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11.1 Introduction

Partial differential equations arise in the study of many branches 
of applied mathematics, e.g., in fluid dynamics, heat transfer, 
boundary layer flow, elasticity, quantum mechanics, and electro-
magnetic theory. Only a few of these equations can be solved by 
analytical methods which are also complicated by requiring use of 
advanced mathematical techniques. In most of the cases, it is easier 
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to develop approximate solutions by numerical methods. Of all the numeri-
cal methods available for the solution of partial differential equations, the 
method of finite differences is most commonly used. In this method, the 
derivatives appearing in the equation and the boundary conditions are re-
placed by their finite difference approximations. Then the given equation 
is changed to a system of linear equations which are solved by iterative pro-
cedures. This process is slow but produces good results in many boundary 
value problems. An added advantage of this method is that the computation 
can be carried by electronic computers. To accelerate the solution, some-
times the method of relaxation proves quite effective.

Besides discussing the finite difference method, we shall briefly de-
scribe the relaxation method also in this chapter.

11.2 Classification of Second Order Equations

The general linear partial differential equation of the second order in 
two independent variables is of the form

      
2 2 2

2 2

u u u u u
x,y x,y x,y x,y,u , 0

x y x yx y
A B C

d

     
    

     
 (1)

Such a partial differential equation is said to be

(i) elliptic if B2 – 4AC < 0, (ii) parabolic if B2 – 4AC = 0, and 
(iii) hyperbolic if B2 – 4AC > 0.

Obs. A partial equation is classified according to the region 
in which it is desired to be solved. For instance, the partial 
differential equation fxx  fyy  0 is elliptic if y > 0, parabolic if y 
 0, and hyperbolic if y < 0.

EXAMPLE 11.1

Classify the following equations:

(i) 
2 2 2

2 24 4 2 0
u u u u u

x y x yx y
    
    
    

(ii)  
2 2

2 2
2 21 0, , 1
u u

x y x y
x y
 
     

 

NOTE
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(iii)      
2 2 2

2 2 2
2 21 5 2 4 0.
u u u

x x x
x tx t

  
     

  
Solution:

  (i) Comparing this equation with (1) above, we find that t2

           A  1, B  4, C  4

           B2 – 4AC  (4)2 – 4 × 1 × 4  0
So the equation is parabolic.

 (ii) Here A  x2, B  0, C  1 – y2

              B2 – 4AC  0 – 4x2 (1 – y2)  4x2(y2 – 1)
For all x between –  and , x2 is positive

For all y between – 1 and 1, y2 < 1

              B2 – 4AC < 0
Hence the equation is elliptic

(iii) Here A = 1 + x2, B = 5 + 2x2, C = 4 + x2

 B2 – 4AC  (5  2x2)2 – 4(1  x2)(4  x2)  9 i.e. > 0
So the equation is hyperbolic

Exercises 11.1

1. What is the classification of the equation fxx  2fxy  fyy  0.

2. Determine whether the following equation is elliptic or hyperbolic?
(x  1)uxx – 2(x  2)uxy  (x  3)uyy  0.

3. Classify the equation
  (i) y2uxx – 2xyuxy  x2uyy + 2ux – 3u  0.

 (ii) 
2 2

2 2
2 2

u u u u
x y x y

x yx y
    

  
  

(iii) 
2 2 2

2 23 4 6 2 0
u u u u u

u
x y x yx y

    
     
    

4. In which parts of the (x, y) plane is the following equation elliptic?

    
2 2 2

2 2
2 24 2sin .
u u u

x y xy
x yx y

  
   
  
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11.3 Finite Difference Approximations to Partial Derivatives

Consider a rectangular region R in the x, y plane. Divide this region 
into a rectangular network of sides x  h and y  k as shown in Figure 
11.1. The points of intersection of the dividing lines are called mesh points, 
nodal points, or grid points

0
(Δx = h) X

(Δ
y 

= 
k)

Y
R

(x ,y + k)

(i, j + 1)

(x–h,y)                  (x, y)      (x + h, y)

(i, j) (i + 1 ,j)(i – 1, j)

(x ,y – k)

(i, j – 1)

FIGURE11.1

Then we have the finite difference approximations for the partial de-
rivatives in x-direction (Section 10.17):

                  
2)

( , ) ( , ) ( , ) ( , )
( ) ( )

( , ) ( , )
(

2

u x h y u x y u x y u x h yu
O h O h

x h h
u x h y u x h y

O h
h

   
   


  

 

And 
2

2
2 2

( , ) 2 ( , ) ( , )
( )

x h y u x y u x h yu
O h

x h

   
 



Writing u(x, y)  u(ih, jk) as simply ui, j, the above approximations be-
come

                    1 ,,i i ju j U
ux h

h
 

   (1)

                         , 1 ,
ii ju u j

O h
h


   (2)
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                        1 1, 2
,

( )
2

i j i ju u
O h

h
 

   (3)

                  
1, , 1, 2

2

2
( )

i j i j i j
xx

u u u
u O h

h
  

   (4)

Similarly we have the approximations for the derivatives w.r.t. y:

   
 , 1 ,i j i j

y

u u
u O k

k
 

 
 (5)

                     , , 1i j i ju u
O k

k


   (6)

                     , , 2
1 1

2
i j i ju u

O k
k

  
   (7)

and 
, 1 , , 1 2

2

2
( )

i j i j i j
yy

u u u
u O k

k
  

   (8)

Replacing the derivatives in any partial differential equation by their cor-
responding difference approximations (1) to (8), we obtain the finite-differ-
ence analogues of the given equation.

11.4 Elliptic Equations

The Laplace equation 
2 2

2
2 2 0
u u

u
x y
 

   
 

and the Poisson’s equation
2 2

2 2 ( , )
u u

f x y
x y
 
 

 
 are Example s of elliptic partial differential equations. 

The Laplace equation arises in steady-state flow and potential problems. 
Poisson’s equation arises in fluid mechanics, electricity and magnetism and 
torsion problems.

The solution of these equations is 
a function u(x, y) which is satisfied at 
every point of a region R subject to cer-
tain boundary conditions specified on 
the closed curve C (Figure 11.2).

In general, problems concerning 
steady viscous flow, equilibrium stress-
es in elastic structures etc., lead to el-
liptic type of equations.

Y

0 X

C

Boundary conditions
prescribed 

at each
point of C 

(shaded)

Closed
region

R

FIGURE 11.2
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11.5 Solution of Laplace’s Equation

 
2 2

2 2 0
u u

x y
 
 

 
 (1)

Consider a rectangular region R for which u(x, y) is known at the bound-
ary. Divide this region into a network of square mesh of side h, as shown in 
Figure 11.3 (assuming that an exact sub-division of R is possible). Replacing 
the derivatives in (1) by their difference approximations, we have

 1, , 1, , 1 , , 12 2

1 1
2 2 0i j i j i j i j ui j i ju u u u u

h h   
           

or , 1, 1, 1 , 1
1
4i j i j i j ij i ju u u u u   
      (2)

b1, 1 b2, 1 b3, 1 b4, 1 b5, 1 X

b1, 2

b1, 3

b1, 4

b1, 5

Y

u2, 2 u3, 2 u4, 2

b5, 2

b5, 3

b5, 4

u2, 3 u3, 3 u4, 3

u2, 4 u3, 4 u4, 4

b2, 5 b3, 5 b4, 5 b5, 5

FIGURE 11.3

This shows that the value of u at any interior mesh point is the aver-
age of its values at four neighboring points to the left, right, above and 
below. (2) is called the standard 5-point formula which is exhibited in 
Figure 11.4.

Sometimes a formula similar to (2) is used which is given by

 , 1, 1 1, 1 1, 1 1, 1
1

( )
4i j i j i j i j i ju u u u u            (3)

This shows that the value of ui, j is the average of its values at the four 
neighboring diagonal mesh points. (3) is called the diagonal five-point 
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formula which is represented in Figure 11.5. Although (3) is less accurate 
than (2), yet it serves as a reasonably good approximation for obtaining the 
starting values at the mesh points.

ui,j–1 

ui–1, j
ui+1, j

ui, j+1

ui,j

    

ui–1, j+1
ui+1, j+1

ui+1, j–1
ui–1, j–1

ui,j

FIGURE 11.4     FIGURE 11.5

Now to find the initial values of u at the interior mesh points, we first 
use the diagonal five-point formula (3) and compute u3, 3, u2, 4, u4, 4, u4, 2 and 
u2, 2, in this order. Thus we get,

u3, 3 
1
4

 (b1, 5  b5, 1  b5, 5  b1, 1); 

u2, 4 
1
4

 (b1, 5  u3, 3  b3, 5  b1, 3)

u4, 4 
1
4

 (b3, 5  b5, 3  b3, 5  u3, 3); u4, 2 

          1
4

 (u3, 3  b5, 1  b3, 1  b5, 3)

u2,2   1
4

(b1, 3  b3, 1  u3, 3  b1, 1)

The values at the remaining interior points, i.e., u2,3, u3,4, u4,3 and u3,2 are 
computed by the standard five-point formula (2). Thus, we obtain

u2, 3 
1
4

(b1, 3  u3, 3  u2, 4  u2, 2), u3, 4 

         1
4

(u2, 4  u4, 4  b3, 5  u3, 3)

u4, 3 
1
4

(u3, 3  b5, 3  u4, 4  u4, 2), u3, 2

        1
4

(u2, 2  u4, 2  u3, 3  u3, 1)
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Having found all the nine values of ui, j once, their accuracy is improved 
by either of the following iterative methods. In each case, the method is 
repeated until the difference between two consecutive iterates becomes 
negligible.

 (i)  Jacobi’s method. Denoting the nth iterative value of ui, j, by u(n)
i, j, 

the iterative formula to solve (2) is

 u(n1)
i, j 

1
4

[u(n
)i–1, j  u(n

)i1, j  u(n
)i, j1  u(n)

i, j–1]  (4)

 It gives improved values of ui, j at the interior mesh points and is 
called the point Jacobi’s formula.

(ii) Gauss-Seidal method. In this method, the iteration formula is

 u(n1)
i, j 

1
4

[u(n1)
i–1, j  u(n)

i1, j  u(n1)
i, j1  u(n)

i, j–1]

It utilizes the latest iterative value available and scans the mesh points sym-
metrically from left to right along successive rows.

