
1 Infinite Products

Let H(U) be the space of all holomorphic functions on an open set U and let
(pj) be a sequence in H(U). Then for each n, fn =

∏n
j=1 pj is holomorphic on

U . If the sequence (fn) converges in H(U) to the function f (say), then
∏∞

j=1 pj
is said to be convergent or exists and f :=

∏∞
j=1 pj represents an holomorphic

function on U . So we shall obtain some sufficient conditions for the infinite
product

∏∞
j=1 pj to converge. First we prove a technical result in the form of

following Proposition:

Proposition 1 Given a finite set {u1, u2, ..., uN} of complex numbers, let pN =
N∏
j=1

(1 + uj) and p∗N =
N∏
j=1

(1 + |uj |) . Then

(i) p∗N ≤ exp(
N∑
j=1

|uj |),

(ii) |pN − 1| ≤ p∗N − 1.

Proof. (i) Since, 1+|uj | ≤ exp (|uj |) for each j, we easily prove that
N∏
j=1

(1 + |uj |) =

p∗N ≤ exp

(
N∑
j=1

|uj |

)
.

(ii) Observe that the result is true for N = 1. Let it be true for k ≤ N − 1
that is |pk − 1| ≤ p∗k − 1. Then

|pk+1 − 1| = |pk (1 + uk+1)− 1| = |(pk − 1) (1 + uk+1) + uk+1|
≤ (p∗k − 1) (1 + |uk+1|) + |uk+1| = p∗k+1 − 1

which shows that the result is true for k + 1 also. Hence the result is true.

Remark 1 The above result will also holds for any finite products
N∏

j=M

(1 + uj)

and
N∏

j=M

(1 + |uj |) for M ≤ N.

Proposition 2 Let (uj) be a sequence of bounded functions. If
∑
|uj | converges

uniformly, then
∏

(1 + uj) also converges uniformly.

Proof. By hypothesis
∑
|uj | is uniformly bounded and so is exp (

∑
|uj |) that

is exp (
∑
|uj |) < C (>0) for all z. Let for each n, fn(z) =

n∏
j=1

(1 + uj(z)) . Then

fn is holomorphic and for each n and for any z, |fn(z)| ≤
n∏

j=1

(1 + |uj(z)|) ≤

exp (
∑
|uj |) < C. Since, the space of all entire functions is complete, we only

need to show that the sequence (fn) is uniformly Cauchy sequence. For 0 < ε <

1



1, let n0 be such that for any N ≥ M ≥ n0,
N∑

j=M+1

|uj(z)| < ε for all z. Then

with the use of Proposition 1

|fN − fM | = |fM |

∣∣∣∣∣∣
N∏

j=M+1

(1 + uj)− 1

∣∣∣∣∣∣ ≤ |fM |
 N∏

j=M+1

(1 + |uj |)− 1


≤ |fM |

exp(

N∑
j=M+1

|uj |)− 1

 < C (exp(ε)− 1) =: B ,

where B > 0. This proves the result.

Proposition 3 If for each j, 0 ≤ uj < 1, then
∏

(1− uj) > 0 if and only if∑
uj <∞.

Proof. Let fn =
n∏

j=1

(1− uj) . Then f1 ≥ f2 ≥ ... ≥ 0 that is (fn) is a decreasing

sequence which is bounded below, so lim fn = f exists. If
∑
uj < ∞, then by

Proposition 2,
∞∏
j=1

(1− uj) = f > 0, since each 1− uj > 0. Conversely,

0 < f =

∞∏
j=1

(1− uj) ≤ ... ≤
n∏

j=1

(1− uj) ≤ exp

− n∑
j=1

uj


and if

∑
uj =∞, then f = 0 which gives a contradiction. Hence,

∑
uj <∞.

Proposition 4 If fj is entire and not identically zero for each j, and if
∑
|1− fj |

converges uniformly on compact sets, then f =
∏
fj is an entire function.

Proof. Let uj = 1− fj ; so fj = 1− uj . Then by Propositions 2 and 3, we get
the result.

1.1 Weierstrass’s Elementary Functions

Functions Ep for any p = 0, 1, 2, ... and for any z, defined by

E0(z) = 1− z, E1(z) = (1− z) exp(z), ...,

Ep(z) = (1− z) exp(z + (z2/2) + ...+ (zp/p)) (1)

are called Weierstrass’s Elementary Functions. Clearly, these functions are en-
tire functions having precisely one zero at z = 1 of multiplicity one. Hence, for
any a 6= 0, the function Ep(z/a) has a zero at z = a of multiplicity one. We
have following Proposition based on the functions Ep(z) :

Proposition 5 Let for any p = 0, 1, 2, ... and for any z, the functions Ep(z) be
defined by (1). Then
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(i) E′p(z) = −zp exp
(
z + (z2/2) + ...+ (zp/p)

)
.

(ii) If Ep(z) = a0 + a1z + ... + akz
k + ... is a Taylor’s expansion of Ep at 0,

then a0 = 1, a1 = a2 = ... = ap = 0 and ak < 0 for k > p.

(iii) For |z| ≤ 1, |Ep(z)− 1| ≤ |z|p+1
.

