the table

X 1/3 2/3 1
P(x) 81 162 243
and boundary condition y(0) = ¢’(0) = y”(1) = y”(1) = 0. Evaluate the de-
flection at the pivotal points of the beam using three sub-intervals.

Solution:

Here h = 1/3 and the pivotal points are x, =0, x, = 1/3,x, = 2/3,23 = 1.
The corresponding y-values are y (= 0), v, y,, ..

The given differential equation is approximated to

1
h_4(yz+2 —4y;, t6y, -4y, +y, ) +8ly; = ¢(xi)
Ati=1y,~4y,+ Ty, — 4y, +y-1=1 (i)
Ati=2, y4_4ys+7y2_4y1+yo=2 (i)
Ati=3, y,—4y, +Ty,—4y,+y =3 (iit)
We have y,=0 (iv)
. L1
Since yr = %(%H - yi—l)
s fori=0, 0 =y{,=$(g1—y—l)i-e-,y—1=y1 (v)
. +1 1
Since yr = h_Q(yHl - 2y, + %‘71)
. , 1 . ,
o fori=3, 0=1y; =h—2(y4 -2y, +yz)>1-e-, Ys =2Y3 — Y (vi)
" 1
Also Yy = ﬁ(%w =2y 2y, — yz’—Z)

m__

, 1
sfori=3, 0 =yi=—5(ys ~2y, +29, -11)
ie., y,=2y,—2y,+y, (vii)
Using (iv) and (v), the equation (i) reduces to

y,—4y,+8y, =1 (viii)
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Using (iv) and (vi), the equation (ii) becomes

—Yy;t Byz - 2% =1 (ix)
Using (vi) and (vii), the equation (iii) reduces to
3y, —4y,+2y, =3 (x)

Solving (viii), (ix), and (x), we get
y, = 8/13, y,= 22/13, Y, = 37/13.
Hence y(l/S) =0.6154, y(2/3) = 1.6923, y(l) = 2.8462.

10.18 Shooting Method

In this method, the given boundary value problem is first transformed
to an initial value problem. Then this initial value problem is solved by Tay-
lor’s series method or Runge-Kutta method, etc. Finally the given bound-
ary value problem is solved. The approach in this method is quite simple.

Consider the boundary value problem
y"(x) =y(x), ylx)=A, y(b) =B (1)

One condition is y(a) = A and let us assume that y’(a) = m which rep-
resents the slope. We start with two initial guesses for m, then find the cor-
responding value of y(b) using any initial value method.

Let the two guesses be m,, m, so that the corresponding values of y(b)

are y(m, b) and y(m,, b). Assuming that the values of m and y(b) are lin-

early related, we obtain a better approximation m, for m from the relation:

my —my _ m; —m
y(b)_?/(ml’b) y(ml,b)—y(m(,,b)
This gives my =my —(m, —m,) y(m b) y(b) ©)

"y(myb) y(mg.b)

We now solve the initial value problem
y"(x) =yx), yla) = A, y'(a) =m,
and obtain the solution y(m,, b).

To obtain a better approximation m, for m, we again use the linear rela-
tion (2) with [m, y(m,, b)] and [m,, y(m,, b)]. This process is repeated until
the value of yy(m,, b) agrees with y(b) to desired accuracy.
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y(x) (a) =
A g (@ =m,) : B =y(m,b)
I
————— -i B, =y(m,b)
I
i B=y(b) 2
I
I
| B, =y(m,.b)
A |
I I
I I
I I
I I
I I
o : 1 1 1 : >
x,=a x, X, Xy x=Db
FIGURE 10.5

NOTE Obs. This method resembles an artillery problem and as such
is called the shooting method (Figure 10.5). The speed of
convergence in this method depends on our initial choice of
two guesses for m. However, the shooting method is quite slow
in practice. Also this method is quite tedius to apply to higher
order boundary value problems.

EXAMPLE 10.38

Using the shooting method, solve the boundary value problem:
y”(x) =y(x), y(0) =0 and y(1) = 1.17.
Solution:

Let the initial guesses for ¢’(0) = m be m; = 0.8 and m, = 0.9.
Then y”(x) = y(x), y(0) = 0 gives

y'(0)=m y”(0)=y(0)=0
y”(0) =y(0) =m, y*(0)=y"(0)=0
yo(0) =y”(0) =m, yvi(0) = yiv(0) =0
and so on.

Putting these values in the Taylor s series, we have

=y(0)+xy’ (0)+ j"(0)+ ‘y”’(0)+

3 5 7

=ml|x+—+—+ : +
6 120 5040
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y(1) =m(1 +0.1667 + 0.0083 + 0.0002 + ---) =m (1.175)
Form,=0.8,y(m, 1)=0.8 x 1.175=0.94
Form,=0.9,y(m, 1)=0.9 x 1.175 = 1.057
Hence a better approximation for m, i.e., m, is given by
y(my.1)—y(1)
y(ml,l)—y(mo,l)

1.057—-1.175
=0.9-(0.1)—————————=0.9+0.10085 = 1.00085
1.057-0.94

which is closer to the exact value of 4y'(0) = 0.996

my =my _(ml _mo)

We now solve the initial value problem
y”(x) =y(x), y(0) =0,y'(0) =m,.
Taylor’s series solution is given by
y(m,, 1) =m, (1.175) = 1.1759

Hence the solution at x = 1is ¢ = 1.176 which is close to the exact value
of y(1)=1.17.