Obs. The Gauss-Seidal method is simple and can be adapted to 
computer calculations. Its convergence being slow, the working 
is somewhat lengthy. It can however, be shown that the Gauss-
Seidal scheme converges twice as fast as Jacobi’s scheme.

The accuracy of calculations depends on the mesh-size, i.e., smaller the h, 
the better the accuracy. But if h is too small, it may increase rounding-off 
errors and also increases the labor of computation.

EXAMPLE  11.2

Solve the elliptic equation uxx + uyy = 0 for the following square mesh 
with boundary values as shown in Figure 11.6.

Solution:

Let u1, u2,, u9 be the values of u at the interior mesh-points. Since the 
boundary values of u are symmetrical about AB,

  u7  u1, u8  u2, u9  u3.

Also the values of u being symmetrical about CD. u3  u1, u6  u4, 
u9  u7.

Thus it is sufficient to find the values u1, u2, u4, and u5.

NOTE
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0
500                1000               500

0

1000

2000

1000

0 500               1000              500 0

D

u7 u8 u9

A u4 u5 u6 B

u1 u2 u3

C

1000

2000

1000

FIGURE 11.6

Now we find their initial values in the following order:

u5  1
4

(2000  2000  1000  1000)  1500 (Std. formula)

u1  1
4

(0  1500  1000  2000)  1125 (Diag.formula)

u2 
1
4

 (1125  1125  1000  1500)  1188 (Std. formula)

u4  1
4

14 (2000  1500  1125  1125) 1438 (Std. formula)

Now we carry out the iteration process using the standard formulae:

 ( ) ( 1 ( )
1 4

)
21000  500 

1
4

n n nu u u       

     1  1 ( ) ( )
2 1 1 5

1
1 0

4
0 0n n n nu u u u       

 ( 1) ( ) ( )1 ( )
4 5 1 12000  

1
4

n n n nu u u u       

 
( 1) ( 1) ( ) ( 1) ( )
5 4 4 2 2

1
4

n n n n nu u u u u        
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First iteration: (put n  0 in the above results)

  (1)
1 1000 1188 500 1438 1032

1
4

u       

  (1)
2 1032 1125 1000 1500 1164

1
4

u      

  (1) 2000 1500 1032 1125 1414     

  (1)
5 1414 1438 1164 1188 1301

1
4

u      

Second iteration: (put n  1)

 
(2)
1 1000 1164 50

1
( 0 14 )

4
14 1020u    

 

 
 (2)

2 1020 1032 1000 1301 1088
1
4

u    
 

 
 (2)

4 2000 1301 1020 1032 1338
1
4

u    
 

 
 (2)

5
1

1338 1414 1088 1164 1251
4

u     
 

Third iteration:

  (3)
1 1000 1088 500 13 8

1
2

4
3 98u       

    (3)
2 982 1020 1000 1251 1063

1
4

u      

    (3)
4 2000 1251 98

1
4

2 1020 1313u      

      (3)
5 1313 1338 1063 1088 1201

1
4

u      

Fourth iteration:

  (4)
1 1000 1063 500 13 3

1
9

4
1 96u       

  (4)
2 969 982 1000 1201 103

1
8

4
u      
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                      (4)
4  2000 1201 969 98 1 8

1
4

2 28u     

  (4)
5 1288 1313 1038 1063 1176

1
4

u      

Fifth iteration:

  (5)
1 1000 1038 500 12 8

1
7

4
8 95u       

  (5)
2 957 969 1000 1176 102

1
6

4
u      

  (5)
4 2000 1176 957 96 1

1
6

4
9 27u       

  (5)
5 1276 1288 1026 1038 1157

1
4

u      

Similarly,

 (6) (6) (6) (6)
1 2 4 5951, 1016, 1266, 1146u u u u     

 (7) (7) (7) (7)
1 2 4 5 946, 1011, 1260, 1138u u u u     

 (8) (8) (8) (8)
1 2 4 5943, 1007, 1257, 1134u u u u     

 (9) (9) (9) (9)
1 2 4 5941, 1005, 1255, 1131u u u u     

 (10 (10) (10) (10
1 2 4 5940, 1003, 1253, 1129u u u u     

 (11) (11) (11) (11)
1 2 4 5939, 1002, 1252, 1128u u u u     

        
1 2 4 5

1212 12 12939, 1001, 1251, 1126u u u u     

There is a negligible difference between the values obtained in the elev-
enth and twelfth iterations.

Hence u1  939, u2  1001, u4  1251 and u5  1126.

EXAMPLE 11.3

Given the values of u(x, y) on the boundary of the square in the Figure 
11.7, evaluate the function u(x, y) satisfying the Laplace equation 2u = 0 
at the pivotal points of this figure by

(a) Jacobi’s method (b) Gauss-Seidal method
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Solution:

To get the initial values of u1, u2, u3, u4, we assume that u4  0. Then

u1  1
4

 (1000  0  1000  2000)  1000 (Diag. formula)

u2  1
4

 (1000  500  1000  0)  625  (Std. formula)

u3  1
4

 (2000  0  1000  500)  875  (Std. formula)

u4  1
4

(875  0  625  0)  375  (Std. formula)

u1

1000 500                   0
0

0

500

100010001000
1000

2000

2000
u3 u4

u2

FIGURE 11.7

(a) We carry out the successive iterations, using Jacobi’s formulae:

 ( ) ( ) 1 ( )
1 2 32000  1000 

1
4

n n nu u u       

 
 1 ( )

1 4
( )

2  500 1000
1
4

n n nu uu


    

  1 ( ) ( )
3 4 120

1
4

00  500n n nu u u       

  1 ( ) ( )
4 3 2

1
4

0 0n n nu u u       

First iteration: (put n  0 in the above results)

  (1)
1 2000 625 1000 875

1
1

4
125u       
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  (1)
2 1000 500 1000 7 7 9

1
4

3 5 1u       

  (1)
3 2000 375 1000 500 9

4
69

1
u      

  (1)
4 875 0 625 0 375

1
4

u      

Second iteration: (put n  1)

  (2)
1 2000 719 1000 969 1172

1
4

u      

  (2)
3 1125 500 1000 375 7

4
50

1
u      

   (2)
3 2000 375 1125 500 1000

1
4

u      

  (2)
4 969 0 719 0 422

1
4

u      

Similarly,    (3) (3) (3) (3)
1 2 3 4
(4) (4) (4) (4)
1 2 3 4
(5) (5) (5) (5)
1 2 3 4
(6) (6) (6) (6)
1 2 3 4

(7) (7)
1 2

 1188,  774,  1024, 438

 1200,  782,  1032, 450

 1204,  788,  1038, 454

 1206.5,  790,  1040, 456.5

 1208,  7

u u u u

u u u u

u u u u

u u u u

u u

   

   

   

   

  (7) (7)
3 491,  1041, 458u u 

 

and             8 8 8 8
1 2 3 41208, 791.5, 1041.5, 458u u u u     .

There is no significant difference between the seventh and eighth itera-
tion values.

Hence u1  1208, u2  792, u3  1042 and u4  458.

(b) We carry out the successive iterations, using Gauss-Seidal formulae

 
(( 1 ( )
2

) )
31 2000 1000

1
4

n nn uu u       

 ( 1) ( 1) ( )
2 1 4500 100

4
0

1n n nu u u       

  1 ( ) ( 1)
3 4 1

1
2000 500

4
n n nu u u       

 ( 1) ( 1) ( 1)
4 3 24

0
1

0n n nu u u        
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First iteration:(put n  0 in the above results)

 (1)
1 2000 625 1000 87

1
( 5)

4
5 112u       

 (1)
2 1125 500 1000 375 7

1
( ) 0

4
5u    

 (1)
3 2000 375 1125 50

1
( 0)

4
0 100u    

 (1)
4 1000 0 750 0 438

1
( )

4
 u    

Second iteration: (put n  1)

     (2)
1 2000 750 100

1
4

0 1000 1188u    

  (2)
2 1188 500 1000 438 7

4
82

1
u    

     (2)
3 2000 438 1188 500 1032

1
4

u    

  (2)
4 10

1
32 0 782 0 45

4
4u    

Similarly    3 3 3 3
1 2 3 4

(4) (4) (4)

( ) ( )

(4)
1

)

4

(

2 3

( )1204, 789, 1040, 458

 1207,  791,  1041,  458

u u u u

u u u u

   

   

 

and                   (5) (5) (5) (5)
1 2 3 41208, 791.5,  1041.5,  458.25u u u u     

Thus there is no significant difference between the fourth and fifth 
iteration values.

Hence u1  1208, u2  792, u3  1042 and u4  458.
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EXAMPLE 11.4

Solve the Laplace equation uxx + uyy  0 given that

0
8.7                 12.1                12.5

9

0

0 11.1                 17               19.7 18.6

u1 u2 u3
21.9

21

17

0

0

u4 u5 u6

u7 u8 u9

FIGURE 11.8

Solution:

We first find the initial values in the following order:

u5  1
4

(0  17  21  12.1)  12.5  (Std. formula)

u1  1
4

(0  12.5  0  17)  7.4  (Diag. formula)

u3  1
4

(12.5  18.6  17  21)  17.28  (Diag. formula)

u7  1
4

(12.5  0  0  12.1)  6.15  (Diag. formula)

u9  1
4

(12.5  9  21  12.1)  13.65  (Diag. formula)

u2  1
4

(17  12.5  7.4  17.3)  13.55  (Std. formula)

u4  1
4

(7.4  6.2  0  12.5)  6.52  (Std. formula)

u6  1
4

(17.3  13.7  12.5  21)  16.12  (Std. formula)



506 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

u8  1
4

(12.5  12.1  6.2  13.7)  11.12 (Std. formula)

Now we carry out the iteration process using the standard formula:

   ( )1
1

(
4 2

)0 11.1
1

[ ]
4

n n nu u u    

  1 1( ) ( ) ( )
2 1 5 3

1
]

4
7[ 1n n n nu u u u    

  1 ( 1) ( )
3 1 619.7 21

1
]

4
9[n n nu u u    

 
 1 ( 1) ( ) ( )
4 1 7 5[

4
0

1
]n n n nu u u u      

 
 1 ( 1) ( 1) ( ) ( )
5 4 2 8 6

1
[ ]