Proof. On differentiating the expression Ep(z) we directly get the result (i).
On equating the series expansion of Ep(z) from (1) and Ep(z) = a0 +a1z+ ...+
akz

k + ..., we directly get a0 = 1. From the result (i), we see that E′p has a zero
of multiplicity p at 0. On the other hand by term by term differentiation, we
have E′p(z) = a1 + ...+ kakz

k−1 + ...+ (p+ 1)ap+1z
p + .... Thus on comparing

these two expressions, we get the result (ii). Further, from (ii), we have for
|z| ≤ 1,

|Ep(z)− 1| ≤

∣∣∣∣∣∣
∞∑

k=p+1

akz
k

∣∣∣∣∣∣ ≤
∞∑

k=p+1

|ak| |z|k ≤ |z|p+1
∞∑

k=p+1

(−ak)

since, for k > p, |ak| = −ak by (ii). Again, since from (ii) Ep(1) = 0 = 1 +
∞∑

k=p+1

ak, we get
∞∑

k=p+1

ak = −1 and hence, we get the result (iii).

Corollary 1 For any non-zero zj , |Ep(z/zj)− 1| ≤ |z/zj |p+1
for |z| ≤ |zj | .

Proposition 6 Let (zj) be a sequence of complex numbers without a limit point
and such that zj 6= 0 for each j. Let (pj) be a sequence of non-negative integers

such that
∑

(r/ |zj |)pj+1
converges for every r > 0. Then P (z) =

∏
j

Epj
(z/zj) is

an entire function, with precisely z′js as its zeros, each with the same multiplicity
as the number of times it appears in the sequence (zj).

Proof. In view of the Corollary 1, for any z ∈ clB(0, r),

|Ep(z/zj)− 1| ≤ |z/zj |p+1 ≤ (r/ |zj |)pj+1
.

Hence, by hypothesis∑
|Ep(z/zj)− 1| ≤

∑
(r/ |zj |)pj+1

<∞

which by Proposition 4 proves the result.
The entire function P (z) obtained above has zeros at non-zero zj . We may

construct an entire function P1(z) = zmP (z) with zeros at 0 with multiplicity
m and at non-zero zj with prescribed multiplicities. Further, the entire function
P (z) obtained above is not the only one having zeros precisely at z′js. If g is any
entire function having no zeros, then f(z) = P (z)g(z) is also an entire function
having zeros precisely at z′js.

If h is an entire function without any zero, then the function h′/h is also
entire and if we define g(z) =

∫ z

0
h′/h, then g is well defined, entire and h(z) =

exp(g(z)). We use this fact in the following theorem:
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Proposition 7 (Weierstrass’s Factorisation Theorem) Let f be an entire
function with Zf = {z1, z2, ..., zj , ...} as its zero set, each zj being counted as
often as its multiplicity. Let m be the multiplicity of 0 (m may be zero). Then
there exist integers p1, p2, ..., pj , ... and an entire function g such that

f(z) = exp(g(z))zm
∞∏
j

Epj
(z/zj).

Proof. We may write f(z) = zmf1(z), where f1 is an entire function. Then
zeros of f1 are precisely the non-zero zeros of f say at z1, z2, ..., zj , ..., counted
according to their multiplicities. Hence, the function P (z) =

∏
j

Epj
(z/zj) is

an entire and has precisely the same zeros as f1. So the function f1/P is entire
without any zero, hence there is an entire function g such that f1/P = exp(g)
or f1 = P exp(g) which proves the theorem.

We apply Weierstrass’s Factorisation Theorem in the following example.

Example 1 Factorise sine function.

Solution 1 Consider the function f(z) = sinπz. Then f is an entire function
with zeros precisely at n = 0,±1,±2, ..., each of multiplicity 1. In Weierstrass’
s Factorisation Theorem, we have zj = n and pj = 1. Since, for any r > 0,∑
n 6=0

(r/n)
2

is convergent and hence, P1(z) =
∏
n6=0

(1− z/n) exp(z/n) is entire

having simple zeros precisely at nonzero integers, and

P (z) = z
∏
n6=0

(1− z/n) exp(z/n) = z

∞∏
n=1

(1− z/n) (1 + z/n) exp((z/n)− (z/n))

= z

∞∏
n=1

(
1− z2/n2

)
is an entire function having zeros of multiplicity one precisely at all integers.
Thus according to the Weierstrass’ s Factorisation Theorem there exists an en-
tire function g such that

sinπz = exp(g(z)) z

∞∏
n=1

(
1− z2/n2

)
. (2)

Now it only remains to determine the function g. On differentiating (2), we
get

π cosπz = sinπz g′(z) +
sinπz

z
+ exp(g(z)) z

∑
n

(
−2z/n2

) ∞∏
k 6=n

(
1− z2/k2

)
= sinπz

[
g′(z) +

1

z
+

∞∑
n=1

(−2z) /
(
n2 − z2

)]
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and hence, for all z such that sinπz 6= 0, we get

π cotπz = g′(z) +
1

z
+

∞∑
n=1

(2z) /
(
z2 − n2

)
(3)

= g′(z) +

∞∑
n=−∞

1

z − n

which again on differentiating gives

g′′(z) =

∞∑
n=−∞

1

(z − n)
2 −

π2

sin2 πz
.

The above expression for g′′(z) shows that it is periodic with period 1 and for
z = x+ iy with 0 ≤ x ≤ 1 and |y| > 1, it is bounded. Hence, by periodicity it is
bounded in the entire complex plain and it is an entire function, so by Liouville’s
Theorem g′′ is constant. But lim

y→∞
|g′′(z)| = 0. Hence, g′′(z) = 0 for all z and

g′(z) = c, a constant. Further, from (3), we observe that g′(−z) = −g′(z),
hence, c = 0 and g is also a constant, say exp(g(z)) = k. Finally, we get

sinπz = k z

∞∏
n=1

(
1− z2/n2

)
or

sinπz

π z
=
k

π

∞∏
n=1

(
1− z2/n2

)
which on taking z → 0 yields that

1 =
k

π
.

Thus we get the required factorisation:

sinπz = π z

∞∏
n=1

(
1− z2/n2

)
.

.
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