1 Infinite Products

Let H(U) be the space of all holomorphic functions on an open set U and let (p_j) be a sequence in H(U). Then for each n, $f_n = \prod_{j=1}^n p_j$ is holomorphic on U. If the sequence (f_n) converges in H(U) to the function f (say), then $\prod_{j=1}^{\infty} p_j$ is said to be convergent or exists and $f := \prod_{j=1}^{\infty} p_j$ represents an holomorphic function on U. So we shall obtain some sufficient conditions for the infinite product $\prod_{j=1}^{\infty} p_j$ to converge. First we prove a technical result in the form of following Proposition:

Proposition 1 Given a finite set $\{u_1, u_2, ..., u_N\}$ of complex numbers, let $p_N = \prod_{j=1}^N (1+u_j)$ and $p_N^* = \prod_{j=1}^N (1+|u_j|)$. Then (i) $p_N^* \le \exp(\sum_{j=1}^N |u_j|)$, (ii) $|p_N - 1| \le p_N^* - 1$.

Proof. (i) Since, $1+|u_j| \le \exp(|u_j|)$ for each j, we easily prove that $\prod_{j=1}^{N} (1+|u_j|) = \binom{N}{2}$

 $p_N^* \le \exp\left(\sum_{j=1}^N |u_j|\right).$

(ii) Observe that the result is true for N = 1. Let it be true for $k \le N - 1$ that is $|p_k - 1| \le p_k^* - 1$. Then

$$|p_{k+1} - 1| = |p_k (1 + u_{k+1}) - 1| = |(p_k - 1) (1 + u_{k+1}) + u_{k+1}|$$

$$\leq (p_k^* - 1) (1 + |u_{k+1}|) + |u_{k+1}| = p_{k+1}^* - 1$$

which shows that the result is true for k + 1 also. Hence the result is true.

Remark 1 The above result will also holds for any finite products $\prod_{j=M}^{N} (1+u_j)$

and
$$\prod_{j=M}^{N} (1+|u_j|)$$
 for $M \le N$

Proposition 2 Let (u_j) be a sequence of bounded functions. If $\sum |u_j|$ converges uniformly, then $\prod (1+u_j)$ also converges uniformly.

Proof. By hypothesis $\sum |u_j|$ is uniformly bounded and so is $\exp(\sum |u_j|)$ that is $\exp(\sum |u_j|) < C$ (>0) for all z. Let for each n, $f_n(z) = \prod_{j=1}^n (1 + u_j(z))$. Then f_n is holomorphic and for each n and for any z, $|f_n(z)| \leq \prod_{j=1}^n (1 + |u_j(z)|) \leq \exp(\sum |u_j|) < C$. Since, the space of all entire functions is complete, we only need to show that the sequence (f_n) is uniformly Cauchy sequence. For $0 < \epsilon <$ 1, let n_0 be such that for any $N \ge M \ge n_0$, $\sum_{j=M+1}^N |u_j(z)| < \epsilon$ for all z. Then with the use of Proposition 1

$$\begin{aligned} |f_N - f_M| &= |f_M| \left| \prod_{j=M+1}^N (1+u_j) - 1 \right| \le |f_M| \left(\prod_{j=M+1}^N (1+|u_j|) - 1 \right) \\ \le |f_M| \left(\exp(\sum_{j=M+1}^N |u_j|) - 1 \right) < C \left(\exp(\epsilon) - 1 \right) =: B , \end{aligned}$$

where B > 0. This proves the result.

Proposition 3 If for each j, $0 \le u_j < 1$, then $\prod (1 - u_j) > 0$ if and only if $\sum u_j < \infty$.

Proof. Let $f_n = \prod_{j=1}^n (1 - u_j)$. Then $f_1 \ge f_2 \ge \dots \ge 0$ that is (f_n) is a decreasing sequence which is bounded below, so $\lim f_n = f$ exists. If $\sum u_j < \infty$, then by Proposition 2, $\prod_{j=1}^{\infty} (1 - u_j) = f > 0$, since each $1 - u_j > 0$. Conversely,

$$0 < f = \prod_{j=1}^{\infty} (1 - u_j) \le \dots \le \prod_{j=1}^{n} (1 - u_j) \le \exp\left(-\sum_{j=1}^{n} u_j\right)$$

and if $\sum u_j = \infty$, then f = 0 which gives a contradiction. Hence, $\sum u_j < \infty$.

