E-Content for Lie Algebras (Remaining Part)

Vivek Sahai

Lucknow University Lucknow.

April 2, 2020

Paper I	(Unit	IV)
---------	-------	-----

M.Sc. Semester IV

April 2, 2020 1/31

< ⊒ >

UNIT-IV, Lecture-1

Definition

Let *F* be a field of characteristic 0, *V* a finite dimensional vector space over *F* and *T* a linear operator on *V*. Then the trace of *T*, denoted by tr(*T*), is given by tr(*T*) = $\sum_{i=1}^{n} \alpha_{ii}$, where $(\alpha_{ij}) = [T]_B$, *B* being a basis of *V*.

If ρ_i are the characteristic roots of T, then

$$\operatorname{tr}(T) = \sum_{i=1}^{n} \rho_i.$$

For a nonnegative integer k, we have

$$\operatorname{tr}(T^k) = \sum_{i=1}^n \rho_i^k.$$

If T is nilpotent, then $\rho_i = 0$ for all *i*. This gives tr $(T) = \text{tr} (T^k) = 0$, for k = 1, 2, ..., Conversely, if tr $(T^k) = 0$, k = 1, 2, ..., then T is nilpotent, and

Lecture-1 . . .

Lemma

Let V be a vector space over a field F of characteristic 0, and let $T \in L(V)$ such that $T = \sum_{i=1}^{r} [A_i, B_i]$, $A_i, B_i \in L(V)$ and $[T, A_i] = 0$, i = 1, 2, ..., r. Then T is nilpotent.

Proof.

Let
$$[T^{k-1}, A_i] = 0$$
, then
 $[T^k, A_i] = T^k A_i - A_i T^k$
 $= T[T^{k-1}, A_i] + TA_i T^{k-1} - [A_i, T]T^{k-1} - TA_i T^{k-1}$
 $= 0.$

Therefore $[T^k, A_i] = 0$ for all i = 1, 2, ..., r and k = 1, 2, ... This gives

Proof . . .

$$T^{k} = T^{k-1}T = T^{k-1}\sum_{i=1}^{r} [A_{i}, B_{i}] = \sum_{i=1}^{r} (A_{i}T^{k-1}B_{i} - T^{k-1}B_{i}A_{i})$$
$$= \sum_{i=1}^{r} [A_{i}, T^{k-1}B_{i}].$$

As trace of a commutator is zero, we have $tr(T^k) = 0$, for all k = 1, 2, ..., r. Hence T is nilpotent.

This completes the proof

Theorem

Let char F = 0 and let L be a Lie algebra of linear transformations in L(V) such that L^* is semi-simple. Then $L = L_1 \oplus Z$ where Z = Z(L), the centre of L, and L_1 is an ideal of L (which is a semi-simple Lie algebra).

Proof of the Theorem . . .

Let C be the radical of L. If $C \neq Z$, then $C_1 = [L, C]$ is a non-zero solvable ideal.

Therefore there exists $n \in \mathbb{N}$ such that $C_1^{(n)} = \{0\}$ and $C_1^{(n-1)} \neq \{0\}$. Let $C_2 = C_1^{(n-1)}$ and $C_3 = [C_2, L]$. If $T \in C_3$, then $T = \sum_{i=1} [A_i, B_i]$, for some $A_i \in C_2$ and $B_i \in L$. This gives $[T, A_i] \in [C_3, C_2] \subseteq [C_2, C_2] = \{0\}$. Therefore by above lemma, T is nilpotent. Hence, every element of ideal C_3 is nilpotent, and so by theorem of Unit 3, Lecture 6,

$$C_3 \subseteq C_3^* \subseteq R =$$
 the radical of $L^* = \{0\}$,

as L^* is semi simple. Hence, $C_2 \subseteq Z$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Since $C_2 \subseteq C_1 \subseteq L' = [L, L]$, every element T of C_2 is of the type $T = \sum_{i=1}^{r} [A_i, B_i]$, $A_i, B_i \in L$ and $[T, A_i] = 0$ because $C_2 \subseteq Z$. Therefore T is nilpotent by above lemma. So $C_2 \subseteq C_2^* \subseteq R$ = radical of $L^* = \{0\}$, a contradiction. Therefore, C = Z.