4
n n n n nu u u u u     

  1 ( 1) ( 1) ( )
6 5 3 9

1
[

4
1]2n n n nu u u u     

  1
7

)1 ( )(
4 80 8

1
[

4
.7 ]n n nu u u    

 
 1 1 1 ( )
8 7 5

( ) )
9

( 12.1 ]
1

[
4

n n n nu u u u     

   ( )1 1 1
9

( )
8 6 12 7

1
.8 1 ][

4
n n nu u u     

First iteration: (put n  0, in the above results)

 
(1) (0) (0)
1 4 20 11.1( )

1
4

u u u   

  0 11.1 6.52 13.55
1
4

7.79   

  (1)
2 7.79 17 12.5 17.28

1
1

4
3.64u    

  (1)
3 13.64 19.7 16.12 21.9 12.8

1
4

4u    

  (1)
4 0 7.79 6.15 12.5 6.6

1
1

4
u    

  (1)
5 6.61 13.64 11.12 16.12 11.88

1
4

u      

  (1)
6 11.88 17.84 13.65 21 1

4
6.09

1
u     
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  (1)
7 0 6.61 8.7 11.12 6.61

1
4

u    

  (1)
8 6.61 11.88 12.1 13.65

1
4

11.06u      

  (1)
9 11.06 16.09 12.8 17 1

1
4

2.238u    

Second iteration: (put n  1)

  (2)
1 0 11.1 6.61 13.6 7

4
4 .84

1
u     

  (2)
2 7.84 17 11.88 17.84

1
1

4
6.64u    

  (2)
3 13.64 19.7 16.09 21.9 17.8

1
4

3u    

  (2)
4 0 7.84 6.61 11.8 6

4
8 .58

1
u     

  (2)
5 6.58 13.64 11.06 16.09 11.84

1
4

u    

  (2)
6 11.84 17.83 14.24 21 1

4
6.23

1
u     

  (2)
7 0 6.58 8.7 11.06 6.58

1
4

u    

  (2)
8 6.58 11.84 12.1 14.24

1
4

11.19u      

  (2)
9 11.19 16.23 12.8 17 14.30

1
4

u      

Third iteration: (put n  2)

  (3)
1 0 11.1 6.58 13.6 7

4
4 .83

1
u     

  (3)
2 7.83 17 11.84 17.83 1 6

4
3. 37

1
u    

  (3)
3 13.63 19.7 16.23 21.9 17.8

1
4

6u    

  (3)
4 0 7.83 6.58 11.8 6

4
4 .56

1
u     

  (3)
5 6.56 13.63 11.19 16.23 11.90

1
4

u    
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  (3)
6 11.90 17.86 14.30 21 1

4
6.27

1
u     

  (3)
7 0 6.56 8.7 11.19 6.61

1
4

u    

  (3)
8 6.61 11.90 12.1 14.30

1
4

11.23u    

  (3)
9 11.23 16.27 12.8 17 14.32

1
4

u    

Similarly 

                     

(4) (4) (4) (4) (4)
1 2 3 4 5

(4) (4) (4) (4)
6 7 8 9
(5) (5) (5) (5) (5)
1 2 3 4 5

(5) (5) (5)
6 7 8 9

7.82, 13.65, 17.88, 6.58, 11.94,

16.28, 6.63, 11.25, 14.33

7.83,  13.66, 17.89, 6.50, 11.95,

16.29, 6.64, 11.25,

u u u u u

u u u u

u u u u u

u u u u

    

   

    

   (5) 14.34

There is no significant difference between the fourth and fifth iteration 
values.

Hence u1  7.83, u2  13.66, u3  17.89, u4  6.6, u5  11.95, u6  16.29, 
u7  6.64,u8  11.25, u9  14.34.

11.6 Solution of Poisson’s Equation

 
2 2

2 2 ( , )
u u

f x y
x y
 
 

 
 (1)

Its method of solution is similar to that of the Laplace equation. Here the 
standard five-point formula for (1) takes the form

 ui–1, j  ui1, j  ui, j1  ui, j–1 – 4ui, j  h2f(ih, jh) (2)

By applying (2) at each interior mesh point, we arrive at linear equations 
in the nodal values ui, j. These equations can be solved by the Gauss-Seidal 
method.

Obs. The error in replacing uxx by the finite difference 
approximation is of the order O(h2). Since k h, the error in 
replacing uyy by the difference approximation is also of the 
order O(h2). Hence the error in solving Laplace and Poisson’s 
equations by finite difference method is of the order O(h2).

NOTE
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EXAMPLE 11.5

Solve the Poisson equation uxx + uyy = – 81xy, 0 < x < 1, 0 < y < 1 given 

that u(0, y) = 0, u(x, 0)  0, u(1, y)  100, u(x, 1)  100 and h  1/3.

Solution:

Here h  1/3.

The standard five-point formula for the given equation is

ui–1, j  ui1, j  ui, j1  ui, j – 1 – 4ui, j  h2f(ih, jh)

   h2 [– 81(ih . jh)]  h4 (– 81) ij  – ij (i)
For u1 (i  1, j  2), (i) gives 0  u2  u3  100 – 4u1  – 2

i.e.,   – 4u1  u2  u3  – 102 (ii)

For u2 (i  2, j  2), (i) gives u1  100  u4  100 – 4u2  – 4

i.e.,  u1 – 4u2  u4  – 204 (iii)

For u3 (i  1, j  1), (i) gives 0  u4  0  u1 – 4u3  – 1

i.e.,  u1 – 4u3  u4  – 1 (iv)

For u4 (i  2, j  1) gives u3  100  u2 – 4u4  – 2

i.e.,   u2  u3 – 4u4  – 102 (v)

0                     0                   0                   0 X

0

0

0
Y

u = 0

100u = 100 100

100

100

0
=

u

u1 u2

u3 u4

u 
= 

10
0

FIGURE 11.9

Subtracting (v) from (ii), – 4u1  4u4  0, i.e., u1  u4

Then (iii) becomes 2u1 – 4u2  – 204 (vi)

and (iv) becomes 2u1 – 4u3  – 1  (vii)
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Now (4) × (ii)  (vi) gives – 14u1  4u3  – 612 (viii)

(vii)  (viii) gives – 12u1  – 613

Thus  u1  613/12  51.0833  u4.

From (vi),  12 102
1
2

76.5477u u  

From (vii), 13
1 1
2 2

25.7916u u
 

 
 



EXAMPLE  11.6

Solve the equation 2u –10(x2 + y2 + 10) over the square with sides x = 
0  y, x = 3 y with u = 0 on the boundary and mesh length  1.

Solution:

Here h  1.

 The standard five-point formula for the given equation is 

ui–1, j  ui1, j  ui, j1  ui, j–1 – 4ui, j  – 10(i2  j2  10) (i)

For u1 (i  1, j  2), (i) gives 0  u2  0  u3 – 4u1 – 10(1  4  10)

i.e.,  u1 
1
4

(u2  u3  150) (ii)

0                      0                  0                   0 X

0

0

0
Y

0                   0                    0

0

0

u1 u2

u3 u4

FIGURE 11.10

For u2 (i  2, j  2), (i) gives u2 
1
4

(u1  u4  180) (iii)

For u3(i  1, j  1), we have u3 
1
4

(u1  u4  120) (iv)
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For u4 (i  2, j  1), we have u4 
1
4

(u2  u3  150) (v)

Equations (ii) and (v) show that u4  u1. Thus the above equations re-
duce to

 u1 
1
4

(u2  u3  150), u2 
1
4

(u2  90), u3 
1
4

(u1  60)

Now let us solve these equations by the Gauss-Seidal iteration method.

First iteration: Starting from the approximations u2  0, u3  0, we obtain 
(1)
1 37.5u   

Then  (1)
2 37.

2
5 0 64

1
9u  

  (1)
2 37.

2
5 0 49

1
6u  

Second iteration:    (2)
1

(2)
2

1
64 49 150 66, 66 90 7

1
4

8
2

uu         

                           (2)
3 6 6

1
2

6 60 3u    

Third iteration:          

 

(3) (3)
1 2

(3)
3

1 1
78 63 150 73, 73 90 82,

4 2
73 60 67

u u

u

      

  

 

Fourth iteration:    

 

(4) (4)
1 2

(4)
3

82 67 150 75, 75 90 82.5,

75 60 67.5

u u

u

      

  

 

Fifth iteration:    

 

((5)
1

(5)

2

3

5)82.5 67.5 150 75, 75 90 82.5,

75 90 67.5

u u

u

      

  

 

Since these values are the same as those of fourth iteration, we have 
u1  75, u2  82.5,u3  67.5 and u4  75.

Exercises 11.2

1. Solve the equation uxx  uyy  0 for the square mesh with the boundary val-
ues as shown in Figure 11.11.
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12

1

2

4

5

45      

0            0             1

0

0

0

0              0            1

2

2

2

FIGURE 11.11                                                FIGURE 11.12

2. Solve uxx  uyy  0 over the square mesh of side four units satisfying the 
following boundary conditions: u (0, y)  0 for 0  y  4, u (4, y)  12  y 
for 0  y  4; u(x, 0)  3x for 0  x  4,u (x, 4)  x2 for 0  x  4.

3. Solve the elliptic equation uxx  uyy  0 for the square mesh with bound-
ary values as shown in Figure 11.12. Iterate until the maximum differ-
ence between successive values at any point is less than 0.005.

0 10                 20                30

40

50

60606060

40

20

     

1                   2                   2                  2

0

0

0                    0                   0                   1

2

2

FIGURE 11.13                                                   FIGURE 11.14

4. Using central-difference approximation solve 2u  0 at the nodal points 
of the square grid of Figure 11.13 using the boundary values indicated.

5. Solve uxx  uyy  0 for the square mesh with boundary values as shown 

in Figure 11.14. Iterate till the mesh values are correct to two decimal 
places.
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0

0

0              0

0

0

1             1

u1 u2

u4 u5

          

0 1              4             9              16

14

12

10

84.520.50

0

0

0

u1 u2 u3

u4 u5 u6

u7 u8 u9

FIGURE 11.15                                                       FIGURE 11.16

6. Solve the Laplace’s equation uxx  uyy  0 in the domain of Figure 11.15 
by (a) Jacobi’s method, (b) Gauss-Seidal method.

7. Solve the Laplace’s equation 2u  0 in the domain of the Figure 11.16.

8. Solve the Poisson’s equation 2u  8x2y2 for the square mesh of Figure 
11.17 with u(x, y)  0 on the boundary and mesh length  1.