Exercises 10.8

1. Solve the boundary value problem forx = 0.5:
2

%+y+l=0,y(0)=y(l)=0. (Take n = 4)
2. Find an approximate solution of the boundary value problem:

y” +8(sin*my) y=0,0<x<1,y(0)=y(1)=1. (Taken =4)
3. Solve the boundary value problem:

xy”+y=0,y(1)=1,y(2)=2. (Taken =4)
4. Solve the equation y” — 4y’ + 4y = ¢*, with the conditions y(0) =0,

y(1) =-2, takingn = 4.

5. Solve the boundary value problem ¢” — 64y + 10 = 0 with y(0) =y(1) =0
by the finite difference method. Compute the value of ¢(0.5) and com-
pare with the true value.
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6. Solve the boundary value problem
y”+ay' +y=3+2,y(0)=0,y(1)=1.

7. The boundary value problem governing the deflection of a beam of
length three meters is given by

4
By oy =L 1 24y (0)= g ()= y(3) =y (3) =0,
dx 9 3 . :
The beam is built-in at the left end (x = 0) and simply supported at the
right end (x = 3).

Determine y at the pivotal points x = 1 and x = 2.

8. Solve the boundary value problem,

d4
KZ +81y =729x2y(0) =4 (0) = y"(1) = y" (1) = 0. Usen =3
9. Solve the equation ¢y —y” +y =2, subject to the boundary conditions
y(0)=y’(0)=0and y(1)=2,y’(1) = 0. (Taken =5).
10. Apply shooting method to solve the boundary value problem

d2y
—2= = 1)=1.1752.
7 Y, y(O) 0 and y( ) 75

11. Using shooting method, solve the boundary value problem
2

d Y 2
—==6 0)=1, y(0.5)=0.44

10.19 Objective Type of Questions

Exercises 10.9

Select the correct answer or fill up the blanks in the following questions:

1. Which of the following is a step by step method:

(a) Taylor’s (b) Adams-Bashforth
(¢) Picard’s (d) None.

2. The finite difference scheme for the equation 2y” +y =51is ...... .

3.1fy’ =x+y,y(0)=1and y" = 1 +x +x%2, then by Picard’s method, the
value of y@(x) is ......
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11.

12
13

14.
1S.
16.

17.

18.
19.

20.

21.
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. The iterative formula of Euler’s method for solving y” = f(x, y) with

y(x,) =y, is ...... )

. Taylor’s series for solution of first order ordinary differential equations

iS e, .

. The disadvantage of Picard’s method is ...... .

. Giveny,y,,y,. y,, Milne’s corrector formula to find y, for dy/dx =

fle,y),is ... )

. The second order Runge-Kutta formula s ...... )

. Adams-Bashforth predictor formula to solve i = f(x, y), given = y(x,)

1S ...

The Runge-Kutta method is better than Taylor’s series method because

To predict Adam’s method atleast ...... values of y, prior to the desired
value, are required.

. Taylor’s series solution of ' —xy =0, y(0) = 1 upto a*is ...... )

. If dy/dx is a function of x alone, the fourth order Runge-Kutta method

reduces to .......

Milne’s Predictor formulais ....... )

Adam’s Corrector formula is ....... .

Using Euler’s method, dy/dx = (y — 2x)/y, y(0) = 1; gives y (0.1) = .......

d? d

d_g +4 d—y +y =0 is equivalent to a set of two first order differential
X x

equations ...... and ...... .

The formula for the fourth order Runge-Kutta method is ...... .

Taylor’s series method will be useful to give some ...... of Milne’s
method.

The names of two self-starting methods to solve y” = f(x, y) given
ylx,) =y, are ...

In the derivation of the fourth order Runge-Kutta formula, it is called
fourth order because .....
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22. Ify’ =x —y, y(0) = 1 then by Picard’s method, the value of yV (1) is ...... )
(a) 0.915 (b) 0.905 (c) 1.091 (d) none.

23. The finite difference formulae for y’(x) and y”(x) are ...... )

24.Ify’ =—y, y(0) = 1, then by Euler’s method, the value of y(1) is
(a) 0.99 (b) 0.999 (c) 0.981 (d) none.

25. Write down the difference between initial value problem and boundary
value problem ..... )

26. Which of the following methods is the best for solving initial value prob-
lems:

(a) Taylor’s series method

(b) Euler’s method

(¢) Runge-Kutta method of the fourth order
(d) Modified Euler’s method.

27. The finite difference scheme of the differential equation y” + 2y = 0 is

28. Using the modified Euler’s method, the value of y(0.1) for

d .
—yzx—y’y(o)zl 1S

dx

(a) 0.809 (b) 0.909 (¢) 0.0809 (¢) none.
29. The multi-step methods available for solving ordinary differential equa-

tions are ...... .

30. Using the Runge Kutta method, the value of (0.1) for y" =x — 2y, y(0) =
1, takingh =0.1, s ......
(a) 0.813 (b) 0.825 (c) 0.0825 (¢) none.

31. In Euler’s method, if /1 is small the method is too slow, if  is large, it
gives inaccurate value. (True or False)

32. Runge-Kutta method is a self-starting method. (True or False)

33. Predictor-corrector methods are self-starting methods. (True or False)



