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UNIT-IV, Lecture-1

Definition
Let F be a field of characteristic 0, V' a finite dimensional vector space
over F and T a linear operator on V. Then the trace of T, denoted by

tr(T), is given by tr(T) = >_7; @i, where (ajj) = [T]g, B being a basis
of V.

If p; are the characterstic roots of T, then

tr(T)=> pi
i=1

For a nonnegative integer k, we have

n
tr(TF) =D pf.
i=1

If T is nilpotent, then p; = 0 for all i. This gives tr(T) = tr (T*) =0, for
k=1,2,.... Conversely, if tr(TX) =0, k =1,2,..., then T is nilpotent.
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Lecture-1 . . .

Lemma

Let V be a vector space over a field F of characteristic 0, and let
T € L(V) such that T =>"[_;[Ai, Bi], Ai,Bi € L(V) and [T, A;] =0,
i=1,2,...,r. Then T is nilpotent.

Proof.
Let [TK=1, A;] =0, then

[TKA] = TFA —ATK
= T[TFLA]+TAT A, T T - TA TF !
= 0.
Therefore [TX,A;] =0forall i=1,2,...,rand k =1,2,.... This
gives ]
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r r
T = TIT=TKIY (AL B] =D (AT !B — T 'BiA)
i=1 i=1

= i[A;, Tk_l B,'].
i=1

As trace of a commutator is zero, we have tr (T%) = 0, for all
k=1,2,...,r. Hence T is nilpotent.

This completes the proof
Theorem
Let char F =0 and let L be a Lie algebra of linear transformations in L(V)

such that L* is semi-simple. Then L = Ly & Z where Z = Z(L), the centre
of L, and Ly is an ideal of L (which is a semi-simple Lie algebra).
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Proof of the Theorem . . .

Let C be the radical of L. If C # Z, then C; = [L, C] is a non-zero
solvable ideal.
Therefore there exists n € N such that Cl(") = {0} and Cl("_l) # {0}. Let

G=Cc"Yand G =[G, L].

If T € G, then T =5, ,[A;, Bj], for some A; € G, and B; € L. This
gives [T, Aj] € [G, &3] C [Gy, Go] = {0}. Therefore by above lemma, T is
nilpotent. Hence, every element of ideal (3 is nilpotent, and so by
theorem of Unit 3, Lecture 6,

C3 C G C R = the radical of L* = {0},

as L* is semi simple. Hence, & C Z.
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N
Proof . . .

Since G, € G C L' =[L, L], every element T of G, is of the type

T =>7_1lAi,Bi], Ai,Bi € Land [T, Aj] = 0 because C; C Z. Therefore
T is nilpotent by above lemma. So ; C G5 C R = radical of L* = {0}, a
contradiction. Therefore, C = Z.

Let 'NC#{0}. If Tel/'NCthen T=>_,[A;Bi, Ai,Bi € L and
[T,Aj]=0as T € C = Z. Therefore T is nilpotent by the lemma, and so
L'n C C R ={0}, a contradiction.

Therefore there exists L1, a subspace of L, L1 D L', suchthat L =L ® Z.

So Ly is an ideal and L & % = % Hence L; is semi-simple.

This completes the proof.
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Lecture-2

Corollary

Let L be as in the above theorem. Then L is solvable if and only if L is
abelian. More generally, if L is solvable and R is the radical of L*, then %
is commutative.

Proof.

Clearly, if L is abelian then L is solvable.

Conversely, let L be solvable and L* semi-simple. Then L = L; & C, where
C = Z = centre of L and L; is a semi-simple ideal of L. Therefore L; is
semi-simple and solvable. But then L; = {0}. Hence, L = C is abelian.
Consider the Lie algebra £EE. Clearly (L+R) = L which is semisimple.

As L+R is a homomorphlc image of L, so L solvable implies L+R is
soIvabIe which gives L+R is abelian, and hence LR is commutatlve. O

v
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N
Lecture-2 . . .

Go through the following definitions:

Let V be a vector space over F, dimg(V) < oo, and let X be a set of
linear operators on V. Let L(X) denotes the collection of subspaces
invariant under X, that is,

L(X) = {W | W is a subspace of V and T(W) C W forall T € £}.
We say that L(X) is the collection of ¥-subspaces of V.
Definition

Y is called an irreducible set of linear transformations and V is called
Y-irreducible if L(¥X) = {V,0} and V # {0}.

Definition
Y is called indecomposable and V is called ¥-indecomposable if V can not

be written as V = V4 & V5, V; # 0 in L(X). Clearly, X-irreduciblity implies
> -indecomposability.

v
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Lecture-2 . . .

Definition
> is called completely reducible and V is called ¥-completely reducible if
V =@, Vs, Vo € L(X), V, irreducible.