Proposition 4 If f_j is entire and not identically zero for each j, and if $\sum |1 - f_j|$ converges uniformly on compact sets, then $f = \prod f_j$ is an entire function.

Proof. Let $u_j = 1 - f_j$; so $f_j = 1 - u_j$. Then by Propositions 2 and 3, we get the result.

1.1 Weierstrass's Elementary Functions

Functions E_p for any p = 0, 1, 2, ... and for any z, defined by

$$E_0(z) = 1 - z, E_1(z) = (1 - z) \exp(z), ...,$$

$$E_p(z) = (1 - z) \exp(z + (z^2/2) + ... + (z^p/p))$$
(1)

are called Weierstrass's Elementary Functions. Clearly, these functions are entire functions having precisely one zero at z = 1 of multiplicity one. Hence, for any $a \neq 0$, the function $E_p(z/a)$ has a zero at z = a of multiplicity one. We have following Proposition based on the functions $E_p(z)$:

Proposition 5 Let for any p = 0, 1, 2, ... and for any z, the functions $E_p(z)$ be defined by (1). Then

- (i) $E'_p(z) = -z^p \exp\left(z + (z^2/2) + \dots + (z^p/p)\right)$.
- (ii) If $E_p(z) = a_0 + a_1 z + \ldots + a_k z^k + \ldots$ is a Taylor's expansion of E_p at 0, then $a_0 = 1, a_1 = a_2 = \ldots = a_p = 0$ and $a_k < 0$ for k > p.
- (iii) For $|z| \le 1$, $|E_p(z) 1| \le |z|^{p+1}$.

Proof. On differentiating the expression $E_p(z)$ we directly get the result (i). On equating the series expansion of $E_p(z)$ from (1) and $E_p(z) = a_0 + a_1 z + ... + a_k z^k + ...$, we directly get $a_0 = 1$. From the result (i), we see that E'_p has a zero of multiplicity p at 0. On the other hand by term by term differentiation, we have $E'_p(z) = a_1 + ... + ka_k z^{k-1} + ... + (p+1)a_{p+1}z^p + ...$ Thus on comparing these two expressions, we get the result (ii). Further, from (ii), we have for $|z| \leq 1$,

$$|E_p(z) - 1| \le \left| \sum_{k=p+1}^{\infty} a_k z^k \right| \le \sum_{k=p+1}^{\infty} |a_k| |z|^k \le |z|^{p+1} \sum_{k=p+1}^{\infty} (-a_k)$$

since, for k > p, $|a_k| = -a_k$ by (ii). Again, since from (ii) $E_p(1) = 0 = 1 + \sum_{k=p+1}^{\infty} a_k$, we get $\sum_{k=p+1}^{\infty} a_k = -1$ and hence, we get the result (iii).

Corollary 1 For any non-zero z_j , $|E_p(z/z_j) - 1| \le |z/z_j|^{p+1}$ for $|z| \le |z_j|$.

Proposition 6 Let (z_j) be a sequence of complex numbers without a limit point and such that $z_j \neq 0$ for each j. Let (p_j) be a sequence of non-negative integers such that $\sum (r/|z_j|)^{p_j+1}$ converges for every r > 0. Then $P(z) = \prod_j E_{p_j}(z/z_j)$ is

an entire function, with precisely $z'_j s$ as its zeros, each with the same multiplicity as the number of times it appears in the sequence (z_j) .

Proof. In view of the Corollary 1, for any $z \in clB(0, r)$,

$$|E_p(z/z_j) - 1| \le |z/z_j|^{p+1} \le (r/|z_j|)^{p_j+1}.$$

Hence, by hypothesis

$$\sum |E_p(z/z_j) - 1| \le \sum (r/|z_j|)^{p_j + 1} < \infty$$

which by Proposition 4 proves the result.

The entire function P(z) obtained above has zeros at non-zero z_j . We may construct an entire function $P_1(z) = z^m P(z)$ with zeros at 0 with multiplicity m and at non-zero z_j with prescribed multiplicities. Further, the entire function P(z) obtained above is not the only one having zeros precisely at $z'_j s$. If g is any entire function having no zeros, then f(z) = P(z)g(z) is also an entire function having zeros precisely at $z'_j s$.

