1 Infinite Products

Let H(U) be the space of all holomorphic functions on an open set U and let
(pj) be a sequence in H(U). Then for each n, f, = [[;_, p; is holomorphic on
U. If the sequence (f,) converges in H(U) to the function f (say), then H;; D
is said to be convergent or exists and f := H;’il p; represents an holomorphic
function on U. So we shall obtain some sufficient conditions for the infinite
product H;‘;l p; to converge. First we prove a technical result in the form of
following Proposition:

Proposition 1 Given a finite set {uy,us,...,un} of complex numbers, let py =
N N

[T (X +u;) and pyy = 1 (1 + |uj|). Then

j=1 j=1
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(@) P < exp( 2 fusl),
=

(i) lpy =1 <py —1.
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Proof. (i) Since, 1+|u;| < exp (|u;|) for each j, we easily prove that [] (1 + |u;|) =
j=1

N
Pr <exp | > |yl ) -
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(ii) Observe that the result is true for N = 1. Let it be true for k < N — 1
that is |pg — 1] < p} — 1. Then
k41 — 1 = [pe L4+ upg1) — 1 = [(pr — 1) (1 + upg1) + tpy]
< (k= 1) (U + Jugga]) + lugsa| = phyqg — 1

which shows that the result is true for k + 1 also. Hence the result is true. =

N
Remark 1 The above result will also holds for any finite products [] (1 + uy)
=M

N
and ] (14 |u;|) for M < N.
j=M
Proposition 2 Let (u;) be a sequence of bounded functions. If Y |u;| converges
uniformly, then [] (1 + u;) also converges uniformly.
Proof. By hypothesis ) |u;| is uniformly bounded and so is exp (> |u;|) that
is exp (3 |u;|) < C (>0) for all z. Let for each n, f,,(2) = [[ (1 + u;(2)). Then
j=1
n
fn is holomorphic and for each n and for any z, |f,(2)] < [] (1+ |u;(2)]) <
j=1

exp (3 Juj]) < C. Since, the space of all entire functions is complete, we only
need to show that the sequence (f,,) is uniformly Cauchy sequence. For 0 < € <



N
1, let ng be such that for any N > M > ng, > |u;(z)| < € for all z. Then

J=M+1
with the use of Proposition 1
N N
v =rtul = Ul TT Q+w) =1 <lful | [T O +luwh -1
j=M+1 Jj=M+1
N
< ful [e( D2 sl 1) < Clemlo) - 1) =B,
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where B > 0. This proves the result. m

Proposition 3 If for each j, 0 < u; < 1, then [[(1 —u;) > 0 if and only if
du; < oo.

Proof. Let f, = [[ (1 —u;).Then fi > fo > ... > 0 thatis (f,) is a decreasing
j=1
sequence which is bounded below, so lim f,, = f exists. If > u; < oo, then by

oo
Proposition 2, [] (1 —u;) = f >0, since each 1 — u; > 0. Conversely,
j=1

0<f=ﬁ(1—uj < <H 1—u;) <exp Zu]

j=1 j=1
and if >~ u; = oo, then f = 0 which gives a contradiction. Hence, > u; < co. m

Proposition 4 If f; is entire and not identically zero for each j, and if Y |1 — f;]
converges uniformly on compact sets, then f =[] f; is an entire function.

Proof. Let u; =1 — f;; so f; = 1 — u;. Then by Propositions 2 and 3, we get
the result. =

1.1 Weierstrass’s Elementary Functions

Functions F, for any p = 0,1,2, ... and for any z, defined by

Eo(z) = 1-—2zEi(2)=(1—2)exp(z),...,
Bp(z) = (1-z)exp(z+(27/2) + ... + ("/p)) (1)

are called Weierstrass’s Elementary Functions. Clearly, these functions are en-
tire functions having precisely one zero at z = 1 of multiplicity one. Hence, for
any a # 0, the function E,(z/a) has a zero at z = a of multiplicity one. We
have following Proposition based on the functions E,(z) :

Proposition 5 Let for any p =0,1,2, ... and for any z, the functions E,(z) be
defined by (1). Then



(i) Ep(z) = —2Pexp (2 + (22/2) + ... + (27 /p)) .

(ii) If E,(2) = ap + a1z + ... + agz" + ... is a Taylor’s expansion of E,, at 0,
then ap =1,a1 = a2 = ... =ap, =0 and a; < 0 for k& > p.

(iii) For |z| < 1,|Ey(z) — 1] < |z[P".