Note that W € L(X) implies that W is invariant under ¥* and X7,
Therefore, L(X) = L(X*) = L(XT).

Theorem

Let V' be a vector space over F, dimg(V) < oo, and let ¥ be a set of
linear operators on V. Then ¥ is completely reducible if and only if for
every W € L(X) there exists W' € L(X) such that V. = W & W' (that is,
L(X) is complemented).
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Proof of the Theorem . . .

Let 2~ be completely reducible. Therefore V = ®,V,, where each V, is
irreducible in L(X). Let W € L(X). If dim W = dim V/, then
V =W @ {0} and we are done.

Assume that dim W < dim V and let the theorem hold for all subspaces
Wiy € L(X) such that dim Wi > dim W. Since W C V and V = @&, V,,
there exists a V,, such that V,, Z W. Consider V, N W € L(X), As

V,, N W is a subspace of irreducible X-subspace V,,, we have either

Vo NW =V, or V,n W ={0}. Now V, N W =V, is not possible, so
Vo N W ={0}.

Let Wi = W @ V,, by induction hypothesis, V = Wy & W], W] € L(X).
Thisgives V=W a Vo W =Wa W, W =V, W e L(Z).
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Proof . . .

Conversely, let L(X) be complemented and V4(# 0) be a minimal element
of L(X). As V is finite dimensional, so V; exists and it has to be
irreducible. Therefore V = V4 & W, for some W € L(X).

If B is a X-subspace of W, then V = B® B’ and
W=VnW=BnW+B NW=B+B nNW =B+ B”, where
B"=B'NW e L(X) is a subspace of W.

Also BN B = B'NW N B = {0} implies that W = B@® B”. Thus for W
also L(X) is complemented. Repeating this process for W we have
W=V, W, Vo, W € L(Z), V5 is irreducible.

Continuing in this way, in a finite number of steps, we get
V=VieV,®- - @ V,, where each V; € L(X) and are irreducible.

This completes the proof.
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Lecture-3

Theorem

Let A be an associative algebra of linear transformations in L(V),
dim V < oco. If A is completely reducible then A is semi-simple.

Proof.

Let R be the radical of A and let V = @®,V,, V4 's irreducible in L(A). Let
R(V,) be the subspace spanned by {T(y)|y € Vo, T € R}. Then
R(V,) € L(A) and R(Va) C V.

Since there exists k € N such that R = {0}, R(V,) € Va. Therefore
R(V,) = {0} for all «, (as Vi, is irreducible).

This gives R(V) =0, that is, R =0, and so A is semi-simple. O

v
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Lecture-3 . . .

Corollary

If ¥ is completely reducible then ¥* and X1 are semi-simple.

Proof.

Y is completely reducible = L(X) is complemented < L(X*) and L(XT)
are complemented < Y* and X! are complemented = ¥*, T are
completely reducible = ¥*, ¥ are semisimple. O

v

Definition

An operator T € L(V) is said to be semi-simple if

mr(x) = p1(x)p2(x) - - - pr(x), where each p;(x) is an irreducible
polynomial in F[x], p;j(x) # pj(x).
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Lecture-3 . . .

Theorem

An operator T € L(V) is semi-simple if and only if { T} has no non-zero
nilpotent elements.

Proof.

Let T be not semi-simple. Then my(x) = pi*(x) - - - p(x), where r; > 1
for some i. Let W = py(T)---px(T). Clearly W € {T}t. If mis the lcm
of {ri}'s, then

W™ = pi(T)" - pe(T)" = 0.

Further W # 0 because W|mt(x) and deg m7(x) > deg W. So W is
non-zero nilpotent elements of { T}

Conversely, if T € L(V) is semi-simple, then m7(x) = p1(x) - -- px(x). Let
W = £(T) be a nilpotent element of {T}. Then W' = 0 implies
mr(x)|f"(x), and so my(x)|f(x). Hence 0 = f(T) = W. O

v
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Lecture-4

Theorem

Let L be a completely reducible Lie algebra of linear operators on a finite
dimensional vector space V over a field of characteristic 0. Then

L= C® Ly, where C = Z and L1 is a semi-simple ideal. Moreover,
elements of C are semi-simple.

Proof.

We know that if L is completely reducible then L* and L' are semi-simple.

So by Theorem of Lecture 1, L = C & Ly. Further, let T € C be such that

T is not semi-simple. Then there exists a nonzero nilpotent element

W € {T}. Let k € N be such that W* = 0. Now

(T ={ao+a1T+aT?+--+a,T"|n€ N,a; € F}. As T € C, we

have W € {T}' is also in the centre of L. Therefore LTW = WL is an

ideal in LT and (WLT)x C WKLT =0. But 0 # W € WLT implies WL is a

non-zero nilpotent ideal in LT, a contradiction as L is semi-simple. D)
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Lecture-4 . . .