X

Y

u1 u2 u1

u2 u3 u2

u7 u2 u1

     

u1 u2

u3 u4
0

0

0              0

0

0

0

0000

0

FIGURE 11.17                                                         FIGURE 11.18

11.7 Solution of Elliptic Equations by Relaxation Method

If the equations for all the mesh points are written using (2) of Section 
11.6, we get a system of equations which can be solved by any method. For 
this purpose, the method of relaxation is particularly well-suited. Here we 
shall describe this method in relation to elliptic equations.
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Consider the Laplace equation

 
2 2

2 2 0
u u

x y
 
 

 
 (1)

We take a square region and divide it into a square net of mesh size h. Let 
the value of u at A be u0 and its values at the four adjacent points be u1, u2, 
u3, u4 (Figure 11.19). Then

 
2 2

1 3 0 2 4 0
2 2 2 2

2 2
and

u u u u u uu u
x h y h

    
 

 

If (1) is satisfied at A, then

 1 3 0 2 4 0
2 2

_ 2 2
0

u u u u u u

h h

  
 

or                        u1  u2  u3  u4 – 4u0  0

If r0 be the residual (discrepancy) at the mesh point A,

then           r0  u1  u2  u3  u4 – 4u0 (2)

Similarly the residual at the point B, is given by

 r1  u0  u5  u6  u7 – 4u1 and so on (3)

A               B

u4 u7

u2 u6

u3 u0 u1 u5

FIGURE 11.19

The main aim of the relaxation process is to reduce all the residuals to 
zero by making them as small as possible step by step. We, therefore, try 
to adjust the value of u at an internal mesh point so as to make the residual 
thereat zero. But when the value of u is changing at a mesh point, the values 
of the residuals at the neighboring interior points will also be changed. If u0 
is given an increment 1, then

(i) (2) shows that r0 is changed by – 4.

(ii) (3) shows that r1 is changed by 1.
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i.e., if the value of the function is increased by 1 at a mesh point (shown by 
a double ring), then the residual at that point is decreased by 4 while the re-
siduals at the adjacent interior points (shown by a single ring), get increased 
each by 1. This relaxation pattern is shown in Figure 11.20.

1 1

1

1

–4

FIGURE 11.20

Working procedure to solve an equation by the relaxation method:

 I.  Write down by trial, the initial values of u at the interior mesh 
points by diagonal averaging or cross-averaging.

 II.  Calculate the residuals at each of these points by (2) above. If we 
apply this formula at a point near the boundary, one or more end 
points get chopped off since there are no residuals at the boundary.

 III.  Write the residuals at a mesh-point on the right of this point and 
the value of u on its left.

 IV.  Obtain the solution by reducing the residuals to zero, one by one, 
by giving suitable increments to u and using Figure 11.20. At each 
step, we reduce the numerically largest residual to zero and record 
the increment of u on the left (below the earlier value thereat) and 
the modified residual on the right (below the earlier residual).

 V.  When a round of relaxation is completed, the value of u and its in-
crements are added at each point. Using these values, calculate all 
the residuals afresh. If some of there calculated residuals are large, 
liquidate these again.

 VI.  Stop the relaxation process, when the current values of the residu-
als are quite small. The solution will be the current value of u at 
each of the nodes.
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Obs. Relaxation method combines simplicity with the speed of 
convergence. Its only drawback is its unsuitability for computer 
calculations.

EXAMPLE  11.7

Solve by relaxation method, the Laplace equation 

2 2

2 2 0
u u

x y
 
 

   inside 
the square bounded by the lines x = 0, x = 4, y = 0, y = 4, given that u = x2y2 
on the boundary.

Solution:

Taking h  1, we find u on the boundary from u  x2y2. The initial values 
of u at the nine mesh points are estimated to be 24, 56, 104; 16, 32, 56; 8, 
16, 24 as shown on the left of the points in Figure 11.21.

 Residual at A, i.e., rA  0  56  16  16 – 4 × 24  – 8

Similarly rB  0, rC  – 16, rD  0, rE  16, rF  0, rG  0, rH  0, rI  – 8.

 (i) The numerically largest residual is 16 at E. To liquidate it, we increase 
u by 4 so that the residual becomes zero and the residuals at neighbor-
ing nodes get increased by 4.

0                       0                       0                     0                       0

0

0

0

0

8  0                   16    0 
4

–2

24
–2

–8
0

16

64

144

25616                        64                     144

G                      H                        I

16 0
4
–2

32
4

16
0

56 0
4

–4
–2

D                       E                         F

24
–2

0
4
–4
–2

–8
0

104
–4

–16
0

A                       B                         C

Y

X

56

FIGURE 11.21

NOTE
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 (ii) Next, the numerically largest residual is – 16 at C. To reduce it to 
zero, we increase u by – 4 so that the residuals at the adjacent nodes 
are increased by – 4.

 (iii) Now, the numerically largest residual is – 8 at A. To liquidate it, we in-
crease u by– 2 so that the residuals at the adjacent nodes are increased 
by – 2.

 (iv)  Finally, the largest residual is – 8 at I. To liquidate it, we increase u 
by – 2 so that the residuals at the adjacent points are increased by – 2.

 (v) The numerically largest current residual being 2, we stop the relax-
ation process. Hence the final values of u are:

 uA  22, uB  56, uC  100,
 uD  16,  uE  36, uF  56,

 uG  8, uH  16, uI  22.

EXAMPLE  11.8

Solve by relaxation method Example  11.3.

Solution:

(i) The initial values of u at A, B, C, and D are estimated to be 1000, 
625, 875, and 375 [Figure 11.22 (i)].

1000
 500                 0                   0

2000

2000

1000             1000           1000            1000

500

0

A                 B

1000
125

 625
94

500
0
94
94

375
125
–1

C                 D
875

94

375
125
–1

3750
94
94

FIGURE 11.22 (I)

  rA  500, rB  375, rC  375, rD  0

To liquidate rA, increase u by 125
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To liquidate rB, increase u by 94

To liquidate rC, increase u by 94

(ii) Modified values of u are 1125, 719, 969, 375 [Figure (ii)]

  500               0                  0
1000

2000

2000

1000            1000           1000              1000

500

0

A                  B

1125
47

188
0
31
31

124
47
47
0

 719

 31
C                 D

969 124
47
47
0

 375
47

188
0
31
31

FIGURE 11.22 (II)

 rA  188, rB  124, rC  124, rD  188.

To liquidate rA, rD, rB, rC increase u by 47, 47, 31, 31 in turn.

(iii) Revised values of u are 1172, 750, 1000, 422 [Figure (iii)]

  1000         1000            1000             1000

500

0

1000

2000

2000

5000 0

A                  B

 1172
15

62
21
21
2

 750
21

84
0
15
15

C                  D

1000
21

84
0
15
15

62
21
21
20

422
15

FIGURE 11.22 (III)

 rA  62, rB  84, rC  84, rD  62

To liquidate rB, rC, rA, rD increase u by 21, 21, 15, 15, respectively.

(iv) Improved values of u are 1187, 771, 1021, 437 [Figure (iv)]

 rA  44, rB  40, rC  40, rD  44.
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To liquidate rA, rD, rB, rC increase u by 11, 11, 10, 10, respectively

1000
500                 0                  0

0

500

 1000           1000            1000            1000

2000

2000

A                  B

  1187
 11

40
11
11
0

  771

 10

44
0

10
10

C                  D

1021

10

44
0
10
10

  437
   11

40
11
11
0

FIGURE 11.22 (IV)

(v) Modified values of u are 1198, 781, 1031, 448 [Figure (v)]

 rA  20, rB = 22, rC  22, rD  20.

0

500

1000           1000            1000         1000

1000

2000

2000

500                 0

A                  B

 1198
5

20
5
5
0

  781
5

22
2
5
5

C                 D

  1031
5

22
2
5
5

  448
5

20
5
5
2

0
FIGURE 11.22 (V)

To liquidate rB, rC, rA, rD increase u by 5, 5, 5, 5, respectively.

(vi) Revised values of u are 1203, 786, 1036, 453 [Figure (vi)]

 rA  10, rB  12, rC  12, rD  10

To liquidate rB, rC, rA, rD increase u by 3, 3, 2, 2, respectively.
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1000            1000            1000            1000

2000

2000

1000
500                0                    0

0

500A                  B

 1203
2

10
3
3
2

 786
3

12
0
2
2

C                 D

 1036
3

12
0
2
2

 453
2

10
3
3
2

  

1000             1000            1000           1000

2000

2000

1000

0

500
A                 B

 1205
2

8
0
1
1

 789
1

4
2
2
0

C                D

 1039

1

4
2
2
0

8
0
1
1

455
2

  500               0
FIGURE 11.22 (VI)                                                   FIGURE 11.22 (VII)

(vii) Improved values of u are 1205, 789, 1039, 455 [Figure (vii)]

 rA  8, rB  4, rC  4, rD  8.

To liquidate rA, rD, rB, rC increase u by 2, 2, 1, 1.

(viii) Finally the current residuals being 1, 0, 0, 1, we stop the relaxation 
process. 

Hence the values of u at A, B, C, D are 1207, 790, 1040, 457.

Exercises 11.3

1. Given that u(x, y) satisfies the equation 2u  0 and the boundary condi-

tions are u(0, y) 0, u(4, y)  8  2y, u(x, 0)  
1
2

 x2, u(x, 4)  x2, find the 

values u(i, j), i  1, 2, 3; j  1, 2, 3by the relaxation method.

2. Apply the relaxation method to solve the equation 2u  – 400, when 
the region of u is the square bounded by x  0, y  0, x  4, and y  4 and 
u is zero on the boundary of the square.

3. Solve by relaxation method, the equation 2u  0 in the square region 
with square meshes(Figure 11.23) starting with the initial values u1  
u2  u3  u4  1.
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1                 4/3 5/3 2

0   1/3 2/3                 1

4/3

5/32/3

1/3

u1 u2

u3 u4

FIGURE 11.23

11.8 Parabolic Equations

The one-dimensional heat conduction equation 
2

2
2

u u
c

t x
 


 
is a well-

known Example  of parabolic partial differential equations. The solution of 
this equation is a temperature function u(x, t) which is defined for values of 
x from 0 to l and for values of time t from 0 to .The solution is not defined 
in a closed domain but advances in an open-ended region from initial val-
ues, satisfying the prescribed boundary conditions (Figure 11.24).

t∞
Sol. Advances

Boundary
conditions
prescribed
along this
line

Boundary
conditions
prescribed
along this
line

Initial conditions
prescribed along this line

x 
= 

0

t = 0

l
=

x

Open-ended
domain

R

FIGURE 11.24

In general, the study of pressure waves in a fluid, propagation of heat 
and unsteady state problems lead to parabolic type of equations.
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11.9 Solution of One Dimensional Heat Equation

 
2

2
2

u u
c

t x
 


 
 (i)

where c2  k/s is the diffusivity of the substance (cm2/sec.)