Let $L' \cap C \neq \{0\}$. If $T \in L' \cap C$ then $T = \sum_{i=1}^{r} [A_i, B_i]$, $A_i, B_i \in L$ and $[T, A_i] = 0$ as $T \in C = Z$. Therefore T is nilpotent by the lemma, and so $L' \cap C \subseteq R = \{0\}$, a contradiction.

Therefore there exists L_1 , a subspace of L, $L_1 \supseteq L'$, such that $L = L_1 \oplus Z$. So L_1 is an ideal and $L_1 \cong \frac{L}{Z} = \frac{L}{C}$. Hence L_1 is semi-simple.

This completes the proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Corollary

Let L be as in the above theorem. Then L is solvable if and only if L is abelian. More generally, if L is solvable and R is the radical of L^* , then $\frac{L^*}{R}$ is commutative.

Proof.

Clearly, if L is abelian then L is solvable.

Conversely, let *L* be solvable and *L*^{*} semi-simple. Then $L = L_1 \oplus C$, where C = Z = centre of *L* and L_1 is a semi-simple ideal of *L*. Therefore L_1 is semi-simple and solvable. But then $L_1 = \{0\}$. Hence, L = C is abelian. Consider the Lie algebra $\frac{L+R}{R}$. Clearly $(\frac{L+R}{R})^* = \frac{L^*}{R}$, which is semisimple. As $\frac{L+R}{R}$ is a homomorphic image of *L*, so *L* solvable implies $\frac{L+R}{R}$ is solvable, which gives $\frac{L+R}{R}$ is abelian, and hence $\frac{L^*}{R}$ is commutative.

イロト イポト イヨト イヨト

Lecture-2 . . .

Go through the following definitions:

Let V be a vector space over F, $\dim_F(V) < \infty$, and let Σ be a set of linear operators on V. Let $L(\Sigma)$ denotes the collection of subspaces invariant under Σ , that is,

 $L(\Sigma) = \{W \mid W \text{ is a subspace of } V \text{ and } T(W) \subseteq W \text{ for all } T \in \Sigma\}.$

We say that $L(\Sigma)$ is the collection of Σ -subspaces of V.

Definition

 Σ is called an irreducible set of linear transformations and V is called Σ -irreducible if $L(\Sigma) = \{V, 0\}$ and $V \neq \{0\}$.

Definition

 Σ is called indecomposable and V is called Σ -indecomposable if V can not be written as $V = V_1 \oplus V_2$, $V_i \neq 0$ in $L(\Sigma)$. Clearly, Σ -irreduciblity implies Σ -indecomposability.

Definition

 Σ is called completely reducible and V is called Σ -completely reducible if $V = \bigoplus_{\alpha} V_{\alpha}, V_{\alpha} \in L(\Sigma), V_{\alpha}$ irreducible.

Note that $W \in L(\Sigma)$ implies that W is invariant under Σ^* and Σ^{\dagger} . Therefore, $L(\Sigma) = L(\Sigma^*) = L(\Sigma^{\dagger})$.

Theorem

Let V be a vector space over F, $\dim_F(V) < \infty$, and let Σ be a set of linear operators on V. Then Σ is completely reducible if and only if for every $W \in L(\Sigma)$ there exists $W' \in L(\Sigma)$ such that $V = W \oplus W'$ (that is, $L(\Sigma)$ is complemented).

< □ > < □ > < □ > < □ > < □ > < □ >

Proof of the Theorem . . .

Let Σ be completely reducible. Therefore $V = \bigoplus_{\alpha} V_{\alpha}$, where each V_{α} is irreducible in $L(\Sigma)$. Let $W \in L(\Sigma)$. If dim $W = \dim V$, then $V = W \oplus \{0\}$ and we are done.