Definition

Let V be a finite dimensional vector space over F and let ¥ C L(V). A
chain V=V, D VoD D VD Vsy1 = {0} of X-subspaces of V is a
composition series for V relative to ¥ if for every i, there exists no

V' € L(X) such that V; D V' D V4, that is, V\,-/L is irreducible.

Note that as dimg(V) < oo, composition series of V do exist. For, let V5
be the maximal X-subspace of V; = V/, Vb # V4. Similarly, let V3 be the
maximal X-subspace of V,, V3 #£ V5, etc. Continuing like this. we get a
composition series V =V; D Vo D - D Ve D V1 = {0}
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Lecture-4 . . .

Lemma

Let L be an abelian Lie algebra of linear operators on a finite dimensional
vector space V' over an algebraically closed field F. If V' is L-irreducible,
then dimg(V) = 1.

Proof.

If T € L, then T has a non-zero characterstic vector x. So T(x) = ax, for
some a € F. Let V,, = {v € V|T(v) = av}, the characterstic subspace of
V' corresponding to characterstic value . If U € L then T(U(y)) =
UT(y)=TU(y) = U(T(y)) = U(ay) = aU(y), for all y € V,, and so
U(y) € V,. This gives V,, is an L-subspace of V. As V is L-irreducible,
we have V = V,,. Hence T = «l.

Thus every T € L is such that T = al, for some « € F. So every
subspace of V is an L-subspace. Now V' is L-irreducible, so V' has no
subspaces other than V and {0}. Therefore dimg V = 1. O

4
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Lecture-5

Theorem

(Lie's Theorem) Let V' be a finite dimensional vector space over an
algebraic closed field F of characteristic 0 and let L C L(V') be such that L
is a solvable Lie algebra. Then there exists a basis B of V' such that

[T]lg € To(F) forall T € L.

Proof:
Let V=Vi D VoD D Vs D Vo1 = {0} be a composition series of V
relative to L. If T € L, then T; = T|y, € L(V}).

Define T; : g/ — A= by Ti(x + Vig1) = Ti(x) + Vigr. Let

Li={Ti: Tel T el(y-)}

Define § : L — L; by §(T) = T;. Clearly, 6 is an epimorphism and so L; is
solvable.
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N
Proof . . .

Every L;-subspace of V\-/+i1 is of the type Ul Where W; is an L-subspace of

V; containing V1. As V+"1 is |rredUC|bIe we have L; is irreducible. So L;
is completely reducible in V— This gives L; = C &Ly, where L1 is a
semisimple ideal of L;. But then L is aIso soIvabIe So L,1 = {0} and

Li=C= y = 1. This
gives dim Vg =1, dim V,_1 = 2, ,dlm Vo =s—1and dim V1 =s.

i

Let B ={e1, ez, €3, -+ ,es} be a basis for V such that {e;} is a basis for

Vs, {e1, e} is a basis for Vi_1, {e1, e, e3} is a basis for Vs_5 etc. Then
for T € L,

T(e1) = aizer,

T(e2) = aier + axe,

T(es) = aiser +aoser + - + assés.
N Se. Semeerer 1V
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Proof . . .
Hence,
@11 Q12 . . . (O35
Q2 . . . Qg
[T]s =
Uss

This completes the proof of the Lie's theorem
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Lecture-6

Theorem

Let L be a finite dimensional solvable Lie algebra over an algebraic closed
field of characterstic zero. Then there exists a chain of ideals
L=1Is>Dls—1D---D>h D{0} such that dim[; = j.

Proof.

As L is solvable, ad(L) is a solvable Lie algebra of linear transformations
on the finite dimensional vector space L. Let

L=L; DLyD: D Lst1 = {0} be a composition series of L relative to
Y = ad(L). Then ad(L)(L;) C L; gives L; is an ideal of L. By Lie's
theorem dim L4L+"1 = 1. Hence,dmls=1,dimLs_1 =2, ...,dimL; = s.

Now put /; = 'LS_U_l) to get dim [ =dim L,_(;_1) =, as required. O

v
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Universal Enveloping Algebras

Definition

Let L be a Lie algebra. A pair (A, i) where A is an associative algebra and
i a homomorphism of L into A; is called a universal enveloping algebra of
L if for an algebra A and homomorphism 6 of L into A, there exists a
unique homomorphism 6’ of A into A such that 6 = i#’, that is, the
diagram

A=A
it N\ 0 (unique)
L 7) A=A
commutes. )
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Uniqueness of universal enveloping algebras

Let (A, i), (B,)) be two universal enveloping algebras for L. Then there
exists a unique isomorphism j' of A onto B such that j = ij’. We have the
following commutative diagrams:

A=A
it N\ J(unique)
L—'>B:BL

J

B=B8,
JT ¢ (unique)
L— A=A
Soj=iand i =ji’. Clearly i’j/ : B— Band j'i': A — A.
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|
Uniqueness .