Schmidt method. Consider a rectangular mesh in the x-t plane with spac-
ing h along x direction and k along time t direction. Denoting a mesh point 
(x, t)  (ih, jk) as simply i, j, we have

 , 1 ,i j i ju uu
t k

 



 [by (5) Section 11.3.

and          
2

1, , 1,
2 2

2i j i j i ju u uu
x h

  



 [by (4) Section 11.3.

Substituting these in (1), we obtain ui, j1 – ui, j  
2

2

kc
h

[ui–1, j – 2ui, j  ui1, j]

or ui, j1  ui–1, j  (1 – 2) ui, j  ui1, j (2)

where   kc2/h2 is the mesh ratio parameter.

This formula enables us to determine the value of u at the (i, j  1)th 
mesh point in terms of the known function values at the points xi–1, xi, and 
xi1 at the instant tj. It is a relation between the function values at the two 
time levels j  1 and j and is therefore, called a two-level formula. In sche-
matic form (2) is shown in Figure 11.25.

t

k

( i–1, j )
h

( i , j )

( i ,  j+1) ( j+1 ) th level

j th level

( i+1 ,  j) x

FIGURE 11.25

Hence (2) is called the Schmidt explicit formula which is valid only for 
0 <   12 .
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Obs. In particular when   1/2, (2) reduces to
 ui, j1  1/2, (ui–1, j  ui1, j) (3)

which shows that the value of u at xi at time tj+1 is the mean of 
the u-values at xi–1 and xi+1 at time tj. This relation, known as 
Bendre-Schmidt recurrence relation, gives the values of u at the 
internal mesh points with the help of boundary conditions.

Crank-Nicolson method. We have seen that the Schmidt scheme is com-
putationally simple and for convergent results   12 i.e., k  h2/2c2. To 
obtain more accurate results, h should be small i.e. k is necessarily very 
small. This makes the computations exceptionally lengthy as more time lev-
els would be required to cover the region. A method that does not restrict 
 and also reduces the volume of calculations was proposed by Crank and 
Nicolson in 1947.

According to this method, 2u/x2 is replaced by the average of its cen-
tral-difference approximations on the jth and (j  1)th time rows. Thus (1) 
is reduced to

, 1 , 1, , 1, 1, 1 , 1 1, 12
2 2

2 21
2

i j i j i j i j i j i j i j i ju u u u u u u u
c

h h h
              

    
   

or          – ui–1, j1  (2  2)ui, j1 – ui1, j1  ui–1, j  (2 – 2)ui, j  ui1, j (4)

where   kc2/h2.

Clearly the left side of (4) contains three unknown values of u at the (j  
1)th level while all the three values on the right are known values at the jth 
level. Thus (4) is a two level implicit relation and is known as Crank-Nicolson 
formula. It is convergent for all finite values of . Its computational model 
is given in Figure 11.26.

(i–1, j+1) (i, j+1) (i+1,  j+1) (j + 1)th level

t

k

h

(i–1, j)   (i, j)               (i+1, j)

jth level
x

FIGURE 11.26

NOTE
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If there are n internal mesh points on each row, then the relation (4) 
gives n simultaneous equations for the n unknown values in terms of the 
known boundary values. These equations can be solved to obtain the values 
at these mesh points. Similarly, the values at the internal mesh points on 
all rows can be found. A method such as this in which the calculation of 
an unknown mesh value necessitates the solution of a set of simultaneous 
equations, is known as an implicit scheme.

Iterative methods of solution for an implicit scheme.

From (4), we have

 (1  ) ui, j1   (ui–1, j1  ui1, j1)  ui, j  1
2

 (ui–1, j – 2ui, j  ui1, j) (5)

Here only ui, j1, ui–1, j1 and ui1, j 1 are unknown while all others are 
known since these were already computed in the jth step.

Writing   , –1, , 1,–  2
2i i j i j i j i jb u u u u  


and dropping j’s (5) becomes 
 

 –1 1 12 1i i i
b

u u u 





 

This gives the iteration formula

  

 
 ( ) ( )1

1 12 1 1
n n in

i i i
b

u u u
 


  

 
  (6)

which expresses the (n  1)th iterates in terms of the nth iterates only. 
This is known as the Jacobi’s iteration formula.

As the latest value of ui–1 i.e., ( 1)
1

n
iu 
  is already available, the convergence 

of the iteration formula (6) can be improved by replacing 1
( )n
iu by 1( )

1 .n
iu 
  

Accordingly (6) may be written as 

  

 
 ( ) (1 1

1 1
)

2 1 1
n n n i

i i iu u
b

u 
 







 


 (7)

which is known as the Gauss-Seidal iteration formula.

Obs. Gauss-Seidal iteration scheme is valid for all finite values 
of  and converges twice as fast as Jacobi’s scheme.

Du Fort and Frankel method. If we replace the derivatives in (1) by the 
central difference approximations 

                , 1 , 1

2
i j i ju uu

t k
 




 [From (7) Section 11.3]

NOTE
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and  
2

1, , 1 1,
2 2

2i j i j i ju u uu
x h

   



 [From (4) Section 11.3]

we obtain ui, j1 – ui, j–1  
2

2

2kc
h

[ui–1, j – 2ui, j  ui1, j]

i.e., ui, j1  ui, j–1  2 [ui–1, j – 2ui, j  ui1, j] (8)

where   kc2/h2. This difference equation is called the Richardson 
scheme which is a three-level method.

If we replace ui, j by the mean of the values ui, j–1 and ui, j1 

i.e.,  ui, j   (ui, j-1 
1
2

 ui, j1)in (8), then we get

ui, j1  ui, j–1  2[ui–1, j – (ui, j–1  ui, j1)  ui1, j]

On simplification, it can be written as

  , 1 , –1 –1, 1,
1 2 2
1 2 1 2i j i j i j i ju u u u 
  


   

    (9)

This difference scheme is called Du Fort-Frankel method which is a 
three level explicit method. Its computational model is given in Figure 11.27

t

(i, j+1) (i+1)th level

(i–1, j)

jth level

(i+1, j) x

(i, j–1)

(j–1)th level

FIGURE 11.27

EXAMPLE 11.9

Solve 
2

2 2

u u
u x
 


 
 in 0 < x < 5, t  0 given that u(x, 0)  20, u(0, t)  0, 

u(5, t)  100. Compute u for the time-step with h  1 by the Crank-Nicholson 
method.
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Solution:

Here c2  1 and h  1.

Taking  (i.e., c2k/h)  1, we get k  1.

Also we have

             I
 J

0 1 2 3 4 5

0 0 20 20 20 20 100
1 0 u1 u2 u3 u4 100

Then Crank-Nicholson formula becomes

 4ui, j1  ui–1, j1  ui1, j1 ui–1, j  ui1, j

                  4u1  0  20  0  u2 i.e., 4u1 – u2  20  (1)
     4u2  20  20  u1  u3 i.e., u1 – 4u2  u3  – 40 (2)

     4u3  20  20  u2  u4 i.e., u2 – 4u3  u4  – 40 (3)

     4u4  20  100  u3  100 i.e., u3 – 4u4  – 220 (4)

Now (1) – 4(2) gives 15u2 – 4u3  180 (5)

4(3)  (4) gives 4u2 – 15u3  – 380 (6)

Then 15(5) – 4(6) gives 209 u2  4220 i.e., u2  20.2

From (5), we get  4u3  15 × 20.2 – 180 i.e., u3  30.75

From (1),  4u1  20  20.2 i.e., u1  10.05

From (4),  4u4  220  30.75 i.e., u4  62.69

Thus the required values are 10.05, 20.2, 30.75 and 62.68.

EXAMPLE 11.10

Solve the boundary value problem ut = uxx under the conditions u(0, t)= 
u(1, t)  0 and u(x, 0)  sin px, 0  x  1 using the Schmidt method (Take 
h = 0.2 and  = 1/2).

Solution:

Since  h  0.2 and   ½

 
2

k
h

  gives k  0.02
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Since    1/2, we use the Bendre-Schmidt relation

 , 1 –1, 1,
1

( )
2i j i j i ju i u   (i)

We have  u(0, 0)  0, u(0.2, 0)  sin /5  0.5875

 u(0.4, 0)  sin 2/5  0.9511, u(0.6, 0)  sin 3/5  0.9511

 u(0.8, 0)  sin 4/5  0.5875, u(1, 0)  sin   0

The values of u at the mesh points can be obtained by using the recur-
rence relation (i) as shown in the table below:

x  0 0.2 0.4 0.6 0.8 1.0

t

0

i
j

0 1 2 3 4 5

0 0 0.5878 0.9511 0.9511 0.5878 0

0.02 1 0 0.4756 0.7695 0.7695 0.4756 0

0.04 2 0 0.3848 0.6225 0.6225 0.3848 0

0.06 3 0 0.3113 0.5036 0.5036 0.3113 0

0.08 4 0 0.2518 0.4074 0.4074 0.2518 0

0.1 5 0 0.2037 0.3296 0.3296 0.2037 0

EXAMPLE 11.11

Find the values of u(x, t) satisfying the parabolic equation 
2

24
u u
t x
 


 
and the boundary conditions u(0, t)  0  u(8, t) and u(x, 0) = 4x – (1/2) x2 at 
the points x = i:i = 0, 1, 2, , 7 and t  1/8  j: j = 0, 1, 2, , 5

Solution:

Here c2  4, h  1 and k  1/8. Then   c2k/h2  1/2.

 We have Bendre-Schmidt’s recurrence relation 
 ui, j1  1/2 (ui–1, j  u=) (i)

Now since      u(0, t)  0  u(8, t)

 u0, i  0 and u8, j  0 for all values of j, i.e., the entries in the first and 
last column are zero.
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Since u(x, 0)  4x – (1/2) x2

       ui, 0  4i – (1/2) i2

  0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5 for i  0, 1, 2, 3, 4, 5, 6, 7 

at                    t  0

These are the entries of the first row.