Assume that dim $W < \dim V$ and let the theorem hold for all subspaces $W_1 \in L(\Sigma)$ such that dim $W_1 > \dim W$. Since $W \subsetneq V$ and $V = \bigoplus_{\alpha} V_{\alpha}$, there exists a V_{α} such that $V_{\alpha} \nsubseteq W$. Consider $V_{\alpha} \cap W \in L(\Sigma)$, As $V_{\alpha} \cap W$ is a subspace of irreducible Σ -subspace V_{α} , we have either $V_{\alpha} \cap W = V_{\alpha}$ or $V_{\alpha} \cap W = \{0\}$. Now $V_{\alpha} \cap W = V_{\alpha}$ is not possible, so $V_{\alpha} \cap W = \{0\}$.

Let $W_1 = W \oplus V_{\alpha}$, by induction hypothesis, $V = W_1 \oplus W'_1$, $W'_1 \in L(\Sigma)$. This gives $V = W \oplus V_{\alpha} \oplus W'_1 = W \oplus W'$, $W' = V_{\alpha} \oplus W'_1 \in L(\Sigma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof . . .

Conversely, let $L(\Sigma)$ be complemented and $V_1(\neq 0)$ be a minimal element of $L(\Sigma)$. As V is finite dimensional, so V_1 exists and it has to be irreducible. Therefore $V = V_1 \oplus W$, for some $W \in L(\Sigma)$.

If B is a Σ -subspace of W, then $V = B \oplus B'$ and $W = V \cap W = B \cap W + B' \cap W = B + B' \cap W = B + B''$, where $B'' = B' \cap W \in L(\Sigma)$ is a subspace of W.

Also $B'' \cap B = B' \cap W \cap B = \{0\}$ implies that $W = B \oplus B''$. Thus for W also $L(\Sigma)$ is complemented. Repeating this process for W we have $W = V_2 \oplus W_1$, V_2 , $W_1 \in L(\Sigma)$, V_2 is irreducible.

Continuing in this way, in a finite number of steps, we get $V = V_1 \oplus V_2 \oplus \cdots \oplus V_r$, where each $V_i \in L(\Sigma)$ and are irreducible.

This completes the proof.

Paper I (Unit IV)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

Let A be an associative algebra of linear transformations in L(V), dim $V < \infty$. If A is completely reducible then A is semi-simple.

Proof.

Let *R* be the radical of *A* and let $V = \bigoplus_{\alpha} V_{\alpha}$, V_{α} 's irreducible in *L*(*A*). Let $R(V_{\alpha})$ be the subspace spanned by $\{T(y)|y \in V_{\alpha}, T \in R\}$. Then $R(V_{\alpha}) \in L(A)$ and $R(V_{\alpha}) \subseteq V_{\alpha}$.

Since there exists $k \in N$ such that $R^k = \{0\}$, $R(V_\alpha) \subsetneq V_\alpha$. Therefore $R(V_\alpha) = \{0\}$ for all α , (as V_α is irreducible).

This gives R(V) = 0, that is, R = 0, and so A is semi-simple.

A D N A B N A B N A B N

Lecture-3 . . .

Corollary

If Σ is completely reducible then Σ^* and Σ^\dagger are semi-simple.

Proof.

 Σ is completely reducible $\Rightarrow L(\Sigma)$ is complemented $\Leftrightarrow L(\Sigma^*)$ and $L(\Sigma^{\dagger})$ are complemented $\Leftrightarrow \Sigma^*$ and Σ^{\dagger} are complemented $\Rightarrow \Sigma^*$, Σ^{\dagger} are completely reducible $\Rightarrow \Sigma^*$, Σ^{\dagger} are semisimple.

Definition

An operator $T \in L(V)$ is said to be semi-simple if $m_T(x) = p_1(x)p_2(x)\cdots p_r(x)$, where each $p_i(x)$ is an irreducible polynomial in F[x], $p_i(x) \neq p_j(x)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Lecture-3 . . .

Theorem

An operator $T \in L(V)$ is semi-simple if and only if $\{T\}^{\dagger}$ has no non-zero nilpotent elements.

Proof.