Again the following commutative diagrams

B
J 1 cig(unique) -

L— B
J

and

i1 N\ ia(unique)
L— A
1
imply j = jig and i = ii4. Thus i’j/ = ig and j'i" = i4. So, j' is an
isomorphism. This shows uniqueness of universal enveloping algebras up to
isomorphism.
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Lecture-7

We now give the construction of universal enveloping algebras:

Let L be a Lie algebra over F. Denote by T(L), the tensor algebra based
on the vector space L. We have T(L) = ®?2,L;, where Ly = F,
L=L. . L=L’L® - L

i—times

Note that T(L) is a vector space over F with usual addition and scalar
multiplication. Define multiplication ® in T(L) by

With this T(L) becomes an associative algebra.

Let R be an ideal of T(L) generated by {[a,b] —a® b+ b® ala, b € L}
and take A = % with A : T(L) — A the canonical epimorphism. If
i= M. Then
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Lecture-7 . . .

i([a, b]) — i(a) ® i(b) + i(b) ® i(a)
—[a,b]+R—(a+R®b+R)+(b+R®a+R)
=([a,b]—a®b+b®a)+ R=R=0€ A

Therefore, i is a Lie algebra homomorphism of L into A;.
We now show that (A, i) is an universal enveloping algebra for L.

Step 1: Let A be an algebra. Any linear map 6 : L — A can be extended
to a homomorphism 6" of T(L) into A.

If {u;|j € J} is a basis for L, then {uj, ® uj, @ --- @ uj, |j; € J} form a basis
for L,. Here

Ujl®Uj2®“’®an:Uk1®Uk2®"-®ukn <:>.jr:kl’)r:1)2)"'an'

where uj; ® uj, ® - -+ ® uj, are monomials of degree n.
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Lecture-7 . . .

Hence,
{Luy®u,®---@u,|neNyj; € J}

form a basis for T(L).
Define 6" : T(L) — A by
9/,(1) =1, all(ujl Qup @@ an) = 9(“]1)9("’]2) T e(ujn)’

then 0" is an algebra homomorphism and 6”(a) = 6(a) for all a € L.
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Lecture-8

Step 2: Let 6 : L — A, be a homomorphism and 6" be the extension of
to a homomorphism of T(L) into A. If a,b € L, then

0"([a,b] —a® b+ b® a)

= 0"([a, b]) — 0" (a)0" (b) + 0" (b)0"(a)

= 6([a, b]) — 0(a)0(b) + 0(b)6(a)

= [6(a), 6(b)] — [0(a), 0(b)] = 0.
So R C kerf”.
Define ¢ : A — A by 6'(a+ R) = 6"(a), for all a € T(L). Verify that 8’ is
a well defined homomorphism. Further, for all a € L:

i0'(a) = 0'(i(a)) = 0'(a+ R) = 0"(a) = 0(a).

So if' = 4.
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Lecture-8 . . .

Step 3: (Uniqueness of ') As T(L) is generated by L, we have A is
generated by i(L). Any two homomorphism which coincide on generators
are identical. Therefore 8’ is unique such that /¢’ = 6.

(In other words, if there exists 6* : A — A such that i0* = 0, then
0*(i(a)) = 0(a) = 0'(i(a)), for all a € L. This gives 0* =0'.)

This completes the construction and uniqueness of universal eneloping
algebras.
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Poincare-Birkhoff-Witt Theorem

Let L be a Lie algebra over a field F and let {uj|j € J} be a basis for L,
then {u;, ® uj, ® --- ® uj,|ji € J} form a basis for L,, n > 1. Here L,'s are
as defined in Lecture 7.

Let J be an ordered set. For i, k, i < k, put

o 1if i > ji
"o if ji < Jk-
Define the index of a monomial by

ind (v @ uj, ® - @ uj,) = Zﬁik-
i<k

Clearly ind =0 if and only if j1 < jo < j3 <--- < j,. Such monomials are
called standard monomials.
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N
PBW Theorem . . .

Let jk >jk+1. If ind (UJ‘1 ® uj, R &R an) = Zi<k Nik = /, then
ind (UJ'1 QU Q- QuUj_, QU , QU QU , Q- UJ‘n) =/—1. (Verify.)

Theorem

(Poincare-Birkhoff-Witt Theorem) Let L be a Lie algebra over a field F
with basis {uj|j € J}. Let J be an orderderd set, then cosets of 1 and the
standard monomials form a basis for the universal enveloping algebra
A=T8 of .

The proof is not in the course.
This completes the Syllabus.

ALL THE BEST.
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