Putting j  0 in (i), we have ui, 1  (1/2) (ui–1, 0  ui1, 0)

Taking i  1, 2, , 7 successively, we get

  1,1 0,0 2,0
1
 0 6

1
3

2
( )

2
u u u      

  2,1 1,0 3,0
1

3.5 7.5 5.5
2

1
( )

2
u u u    

  3,1 2,0 4,0
1 1

( ) 6 8 7
2 3

u u u      

u4, 1  7.5, u5, 1  7, u6, 1  5.5, u7, 1  3.

These are the entries in the second row.

Putting j  1 in (i), the entries of the third row are given by

  1,2 –1,1 1,1
1
2 i iu u u   

Similarly putting j  2, 3, 4 successively in (i), the entries of the fourth, 
fifth, and sixth rows are obtained.

Hence the values of ui, j are as given in the following table:

      i
j

0 1 2 3 4 5 6 7 8

0 0 3.5 6 7.5 8 7.5 6 3.5 0
1 0 3 5.5 7 7.5 7 5.5 2 0
2 0 2.75 5 6.5 7 6.5 5 2.75 0
3 0 2.5 4.625 6 6.5 6 4.625 2.5 0
4 0 2.3125 4.25 5.5625 6 5.5625 4.25 2.3125 0
5 0 2.125 3.9375 5.125 5.5625 5.125 3.9375 2.125 0
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EXAMPLE 11.12

Solve the equation
2

2

u u
y x
 


 
subject to the conditions u(x, 0) = sin x, 

0  x  1; u(0, t) = u(1, t)  0, using (a) Schmidt method, (b) Crank-Nicolson 
method, (c) Du Fort-Frankel method. Carryout computations for two 
levels, taking h = 1/3, k = 1/36.

Solution:

Here c2  1, h  1/3, k  1/36 so that  kc2/h2  1/4.

Also u1, 0  sin /3  3/2, u2, 0  sin 2/3  3/2 and all boundary values 
are zero as shown in Figure 11.28.

0
3/2 3/2 0 x

0

0 0

0

(1, 2) (2, 2)

(1, 1) (2, 1)

t

FIGURE 11.28

(a) Schmidt’s formula [(2) of Section 11.9]

ui, j1   ui–1, j  (1 – 2) ui, j   ui1, j

becomes , 1 –1, , 1,
1

[ ]
4

2i j i j i j i ju u u u    

For i  1, 2; j  0:

u1, 1  1
4

 [u0, 0  2u1, 0  u2, 0]  1
4

 (0  2 × 3/2  3/2)  0.65

u2, 1  1
2

 [u1, 0  2u2, 0  u3, 0]  1
4

 (3/2  2 × 3/2  0)  0.65

For i  1, 2; j  1:

u1, 2  1
4

 (u0, 1  2u1, 1  u2, 1)  0.49

u2, 2  1
4

 (u1, 1  2u2, 1  u3, 1)  0.49
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(b) Crank-Nicolson formula [(4) of Section 11.9] becomes

– 1
4

 ui–1, j1  5
2

 ui, j1 – 1
4

 ui1, j1  1
4

 ui–1, j  3
2

ui, j  1
4

 ui1, j

For i  1, 2; j  0:
 – u0, 1  10u1, 1 – u2, 1  u0, 0  6u1, 0  u2, 0

i.e.,                       10u1, 1 – u2, 1  73/2
 – u1, 1  10u2, 1 – u3, 1  u1, 0  6u2, 0  u3, 0

i.e.,                     – u1, 1  10u2, 1  73/2

Solving these equations, we find
 u1, 1  u2, 1  0.67

For i  1, 2; j  1:
 – u0, 2  10u1, 2 – u2, 2  u0, 1  6u1, 1  u2, 1

i.e.,         10u1, 2 – u2, 2  4.69
 – u1,2  10u2,2 – u3,2  u1, 1  6u2,1  u3,1

i.e,           – u1,2  10u2,2  4.69

Solving these equations, we get u1,2  u2,2  0.52.

(c) Du Fort-Frankel formula [(8) of Section 11.9] becomes ui, j1  1
3

(ui, 

j–1  ui–1, j  ui1, j)

To start the calculations, we need u1, 1 and u2, 1.

We may take u1, 1  u2, 1  0.65 from Schmidt method.

For i  1, 2; j  1:

 u1, 2  1
3

 (u1, 0  u0, 1  u2, 1)  1
3

 (3/2  0  0.65)  0.5

 u2, 2  1
3

 (u2, 0  u1, 1  u3, 1)  1
3

 (3/2  0.65  0)  0.5.

11.10 Solution of Two Dimensional Heat Equation

 
2 2

2
2 2

u u u
c

t x y

   
      

 (1)

The methods employed for the solution of one dimensional heat equa-
tion can be readily extended to the solution of (1).
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Consider a square region 0  x  y  a and assume that u is known at all 
points within and on the boundary of this square.

If h is the step-size then a mesh point (x, y,t)  (ih, jh, nl) may be de-
noted as simply (i, j, n).

Replacing the derivatives in (1) by their finite difference approxima-
tions, we get

 , ,  1 , , li j n i j nu

l

u 
=

2

2

c
h

{(ui–1, j, n – 2ui, j, n  ui1, j, n)  (ui, j–1, n – 2ui, j, n  ui, j1, n)}

i.e.,  ui, j, n1  ui, j, n  (ui–1, j, n  ui1, j, n  u+ ui, j–1, n – 4ui, j, n) (2)

where   lc2/h2. This equation needs the five points available on the nth 
plane (Figure 11.29).

t

(i, j, n + 1)
(i, j + 1, n)

(i – 1, j, n)

h

h
(i, j, n) (i + 1, j, n) x

y
(i, j – 1, n)

(i, j, n – 1)
FIGURE 11.29

The computation process consists of point-by-point evaluation in the 
(n  1)th plane using the points on the nth plane. It is followed by plane-
by-plane evaluation. This method is known as ADE (Alternating Direction 
Explicit) method.

EXAMPLE 11.13

Solve the equation 
2 2

2 2

u u u
u x y
  
 

  
 subject to the initial conditions 

u(x,y, 0)  sin 2 x sin 2 y, 0  x, y  1, and the conditions u(x, y, t)  0, 
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t > 0 on the boundaries, using ADE method with h  1/3 and   1/8. (Cal-
culate the results for one time level).

Solution:

The equation (2) above becomes

ui, j, n1  ui, j, n  1
8

 (ui–1, j, n  ui1, j, n  ui, j1, n  ui, j–1, n – 4ui, j, n)

i.e., ui, j, n1  1
2

 ui, j, n  1
8

 (ui–1, j, n  ui1, j, n  ui, j1, n  ui, j–1, n) (1)

The mesh points and the computational model are given in Figure 
11.30.

t

II Level

(0, 0, 1) (1, 0 ,1)      (2, 0, 1)    (3,0,1)

(0, 1, 1) (1, 1, 1) (2, 1, 1)

(0, 2, 1) (1, 2, 1) (2, 2, 1)

(3,1,1)

I Level

(3, 2, 1)

(0, 3, 1)
(1, 3, 1) (2, 3, 1)

(0, 0, 0)
(3, 3, 1)

(1, 0, 0) (2, 0, 0) (3 ,0, 0)
x

(0, 1, 0) (1, 1, 0)(2,1,0)
(3, 1, 0)

Zeroth level

(0, 2, 0) (1, 2, 0) (2, 2, 0)
(3, 2, 0)

(0, 3 ,0)
(1, 3, 0)    (2, 3, 0)     (3, 3, 0)

y
FIGURE 11.30
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At the zero level (n  0), the initial and boundary conditions are

 , ,0
2 2

sin sin
3 3i j

i i
u

 


and ui, 0, 0  u0, j, 0  u3, j, 0  ui, 3, 0  0; i, j  0, 1, 2, 3.

Now we calculate the mesh values at the first level:

For n = 0, (1) gives

 ui, j, 1   1
2

  ui, j, 0  1
8

 (ui–1, j, 0  ui1, j, 0  ui, j1, 0  ui, j–1, 0) (2)

(i) Put i  j  1 in (2):

 u1, 1, 1  1
2

 u1, 1, 0  1
8

 (u0, 1, 0  u2, 1, 0  u1, 2, 0  u1, 0, 0)

 
21 2 1 4 2 2 4

sin 0 sin sin sin sin 0
2 3 8 3 3 3 3
       

       
   

                    3 1 3 3 3 3 3
8 8 2 2 2 2 16

 
        
 

(ii) Put i  2, j  1 in (2)

 u2, 1, 1  1
2

u2, 1, 0  1
8

(u1, 1, 0  u3, 1, 0  u2, 2, 0  u2, 0, 0)

 
2 21 4 2 1 2 4

sin sin sin 0 sin 0
2 3 3 8 3 3

        
        
     

             
2 2 2

1 3 1 3 3 3
2 2 8 2 2 16

       
          
       

(iii) Put i  1, j  2 in (2):

 u1, 2, 1  1
2

 u1, 2, 0  1
8

 (u0, 2, 0  u2, 2, 0  u1, 1, 0)

 
2 21 2 4 1 4 2

sin sin 0 sin 0 sin
2 3 3 8 3 3

        
        

     

             
3 1 3 3 3
8 8 4 4 16

 
    

 
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(iv) Put i  2, j  2 in (2):

 u2, 2, 1  1
2

  u2, 2, 0 
1
8

 (u1, 2, 0  u3, 2, 0  u2, 3, 0  u2, 1, 0)

 
21 4 1 2 4 4 2

sin sin sin 0 0 sin sin
2 3 8 3 3 3 3
       

       
   

                    
3 1 3 3 3
8 8 4 4 16

 
     

 

Similarly the mesh values at the second and higher levels can be calculated.

Exercises 11.4

1. Find the solution of the parabolic equation uxx  2ut when u(0, t)  u(4, t) 
 0 and u(x, 0)  x(4 – x), taking h  1. Find the values up to t  5.

2. Solve the equation 
2

2

u u
tx

 



 with the conditions u(0, t)  0, u(x, 0)  

x(1 – x), and u(1, t) 0. Assume h  0.1. Tabulate u for t  k, 2k and 3k 
choosing an appropriate value of k.