Let T be not semi-simple. Then $m_T(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x)$, where $r_i > 1$ for some *i*. Let $W = p_1(T) \cdots p_k(T)$. Clearly $W \in \{T\}^{\dagger}$. If *m* is the lcm of $\{r_i\}$'s, then

$$W^m = p_1(T)^m \cdots p_k(T)^m = 0.$$

Further $W \neq 0$ because $W|m_T(x)$ and deg $m_T(x) > \deg W$. So W is non-zero nilpotent elements of $\{T\}^{\dagger}$. Conversely, if $T \in L(V)$ is semi-simple, then $m_T(x) = p_1(x) \cdots p_k(x)$. Let W = f(T) be a nilpotent element of $\{T\}^{\dagger}$. Then $W^r = 0$ implies $m_T(x)|f^r(x)$, and so $m_T(x)|f(x)$. Hence 0 = f(T) = W.

Theorem

Let L be a completely reducible Lie algebra of linear operators on a finite dimensional vector space V over a field of characteristic 0. Then $L = C \oplus L_1$, where C = Z and L_1 is a semi-simple ideal. Moreover, elements of C are semi-simple.

Proof.

We know that if *L* is completely reducible then L^* and L^{\dagger} are semi-simple. So by Theorem of Lecture 1, $L = C \oplus L_1$. Further, let $T \in C$ be such that *T* is not semi-simple. Then there exists a nonzero nilpotent element $W \in \{T\}^{\dagger}$. Let $k \in N$ be such that $W^k = 0$. Now $\{T\}^{\dagger} = \{a_0 + a_1T + a_2T^2 + \cdots + a_nT^n | n \in N, a_i \in F\}$. As $T \in C$, we have $W \in \{T\}^{\dagger}$ is also in the centre of *L*. Therefore $L^{\dagger}W = WL^{\dagger}$ is an ideal in L^{\dagger} and $(WL^{\dagger})^k \subseteq W^kL^{\dagger} = 0$. But $0 \neq W \in WL^{\dagger}$ implies WL^{\dagger} is a non-zero nilpotent ideal in L^{\dagger} , a contradiction as L^{\dagger} is semi-simple.

Paper I (Unit IV)

Definition

Let V be a finite dimensional vector space over F and let $\Sigma \subseteq L(V)$. A chain $V = V_1 \supset V_2 \supset \cdots \supset V_s \supset V_{s+1} = \{0\}$ of Σ -subspaces of V is a composition series for V relative to Σ if for every *i*, there exists no $V' \in L(\Sigma)$ such that $V_i \supset V' \supset V_{i+1}$, that is, $\frac{V_i}{V_{i+1}}$ is irreducible.

Note that as $\dim_F(V) < \infty$, composition series of V do exist. For, let V_2 be the maximal Σ -subspace of $V_1 = V$, $V_2 \neq V_1$. Similarly, let V_3 be the maximal Σ -subspace of V_2 , $V_3 \neq V_2$, etc. Continuing like this. we get a composition series $V = V_1 \supset V_2 \supset \cdots \supset V_s \supset V_{s+1} = \{0\}$.

Lecture-4 . . .

Lemma

Let L be an abelian Lie algebra of linear operators on a finite dimensional vector space V over an algebraically closed field F. If V is L-irreducible, then $\dim_F(V) = 1$.

Proof.

If $T \in L$, then T has a non-zero characterstic vector x. So $T(x) = \alpha x$, for some $\alpha \in F$. Let $V_{\alpha} = \{v \in V | T(v) = \alpha v\}$, the characterstic subspace of V corresponding to characterstic value α . If $U \in L$ then T(U(y)) = $UT(y) = TU(y) = U(T(y)) = U(\alpha y) = \alpha U(y)$, for all $y \in V_{\alpha}$, and so $U(y) \in V_{\alpha}$. This gives V_{α} is an L-subspace of V. As V is L-irreducible, we have $V = V_{\alpha}$. Hence $T = \alpha I$. Thus every $T \in L$ is such that $T = \alpha I$, for some $\alpha \in F$. So every subspace of V is an L-subspace. Now V is L-irreducible, so V has no subspaces other than V and $\{0\}$. Therefore dim_F V = 1.