Proof. On differentiating the expression E,(z) we directly get the result (i).
On equating the series expansion of E,(z) from (1) and E,(z) = ap+ar1z+... +
arpz® + ..., we directly get ag = 1. From the result (i), we see that E,, has a zero
of multiplicity p at 0. On the other hand by term by term differentiation, we
have E},(z) = a1 + ... + kapz*"1 + ...+ (p+ 1)aps12P + .... Thus on comparing
these two expressions, we get the result (ii). Further, from (ii), we have for
|Z| S 1a

B =11 | S at < 30 el lF < 1P Y (o)
k=p+1 k=p+1 k=p+1
since, for k > p,|agy| = —ay by (ii). Again, since from (i) E,(1) =0 =1+

o0 o0
> ak, we get > ar = —1 and hence, we get the result (iii). m
k=p+1 k=p+1

Corollary 1 For any non-zero zj, |Ey(z/z;) — 1] < \z/zj|p+1 for |z] < z;].

Proposition 6 Let (z;) be a sequence of complex numbers without a limit point

and such that z; # 0 for each j. Let (p;) be a sequence of non-negative integers

such that Yy, (r/ |zj\)pj+1 converges for everyr > 0. Then P(z) = [[Ep,(2/z;) is
J

an entire function, with precisely z;-s as its zeros, each with the same multiplicity
as the number of times it appears in the sequence (z;).

Proof. In view of the Corollary 1, for any z € clB(0,r),
|Ep(2/25) — 1] < |Z/zj|p'H < (r/ |zj|)pj+1 )

Hence, by hypothesis

Z |Ep(2/25) — 1] < Z (r/ ‘Zj|)Pj+1 < %

which by Proposition 4 proves the result. m

The entire function P(z) obtained above has zeros at non-zero z;. We may
construct an entire function P;(z) = 2™ P(z) with zeros at 0 with multiplicity
m and at non-zero z; with prescribed multiplicities. Further, the entire function
P(z) obtained above is not the only one having zeros precisely at z’s. If g is any
entire function having no zeros, then f(z) = P(z)g(z) is also an entire function
having zeros precisely at z;»s.

If h is an entire function without any zero, then the function h’/h is also
entire and if we define g(z) = [ #’/h, then g is well defined, entire and h(z) =
exp(g(z)). We use this fact in the following theorem:



Proposition 7 (Weierstrass’s Factorisation Theorem) Let f be an entire
function with Zy = {z1,22,...,2j,...} as its zero set, each z; being counted as
often as its multiplicity. Let m be the multiplicity of 0 (m may be zero). Then
there exist integers p1,pa, ..., Dj, ... and an entire function g such that

F(2) = explg H (2/2)-

Proof. We may write f(z) = 2™ f1(z), where f; is an entire function. Then
zeros of fi are precisely the non-zero zeros of f say at z1, 22, ..., 25, ..., counted
according to their multiplicities. Hence, the function P(z) = [[Ep,(z/z;) is

J
an entire and has precisely the same zeros as f1. So the function f1/P is entire
without any zero, hence there is an entire function g such that f1/P = exp(g)
or fi = Pexp(g) which proves the theorem. m

We apply Weierstrass’s Factorisation Theorem in the following example.

Example 1 Factorise sine function.

Solution 1 Consider the function f(z) =sinmz. Then f is an entire function
with zeros precisely at n = 0,+1,£2, ..., each of multiplicity 1. In Weierstrass’
s Factorisation Theorem, we have z; = n and p; = 1. Since, for any r > 0,
S (r/n)? is convergent and hence, Py(z) = [] (1 —z/n)exp(z/n) is entire
n#0 n#0

having simple zeros precisely at nonzero integers, and

P(z) ZH (1 —2z/n)exp(z/n) = zH (1-2/n)(1+z/n)exp((z/n) — (z/n))

n;éO n=1
zH — 2 /n?)

18 an entire function having zeros of multiplicity one precisely at all integers.
Thus according to the Weierstrass’ s Factorisation Theorem there exists an en-
tire function g such that

sinmz = exp(g H — 2% /n?) (2)

Now it only remains to determine the function g. On differentiating (2), we
get

o0

mcosmz = sinwz ¢'(2)+ Sin:Z + exp(g(z)) ZZ (—2z/n%) H (1—2/k%)
n k#n
= sinnmz |¢'(2) + % + Z (—2z) / (n® — 2%)



and hence, for all z such that sinmz # 0, we get

meotmz = )+ - +Z (22) / (2* — n?) (3)
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(z—n)* sin®mz’

n=—oo

The above expression for ¢’ (z) shows that it is periodic with period 1 and for
z=x+iy with0 <z <1 and |y| > 1, it is bounded. Hence, by periodicity it is
bounded in the entire complex plain and it is an entire function, so by Liouville’s
Theorem ¢" is constant. But ylggo lg"(2)| = 0. Hence, ¢"(z) = 0 for all z and

9'(2) = ¢, a constant. Further, from (3), we observe that ¢'(—z) = —¢'(2),
hence, ¢ =0 and g is also a constant, say exp(g(z)) = k. Finally, we get

sinmz =k zH (1-22/n?)

n=1

or

sinmwz L2
_ H /n

nl

which on taking z — 0 yields that

1=-.
™

Thus we get the required factorisation:

oo
sinmz = ZH (1—-2%/n%).

n=1