3. Given 
2

2 
f f

fx

 



 0; f(0, t)  f(5, t)  0, f(x, 0)  x2(25 – x2); find the 

values of f for x  ih (i  0, 1, ..., 5) and t  jk (j  0, 1, ..., 6) with h  1 
and k  1/2, using the explicit method.

4. Given u/t  2u/t2, u(0, t)  0, u(4, t)  0 and u(x, 0) x/3(16 – x2). 
Obtain ui, j for10  1, 2, 3, 4 and j  1, 2 using Crank-Nicholson’s 
method.

5. Solve the heat equation 
2

2

u u
t x
 


 
subject to the conditions u(0, t)  

u(1, t)  0 and 

  
 

2 for 0 x 1/2
,0

2 1 for 1/2  x 1

x
u x

x

  
 

   

Take h  1/4 and k according to the Bandre-Schmidt equation.

6. Solve the two dimensional heat equation 
2 2

2 2

u u u
t x y
  
 

  
satisfying the 

initial condition: u(x, y, 0)  sin x sin y, 0  x, y  1 and the boundary 
conditions: u  0 at x  0 and x  1for t > 0. Obtain the solution up to two 
time levels with h  1/3 and   18. 
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11.11 Hyperbolic Equations

The wave equation
2 2

2
2 2

u u
c

t x
 


 
is the simplest Example  of hyperbolic 

partial differential equations. Its solution is the displacement function u(x, 
t) defined for values of x from 0 to l and for t from 0 to , satisfying the 
initial and boundary conditions. The solution, as for parabolic equations, 
advances in an open-ended region (Figure 11.24). In the case of hyperbolic 
equations however, we have two initial conditions and two boundary condi-
tions.

Such equations arise from convective type of problems in vibrations, 
wave mechanics, and gas dynamics.

11.12 Solution of Wave Equation

 
2 2

2
2 2

u u
c

t x
 


 
 (1)

subject to the initial conditions: u  f(x), u/t  g(x), 0  x  1 at t  0 (2)

and the boundary conditions: u(0, t)  (t), u(1, t)  (t) (3)

Consider a rectangular mesh in the x-t plane spacing h along x direction 
and k along time direction. Denoting a mesh point (x, t)  (ih, jk) as simply 
i, j, we have

 
2 2

1, 1, , 1 , , 1
2 2 2 2

2 2
and

i j i j i j i j i ju u u u uu u
x h t h

      
 

 
Replacing the derivatives in (1) by their above approximations, we 

obtain
        ui, j–1 – 2ui, j  ui, j1  

2 2

2

c k
h

 (ui–1, j – 2ui, j  ui, j1)

or               ui, j1  2(1 – 2c2) ui, j  2c2(ui–1, j  ui1, j) – ui, j–1 (4)
where                      k/h.

Now replacing the derivative in (2) by its central difference approxima-
tion, we get

                       
, 1 , 1

2
ui j ui j u

g x
k t

   
 


or   ui, j1  ui, j–1  2kg(x) at t  0

i.e.,                                   ui, 1  ui, –1  2kg(x) for j  0 (5)
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Also initial condition u  f(x) at t  0 becomes ui, –1  f(x) (6)

Combining (5) and (6), we have ui, 1  f(x)  2kg(x) (7)

Also (3) gives u0, j  (t) and u1, j  (t).

Hence the explicit form (4) gives the values of ui, j1 at the (j  1)th level 
when the nodal values at (j – 1)th and jth levels are known from (6) and (7) 
as shown in Figure 11.31. Thus (4)gives an implicit scheme for the solu-
tion of the wave equation.

A special case. The coefficient of ui, j in (4) will vanish if c  1 or k  
h/c. Then (4) reduces to the simple form

 ui, j1  ui–1, j  ui1, j – ui, j–1 (8)

Obs. 1. This provides an explicit scheme for the solution of 
the wave equation.
For   1/c, the solution of (4) is stable and coincides with the 
solution of (1).
For  < 1/c, the solution is stable but inaccurate.
For  > 1/c, the solution is unstable.

Obs. 2. The formula (4) converges for   1 i.e., k  h.

k

h

t

φ(t)

1st level

2nd level

x
f(x)

f(
x)

 +
 k

g(
x)

ψ(t)

FIGURE 11.31

NOTE

NOTE
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EXAMPLE 11.14

Evaluate the pivotal values of the equation utt = 16uxx, taking x  1up 
to t = 1.25. The boundary conditions are u(0, t) = u(5, t) = 0, ut(x, 0) = 0 and 
u(x, 0) = x2(5 – x).

Solution:

Here c2  16.

 The difference equation for the given equation is

ui, j1  2(1 – 162) ui, j  162 (ui–1, j  ui1, j) – ui, j–1 (i)

where   k/h.

Taking h  1 and choosing k so that the coefficient of ui, j vanishes, we 
have 162  1, i.e.,k  h/4  1/4.

 (1) reduces to ui, j1  ui–1, j  ui1, j – ui, j – 1 (ii)

which gives a convergent solution (since k/h < 1). Its solution coincides with 
the solution of the given differential equation.

Now since u(0, t)  u(5, t)  0,  u0, j  0 and u5, j  0 for all values 
of j

i.e., the entries in the first and last columns are zero.

Since            u(x, 0)  x2 (5 – x)

  ui, 0  i2(5 – i)  4, 12, 18, 16 for i  1, 2, 3, 4 at t  0.

These are the entries for the first row.

Finally since ut(x, 0)  0 becomes

 , 1 , 1

2
i j i ju u

k
  = 0, when j  0, giving ui, 1  ui, –1 (iii)

Thus the entries of the second row are the same as those of the first 
row.

Putting j  0 in (ii), 

 ui, 1  ui–1, 0  ui  1, 0 – ui, –1  ui–1, 0  ui1, 0 – ui, 1, using (iii)

or ui, 1  1/2 (ui–1, 0  ui1, 0) (iv)

Taking i  1, 2, 3, 4 successively, we obtain

              1,1 0, 0 2, 0 0 12 6u u u      
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  1,1 0,0 2,0
1 1

( ) 0 12 6
2 2

u u u    

   2,1 1,0 3,0
1

( ) 4 18 11
2

1
2

u u u     

      3,1 2,0 4,0
1 1

( ) 12 16 14
2 2

u u u      

  4,1 3,0 5,0
1 1
 ( ) 18 0 9
2 2

u u u    

These are the entries of the second row.

Putting j  1 in (ii), we get ui, 2  ui–1, 1  ui1, 1 – ui, 0

Taking i  1, 2, 3, 4 successively, we obtain

 u1, 2  u0, 1  u2, 1 – u1, 0  0  11 – 4  7
 u2, 2  u1, 1  u3, 1 – u2, 0  6  14 – 12  8
 u3, 2  u2, 1  u4, 1 – u3, 0  11  9 – 18  2
 u4, 2  u3, 1  u5, 1 – u4, 0  14  0 – 16  – 2

These are the entries of the third row.

Similarly putting j  2, 3, 4 successively in (ii), the entries of the fourth, 
fifth, and six throws are obtained.

Hence the values of ui, j are as shown in the table below:

          i
    j 

0 1 2 3 4 5

0 0 4 12 18 16 0

1 0 6 11 14 9 0

2 0 7 8 2 −2 0

3 0 2 −2 −8 −7 0

4 0 −9 −14 −11 −6 0

5 0 −16 −18 −12 −4 0

EXAMPLE 11.15

Solve ytt = yxx up to t = 0.5 with a spacing of 0.1 subject to y(0, t)  0,
y(1, t)  0, yt (x, 0)  0 and y(x, 0)  10 + x(1 – x).
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Solution:

As c2  1, h  0.1, k  (h/c)  0.1; we use the formula

    ui, j1  yi–1, j  yi1, j – yi, j–1 (i)

Since  y(0, t)  0, y(1, t)  0, 

               y0, j  0, y1, j  0 for all values of i.

i.e., all the entries in the first and last columns are zero.

Since  y(x, 0)  10  x (1 – x),  yi, 0  10  i (1 – i)

    y0.1, 0  10.09, y0.2, 0  10.16, y0.3, 0  10.21, y0.4, 0  10.24

    y0.5, 0  10.25, y0.6,0  10.24, y0.7, 0  10.21, y0.8, 0  10.16, 

                y0.9, 0  10.09

These are the entries of the first row.

Since  yt (x, 0)  0, we have 1/2(yi, j1 – yi, j–1)  0 (ii)

When            j  0, yi, 1  yi, –1

Putting            j  0 in (i), yi, 1  yi–1, 0  yi1, 0 – yi, – 1

Using (ii)    yi, 1 1/2(yi–1, 0  yi1, 0)

Taking i  1, 2, 3 , 9 successively, we obtain the entries of the second 
row.

Putting j  1 in (i), yi, 2  yi–1, 1  yi1, 1 – yi, 0

Taking i  1, 2, 3, , 9 successively, we get the entries of the third row.

Similarly putting j  2, 3, , 7 successively in (i), the entries of the 
fourth to ninth row are obtained. Hence the values of ui, j are as given in the 
table below:

       i
   j

0 1 2 3 4 5 6 7 8 9 10

0 0 10.19 10.16 10.21 10.24 10.25 10.24 10.21 10.16 10.09 0

1 0 5.08 10.15 10.20 10.23 10.24 10.23 10.20 10.15 5.08 0

2 0 0.06 5.12 10.17 10.20 10.21 10.20 10.17 10.12 0.06 0

3 0 0.04 0.08 5.12 10.15 10.16 10.15 10.12 10.08 0.04 0

4 0 0.02 0.04 0.06 5.08 10.09 10.08 10.16 10.04 0.02 0

5 0 0 0 0 0 0 0 0 0 0.02 0
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EXAMPLE 11.16

The transverse displacement u of a point at a distance x from one end 
and at any time t of a vibrating string satisfies the equation 2u/t2 = 42u/x2, 
with boundary conditions u = 0 at x = 0, t > 0 and u = 0 at x = 4, t > 0 and 
initial conditions u = x(4 – x) and u/t = 0, 0  x  4. Solve this equation 
numerically for one-half period of vibration, taking h = 1 and k = 1/2.

Solution:

Here, h/k  2  c.

 The difference equation for the given equation is
 ui, j1  ui–1, j ui1, j – ui, j–1 (i)

which gives a convergent solution (since k < h).