Theorem

(Lie's Theorem) Let V be a finite dimensional vector space over an algebraic closed field F of characteristic 0 and let $L \subseteq L(V)$ be such that L is a solvable Lie algebra. Then there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}} \in T_n(F)$ for all $T \in L$.

Proof:

Let $V = V_1 \supset V_2 \supset \cdots \supset V_s \supset V_{s+1} = \{0\}$ be a composition series of V relative to L. If $T \in L$, then $T_i = T|_{V_i} \in L(V_i)$.

Define
$$\overline{T}_i : \frac{V_i}{V_{i+1}} \to \frac{V_i}{V_{i+1}}$$
 by $\overline{T}_i(x + V_{i+1}) = T_i(x) + V_{i+1}$. Let $\overline{L}_i = \{\overline{T}_i : T \in L, \overline{T}_i \in L(\frac{V_i}{V_{i+1}})\}.$

Define $\theta: L \to \overline{L}_i$ by $\theta(T) = \overline{T}_i$. Clearly, θ is an epimorphism and so \overline{L}_i is solvable.

Proof . . .

Every \overline{L}_i -subspace of $\frac{V_i}{V_{i+1}}$ is of the type $\frac{W_i}{V_{i+1}}$ where W_i is an *L*-subspace of V_i containing V_{i+1} . As $\frac{V_i}{V_{i+1}}$ is irreducible, we have \overline{L}_i is irreducible. So \overline{L}_i is completely reducible in $\frac{V_i}{V_{i+1}}$. This gives $\overline{L}_i = C_i \oplus L_{i1}$, where L_{i1} is a semisimple ideal of \overline{L}_i . But then L_{i1} is also solvable. So $L_{i1} = \{0\}$ and $\overline{L}_i = C_i = Z_i$, the centre of \overline{L}_i . Hence \overline{L}_i is abelian and dim $\frac{V_i}{V_{i+1}} = 1$. This gives dim $V_s = 1$, dim $V_{s-1} = 2, \cdots$, dim $V_2 = s - 1$ and dim $V_1 = s$.

Let $\mathcal{B} = \{e_1, e_2, e_3, \cdots, e_s\}$ be a basis for V such that $\{e_1\}$ is a basis for V_s , $\{e_1, e_2\}$ is a basis for V_{s-1} , $\{e_1, e_2, e_3\}$ is a basis for V_{s-2} etc. Then for $T \in L$,

$$T(e_1) = \alpha_{11}e_1,$$

 $T(e_2) = \alpha_{12}e_1 + \alpha_{22}e_2,$

 $T(e_s) = \alpha_{1s}e_1 + \alpha_{2s}e_2 + \dots + \alpha_{ss}e_s. \quad \forall s \in \mathbb{R}$ Paper I (Unit IV) M.Sc. Semester IV April 2, 2020 19/31

Hence,

This completes the proof of the Lie's theorem

< □ > < □ > < □ > < □ > < □ >

Theorem

Let L be a finite dimensional solvable Lie algebra over an algebraic closed field of characteristic zero. Then there exists a chain of ideals $L = I_s \supset I_{s-1} \supset \cdots \supset I_1 \supset \{0\}$ such that dim $I_j = j$.

Proof.

As *L* is solvable, ad(L) is a solvable Lie algebra of linear transformations on the finite dimensional vector space *L*. Let $L = L_1 \supset L_2 \supset \cdots \supset L_{s+1} = \{0\}$ be a composition series of *L* relative to $\Sigma = ad(L)$. Then $ad(L)(L_i) \subseteq L_i$ gives L_i is an ideal of *L*. By Lie's theorem dim $\frac{L_i}{L_{i+1}} = 1$. Hence, dim $L_s = 1$, dim $L_{s-1} = 2$, ..., dim $L_1 = s$. Now put $I_j = L_{s-(j-1)}$ to get dim $I_j = \dim L_{s-(j-1)} = j$, as required.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Universal Enveloping Algebras