If h is an entire function without any zero, then the function h'/h is also entire and if we define $g(z) = \int_0^z h'/h$, then g is well defined, entire and $h(z) = \exp(g(z))$. We use this fact in the following theorem:

Proposition 7 (Weierstrass's Factorisation Theorem) Let f be an entire function with $\mathbb{Z}_f = \{z_1, z_2, ..., z_j, ...\}$ as its zero set, each z_j being counted as often as its multiplicity. Let m be the multiplicity of 0 (m may be zero). Then there exist integers $p_1, p_2, ..., p_j, ...$ and an entire function g such that

$$f(z) = \exp(g(z))z^m \prod_{j=1}^{\infty} E_{p_j}(z/z_j).$$

Proof. We may write $f(z) = z^m f_1(z)$, where f_1 is an entire function. Then zeros of f_1 are precisely the non-zero zeros of f say at $z_1, z_2, ..., z_j, ...,$ counted according to their multiplicities. Hence, the function $P(z) = \prod_j E_{p_j}(z/z_j)$ is an entire and has precisely the same zeros as f_1 . So the function f_1/P is entire without any zero, hence there is an entire function g such that $f_1/P = \exp(g)$ or $f_1 = P \exp(g)$ which proves the theorem.

We apply Weierstrass's Factorisation Theorem in the following example.

Example 1 Factorise sine function.

Solution 1 Consider the function $f(z) = \sin \pi z$. Then f is an entire function with zeros precisely at $n = 0, \pm 1, \pm 2, ...,$ each of multiplicity 1. In Weierstrass' s Factorisation Theorem, we have $z_j = n$ and $p_j = 1$. Since, for any r > 0, $\sum_{n \neq 0} (r/n)^2$ is convergent and hence, $P_1(z) = \prod_{n \neq 0} (1 - z/n) \exp(z/n)$ is entire having simple zeros precisely at nonzero integers, and

$$P(z) = z \prod_{n \neq 0} (1 - z/n) \exp(z/n) = z \prod_{n=1}^{\infty} (1 - z/n) (1 + z/n) \exp((z/n) - (z/n))$$
$$= z \prod_{n=1}^{\infty} (1 - z^2/n^2)$$

is an entire function having zeros of multiplicity one precisely at all integers. Thus according to the Weierstrass's Factorisation Theorem there exists an entire function g such that

$$\sin \pi z = \exp(g(z)) \ z \prod_{n=1}^{\infty} \left(1 - z^2/n^2 \right).$$
(2)

Now it only remains to determine the function g. On differentiating (2), we get

$$\pi \cos \pi z = \sin \pi z \ g'(z) + \frac{\sin \pi z}{z} + \exp(g(z)) \ z \sum_{n} \left(-2z/n^2\right) \prod_{k \neq n}^{\infty} \left(1 - z^2/k^2\right)$$
$$= \sin \pi z \left[g'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} \left(-2z\right)/\left(n^2 - z^2\right)\right]$$

and hence, for all z such that $\sin \pi z \neq 0$, we get

$$\pi \cot \pi z = g'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} (2z) / (z^2 - n^2)$$
(3)
= $g'(z) + \sum_{n=-\infty}^{\infty} \frac{1}{z-n}$

which again on differentiating gives

$$g''(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} - \frac{\pi^2}{\sin^2 \pi z}.$$

The above expression for g''(z) shows that it is periodic with period 1 and for z = x + iy with $0 \le x \le 1$ and |y| > 1, it is bounded. Hence, by periodicity it is bounded in the entire complex plain and it is an entire function, so by Liouville's Theorem g'' is constant. But $\lim_{y\to\infty} |g''(z)| = 0$. Hence, g''(z) = 0 for all z and g'(z) = c, a constant. Further, from (3), we observe that g'(-z) = -g'(z), hence, c = 0 and g is also a constant, say $\exp(g(z)) = k$. Finally, we get

$$\sin \pi z = k \ z \prod_{n=1}^{\infty} \left(1 - z^2 / n^2 \right)$$

or

.

$$\frac{\sin \pi z}{\pi z} = \frac{k}{\pi} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

which on taking $z \to 0$ yields that

$$1 = \frac{k}{\pi}.$$

Thus we get the required factorisation:

$$\sin \pi z = \pi \ z \prod_{n=1}^{\infty} \left(1 - z^2 / n^2 \right).$$