Now since u(0, t)  u(4, t)  0,

           u0, j  0 and u4, j  0 for all values of j.

i.e., the entries in the first and last columns are zero.

Since            u(x, 0)  x(4 – x),

           ui, 0  i(4 – i)  3, 4, 3 for i  1, 2, 3 at t  0.

These are the entries of the first row.

Also ut(x, 0)  0 becomes

 
, 1 , 1

0
2

i j i ju u

k
 

  when j  0, giving ui, 1  ui, –1  (ii)

Putting j = 0 in (i), ui, 1  ui–1, 0  ui1, 0 – ui, –1  ui–1, 0  ui1, 0 – ui, 1, using (ii)

or       ui, 1  1/2 (ui–1, 0  ui1, 0)  (iii)

Taking i  1, 2, 3 successively, we obtain

                  u1, 1  1/2 (u0, 0  u1, 0)  2; u2, 1  1/2 (u1, 0  u3, 0)
                                      3, u3, 1  1/2 (u2, 0  u4, 0)  2

These are the entries of the second row.

Putting j = 1 in (i), ui, 2  ui–1, 1  ui1, 1 – ui, 0

Taking i  1, 2, 3, successively, we get

 u1, 2  u0, 1  u2, 1 – u1, 0  0  3 – 3  0
 u2, 2  u1, 1  u3, 1 – u2, 0  2  2 – 4  0
 u3, 2  u2, 1  u4, 1 – u3, 0  3  0 – 3  0
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These are the entries of the third row and so on.

Now the equation of the vibrating string of length l is utt  c2 uxx.

 Its period of vibration 
2 2 4

4sec
2

l
c


   [ l  4 and c  2]

This shows that we have to compute u(x, t) up to t  2

i.e. Similarly we obtain the values of ui, 2 (fourth row)and ui, 3 (fifth row).

Hence the values of ui, j are as shown in the next table:

          i
   j

0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 0 0 0 0

3 0 −2 −3 −2 0

4 0 −3 −4 −3 0

EXAMPLE 11.17

Find the solution of the initial boundary value problem:
2 2

2 2 ,
u u

t x
 


 
 0  x  1; subject to the initial conditions u(x, 0)  sin x, 

0  x  1, u
t

 
 
 

(x, 0)  0, 0  x  1 and the boundary conditions u (0, t)  0, 

u(1, t)  0, t > 0; by using in the (a) the explicit scheme (b) the implicit 
scheme.

Solution:

(a) Explicit scheme

Take h  0.2, k  h/c  0.2   [ c  1]

 We use the formula ui, j + 1  ui–1, j  ui1, j – ui, j–1 (i)

Since u(0, t)  0, u(1, t)  0, u0, j  0, u1, j  0 for all values of j

i.e., the entries in the first and last columns are zero.

Since u(x, 0)  sin x, ui,0  sin x

  u1,0  0, u2,0  sin (.2)  0.5878, u3,0  sin (.4)  0.9511,
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u4,0  sin (.6)  0.5878.

These are the entries of the first row.

Since ut(x, 0)  0 we have 1/2(ui, j1 − ui, j−1)  0, when j  0

i.e.,    ui,1  ui, –1 (ii)

Putting j  0 in (i), ui,1  ui–1, 0  ui1, 0 – ui, –1

Using (ii) ui,1  1/2(ui-1,0+ui+1,0)

Taking i  1, 2, 3, 4 successively, we obtain the entries of the second 
row.

Putting  j  1 in (i), ui, 2  ui–1, 1  ui1, 1 – ui,0

Now taking i  1, 2, 3, 4 successively, we get the entries of the third row.

Similarly taking j  2, j  3, j  4 successively, we obtain the entries of 
the fourth, fifth, and sixth rows, respectively.

Hence the values of ui, j are as given in the table below:

i
     j

0 1 2 3 4 5

0 0 0.5878 0.9511 0.9511 0.5878 0

1 0 0.4756 0.7695 0.9511 0.7695 0

2 0 0.1817 0.4756 0.5878 0.3633 0

3 0 0 0.0001 – 0.1122 – 0.1816 0

4 0 – 0.1816 – 0.5878 – 0.7694 0.4755 0

5 0 – 0.5878 – 0.9511 – 0.9511 – 0.5878 0

(b) Implicit scheme

We have the formula:

ui, j1  2 (1 – 2c2) ui, j  2c2 (ui–1, j  ui1, j) – ui, j–1, where   k/h. (i)

Here c2  1, Take h  0.25 and k  0.5 so that   k/h  2.

 (i) reduces to
 ui, j1  – 6ui, j  4 (ui–1, j  ui1, j) – ui, j–1 (ii)

Since        u(i,0)  sin x

 u(1, 0)  0.7071, u(2, 0)  0.5, u(3, 0)  0.7071
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There are the entries of the first row.

Since ut(x, 0)  0, we have 1/2(yi, i1 – yi, i–1)  0, where j  0

  yi, 1  yi, – 1 (ii)
Putting j  0 and using (iii), (ii) reduces to

 ui, 1  – 3 ui, 0  2 (ui–1, 0  ui1, 0)
Now taking  i  1, u1, 1  – 3 u1, 0  2 (u0, 0  u2, 0)  – 0.1213

                            i  2, u2, 1  – 3 u2, 0  2 (u1, 0  u3, 0)  – 0.1716

                            i  3, u3, 1  – 3u3, 0  2 (u2, 0  u4, 0)  – 0.1213

These are the entries of the second row.

Putting j  1, (ii) reduces to

                       ui, 2  – 6ui, 1  4 (ui–1, 1  ui1, 1)

Now taking   i  1, u1, 2  – 6u1, 1  4 (u0, 1  u2, 1)  0.414

                           i  2, u2, 2  – 6u2, 1  4 (u1, 1  u3, 1)  0.0592

                           i  3, u3, 2  – 6u3, 1  4 (u2, 1  u4, 1)  0.0414

These are the entries of the third row.

Putting j  2, (ii) reduces to

                       ui, 3  – 6ui, 2  4 (ui–1, 2  ui1, 2) – ui,

Now taking   i  1, u1, 3  – 6u1, 2  4 (u0, 2  u2, 2) – u1, 1  0.1097

               i  2, u2, 3  – 6u2, 2  4 (u1, 2  u3, 2) – u2, 1  0.1476

                           i  3, u3, 3  – 6u3, 2  4(u2, 2  u4, 2) – u3, 1  0.1097

These are the entries of the fourth row.

Hence the values of ui, j are as tabulated below:

            i
      j

0 1 2 3 4

0 0 0.7071 0.5 0.7071 0

1 0 – 0.1213 – 0.1716 – 0.1213

2 0 0.0414 0.0592 0.0414 0
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EXERCISES 11.5

1. Solve the boundary value problem utt  uxx with the conditions u(0, t)  
u(1, t)  0, u(x, 0)  1/2  x(1 – x) and ui(x, 0)  0, taking h  k  0.1 for 0  t 
 0.4. Compare your solution with the exact solution at x  0.5 and t  0.3.

2. The transverse displacement of a point at a distance x from one end and 

at any time t of a vibrating string satisfies the equation 
2 2

2 225
u u

t x
 


 
with 

the boundary conditions u(0,t)  u(5, t)  0 and the initial conditions 

u(x, 0) 
 

20 for 0 1

5 5 for1 5

x

x

 


 
 and ut(x, 0)  0. Solve this equation nu-

merically for one-half period of vibration, taking h  1, k  0.2.

3. The function u satisfies the equation 
2 2

2 2

u u
t x
 


 
and the conditions: u(x, 

0)  1/8 sin x,ut(x, 0)  0 for 0  x  1, u(0, t)  u(1, t)  0 for t  0.
Use the explicit scheme to calculate u for x  0(0.1) 1 and t  0(0.1) 0.5.

4. Solve 
2 2

2 2

u u
t x
 


 
, 0 < x < 1, t > 0, given u(x, 0)  ut (x, 0)  u(0, 1)  0 and 

u (1, t)  100sin t. Compute u for four times with h  0.25.

EXERCISES 11.6

1. Which of the following equations is parabolic:
(a) fxy – fx  0 (b) fxx  2fxy  fyy  0 (c) fxx  2fxy  4fyy  0.

2. uij 1/4(ui + 1, j – ui – 1, j  ui, j  1 – ui, j – 1) is Leibmann’s five-point formula.
 (True or False)

3. uxx  3uxy  uyy  0 is classified as  .

4. 2u  f(x, y) is known as  .

5. The simplest formula to solve utt 2 uxx is .. .

6. The finite difference form of 2u/x2 is . .

7. Schmidt’s finite difference scheme to solve ut  c2 uxx is . .

8. The five point diagonal formula gives uij  ..... .
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9. The partial differential equation (x  1) uxx – 2(x  2) uxy  (x  3) uyy  0 
is classified as. .

10. ui, j  1 1/2(ui + 1, j  ui– 1, j ) is called .. recurrence relation.

11. In terms of difference quotients 4uxx  utt is  .

12. The Bendre-Schmidt recurrence relation for one dimensional heat 
equation is ..... .

13. The diagonal five point formula to solve the Laplace equation uxx  uyy  
0 is ..... .

14. The Crank-Nicholson formula to solve uxx  aut when k  ah2, is ..... .

15. In the parabolic equation ut  2 uxx if   k2/h2, where k  t, and h  
x, then explicit method is stable if   ..... .

16. The Bendre-Schmidt recurrence scheme is useful to solve ..... equation.

17. The two methods of solving one-dimensional diffusion (heat) equation 
are ..... .

18. 
2 2 2

2 22 4 3 0
u u u

x yx y
  
  
  

 is classified as... .

19. The order of error in solving Laplace and Poisson’s equations by finite 
difference method is  .

20. The difference scheme for solving the Poisson equation 2u  f(x, y) 
is....

21. The explicit formula for one-dimensional wave equation with 1 – 22  
0 and   k/h is  .

22. The general form of Poisson’s equation in partial derivatives is  .

23. If u satisfies Laplace equation and u  100 on the boundary of a square, 
the value of u at an interior grid point is  .

24. The Laplace equation uxx  uyy  0 in difference quotients is  .

25. The equation yuxx  uyy  0 is hyperbolic in the region  .

26. To solve 
2

2

1
2

u u
u x
 


 
 by the Bendre-Schmidt method with h  1, the 

value of k is  .

27. Crank Nicholson’s scheme is called an implicit scheme because  .