Definition

Let *L* be a Lie algebra. A pair (\mathcal{A}, i) where \mathcal{A} is an associative algebra and *i* a homomorphism of *L* into \mathcal{A}_L is called a universal enveloping algebra of *L* if for an algebra \mathcal{A} and homomorphism θ of *L* into \mathcal{A}_L , there exists a unique homomorphism θ' of \mathcal{A} into \mathcal{A} such that $\theta = i\theta'$, that is, the diagram

$$\begin{array}{l} \mathcal{A} = \mathcal{A}_L \\ i \uparrow & \searrow \theta'(\textit{unique}) \\ L \xrightarrow{\theta} \mathcal{A} = \mathcal{A}_L \end{array}$$

commutes.

Uniqueness of universal enveloping algebras

,

Let $(\mathcal{A}, i), (\mathcal{B}, j)$ be two universal enveloping algebras for L. Then there exists a unique isomorphism j' of \mathcal{A} onto \mathcal{B} such that j = ij'. We have the following commutative diagrams:

$$\begin{array}{l} \mathcal{A} = \mathcal{A}_L \\ i \uparrow & \searrow j'(unique) \\ L \xrightarrow{}_j \mathcal{B} = \mathcal{B}_L \end{array}$$

So j = ij' and i = ji'. Clearly $i'j' : \mathcal{B} \to \mathcal{B}$ and $j'i' : \mathcal{A} \to \mathcal{A}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Uniqueness . . .

Again the following commutative diagrams

$$egin{array}{ccc} \mathcal{B} & & & \ j \uparrow &\searrow i_{\mathcal{B}}(\textit{unique}) & , & \ L & \longrightarrow & \mathcal{B} \end{array}$$

and

$$\begin{array}{c} \mathcal{A} \\ i \uparrow & \searrow i_{\mathcal{A}}(\textit{unique}) \\ L & \longrightarrow \\ i & \mathcal{A} \end{array}$$

imply $j = ji_{\mathcal{B}}$ and $i = ii_{\mathcal{A}}$. Thus $i'j' = i_{\mathcal{B}}$ and $j'i' = i_{\mathcal{A}}$. So, j' is an isomorphism. This shows uniqueness of universal enveloping algebras up to isomorphism.

Paper I (Unit IV)

April 2, 2020 24 / 31

We now give the construction of universal enveloping algebras: Let *L* be a Lie algebra over *F*. Denote by T(L), the tensor algebra based on the vector space *L*. We have $T(L) = \bigoplus_{i=1}^{\infty} L_i$, where $L_0 = F$, $L_1 = L, \ldots, L_i = \underbrace{L \otimes L \otimes \cdots \otimes L}_{i-times}$.

Note that T(L) is a vector space over F with usual addition and scalar multiplication. Define multiplication \otimes in T(L) by

$$(x_1 \otimes \cdots \otimes x_i) \otimes (y_i \otimes \cdots \otimes y_j) = x_1 \otimes x_2 \otimes \cdots \otimes x_i \otimes y_1 \otimes \cdots \otimes y_j.$$

With this T(L) becomes an associative algebra.

Let *R* be an ideal of *T*(*L*) generated by $\{[a, b] - a \otimes b + b \otimes a | a, b \in L\}$ and take $\mathcal{A} = \frac{T(L)}{R}$ with $\lambda : T(L) \to \mathcal{A}$ the canonical epimorphism. If $i = \lambda|_L$. Then

Lecture-7 . . .

$$i([a, b]) - i(a) \otimes i(b) + i(b) \otimes i(a)$$

= $[a, b] + R - (a + R \otimes b + R) + (b + R \otimes a + R)$
= $([a, b] - a \otimes b + b \otimes a) + R = R = 0 \in \mathcal{A}.$

Therefore, *i* is a Lie algebra homomorphism of *L* into A_L . We now show that (A, i) is an universal enveloping algebra for *L*.

Step 1: Let A be an algebra. Any linear map $\theta : L \to A$ can be extended to a homomorphism θ'' of T(L) into A. If $\{u_j | j \in J\}$ is a basis for L, then $\{u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n} | j_i \in J\}$ form a basis for L_n . Here

 $u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n} = u_{k_1} \otimes u_{k_2} \otimes \cdots \otimes u_{k_n} \Leftrightarrow j_r = k_r, r = 1, 2, \dots, n.$

where $u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n}$ are monomials of degree $n_{j_1} \otimes \dots \otimes u_{j_n} \otimes \dots \otimes u_{j_n}$

Paper	(Ur	it.	IV

Lecture-7 . . .

Hence,

$$\{1, u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n} | n \in \mathbb{N}, j_i \in J\}$$

form a basis for $T(L)$.

Define
$$\theta'': T(L) \to A$$
 by
 $\theta''(1) = 1, \quad \theta''(u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n}) = \theta(u_{j_1})\theta(u_{j_2})\cdots\theta(u_{j_n}),$

then θ'' is an algebra homomorphism and $\theta''(a) = \theta(a)$ for all $a \in L$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Step 2: Let $\theta: L \to A_L$ be a homomorphism and θ'' be the extension of θ to a homomorphism of T(L) into A. If $a, b \in L$, then

$$\begin{aligned} \theta''([a,b]-a\otimes b+b\otimes a) \\ &= \theta''([a,b])-\theta''(a)\theta''(b)+\theta''(b)\theta''(a) \\ &= \theta([a,b])-\theta(a)\theta(b)+\theta(b)\theta(a) \\ &= [\theta(a),\theta(b)]-[\theta(a),\theta(b)]=0. \end{aligned}$$

So $R \subseteq \ker \theta''$. Define $\theta' : \mathcal{A} \to \mathcal{A}$ by $\theta'(a+R) = \theta''(a)$, for all $a \in T(L)$. Verify that θ' is a well defined homomorphism. Further, for all $a \in L$:

$$i\theta'(a) = \theta'(i(a)) = \theta'(a+R) = \theta''(a) = \theta(a).$$

So $i\theta' = \theta$.

< □ > < □ > < □ > < □ > < □ > < □ >

Step 3: (Uniqueness of θ') As T(L) is generated by L, we have \mathcal{A} is generated by i(L). Any two homomorphism which coincide on generators are identical. Therefore θ' is unique such that $i\theta' = \theta$.

(In other words, if there exists $\theta^* : A \to A$ such that $i\theta^* = \theta$, then $\theta^*(i(a)) = \theta(a) = \theta'(i(a))$, for all $a \in L$. This gives $\theta^* = \theta'$.)

This completes the construction and uniqueness of universal eneloping algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Poincare-Birkhoff-Witt Theorem

Let *L* be a Lie algebra over a field *F* and let $\{u_j | j \in J\}$ be a basis for *L*, then $\{u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n} | j_i \in J\}$ form a basis for L_n , $n \ge 1$. Here L_n 's are as defined in Lecture 7.

Let J be an ordered set. For i, k, i < k, put

$$\eta_{ik} = \begin{cases} 1 \text{ if } j_i > j_k \\ 0 \text{ if } j_i \le j_k. \end{cases}$$

Define the index of a monomial by

ind
$$(u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n}) = \sum_{i < k} \eta_{ik}.$$

Clearly ind = 0 if and only if $j_1 \le j_2 \le j_3 \le \cdots \le j_n$. Such monomials are called standard monomials.

PBW Theorem . . .

Let $j_k > j_{k+1}$. If ind $(u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_n}) = \sum_{i < k} \eta_{ik} = l$, then ind $(u_{j_1} \otimes u_{j_2} \otimes \cdots \otimes u_{j_{k-1}} \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes u_{j_{k+2}} \otimes \cdots \otimes u_{j_n}) = l - 1$. (Verify.)

Theorem

(Poincare-Birkhoff-Witt Theorem) Let L be a Lie algebra over a field F with basis $\{u_j | j \in J\}$. Let J be an orderderd set, then cosets of 1 and the standard monomials form a basis for the universal enveloping algebra $\mathcal{A} = \frac{T(L)}{R}$ of L.

The proof is not in the course.

This completes the Syllabus.

ALL THE BEST.

M.Sc. Semester IV