
 Unit-2 

B-Tree 

B-Tree is a self-balancing search tree. In most of the other self-balancing search 
trees (like AVL and Red-Black Trees), it is assumed that everything is in main 
memory. To understand the use of B-Trees, we must think of the huge amount of 
data that cannot fit in main memory. When the number of keys is high, the data is 
read from disk in the form of blocks. Disk access time is very high compared to 
main memory access time. The main idea of using B-Trees is to reduce the 
number of disk accesses. Most of the tree operations (search, insert, delete, max, 
min, ..etc ) require O(h) disk accesses where h is the height of the tree. B-tree is a 
fat tree. The height of B-Trees is kept low by putting maximum possible keys in a 
B-Tree node. Generally, a B-Tree node size is kept equal to the disk block size. 
Since h is low for B-Tree, total disk accesses for most of the operations are 
reduced significantly compared to balanced Binary Search Trees like AVL Tree, 
Red-Black Tree, ..etc. 
 
Properties of B-Tree 

1. All leaves are at same level. 
2. A B-Tree is defined by the term minimum degree ‘t’. The value of t depends 

upon disk block size. 
3. Every node except root must contain at least t-1 keys. Root may contain 

minimum 1 key. 
4. Every non-leaf node (except root) has at least t and at most 2t children (m = 

2t). 
5. All nodes (including root) may contain at most 2t – 1 keys. 
6. Number of children of a node is equal to the number of keys in it plus 1. 
7. All keys of a node are sorted in increasing order. The child between two 

keys k1 and k2 contains all keys in the range from k1 and k2. 
8.  B-Tree grows and shrinks from the root which is unlike Binary Search Tree. 

Binary Search Trees grow downward and also shrink from downward. 
9. Like other balanced Binary Search Trees, time complexity to search, insert 

and delete is O(Logn). 
 
 
 



Searching 
Searching in a B-tree is straight-forward: 

1: function B-Tree-Search(Node x, Key k) 
2:      i =0 
3:      while i < numkeys(x) and k > x:keys[i] do 
4:                i = i + 1 
5:       end while 
6:       if i < numkeys(x) and k = x:keys[i] then return (x; i) 
7:       end if 
8:        if leaf(x) then 
9:               return (x;NULL) 
10:      else 
11:             return B-Tree-Search(x.child[i], k) 
12:      end if 
13: end function 
 

Inserting 
1: procedure B-Tree-Insert(Node x, Key k) 
2:  find i such that x:keys[i] > k or i >=numkeys(x) 
3:  if x is a leaf then 
4:   Insert k into x.keys at i 
5:  else 
6:   if x:child[i] is full then 
7:    Split x:child[i] 
8:    if k > x:key[i] then 
9:     i  = i + 1 
10:    end if 
11:   end if 
12:   B-Tree-Insert(x:child[i]; k) 
13:  end if 
14: end procedure 
 

Note: special case for splitting the root omitted for brevity. 
 
 
 
 



Example: Insert  1 to 10 numbers with t=2 
 
                 Min keys  possible=t-1 i.e 1 
      Max keys possible=2t-1 i.e 3 
                 Maximum number of children is =2t =4 

      Minimum number of children is =Min key +1 =2 
 
 
 
 
 

 
 
 

Note: if there  are even number of keys so  split either go for left bias 
or right bias. You can choose one bias  for entire procedure(you can 
not use both biasing on entire procedure). 

 
 
Deleting 

• Deletion from a B-tree is a bit more complicated than insertion because a 
key may be deleted from any node, not just a leaf. Deletion from an 
internal node requires that the node's children be rearranged. 

• Just as we had to ensure that nodes didn't get too big due to insertion, we 
have to ensure that nodes don't get too small (fewer than t -1 keys) due to 
deletion. 



• This is done by ensuring that, before a key is deleted from a node, that 
node has atleast t keys |{ which may mean that we have to move an extra 
key into a node before we can delete anything from the node. There are 
two ways of moving in an extra node {| we may borrow a key from a 
nearby node that has more than it needs, or if we can't borrow then we 
may merge two nodes that have no keys to spare. 

• To delete key k, we search from the root for the node containing k, and 
strengthen each node we visit on the way if it has fewer than t keys. 

 
 
 
 

There are 3 cases for deleting from a B-tree. We reach these cases via recursion. 
As we recurse down the tree, we are checking which of the conditions we are in 
and recursively calling delete as necessary. Assume we have reached node x: 
 
1. x is a leaf node and contains the  target key to be deleted. 

1.1. Leaf node contain at least t keys(more than min no. key) then simply    
delete that key form node. 

1.2. Leaf node  contain min number of keys then 3 subcases: 
1.2.1. Barrow from left sibling iff that sibling contain more than min 

number of keys. 
1.2.2. Barrow from right sibling iff that sibling contain more than min 

number of keys. 
1.2.3. Neither left nor right sibling contain more than min  keys then merge 

both the siblings with parent. 
 

2. x is an internal node and contains the  target key. There are 3 sub-cases: 
2.1.  predecessor child node has at least t keys(more than min no. of keys) 
2.2.  successor child node has at least t keys (more than min no. of keys) 
2.3.  Neither predecessor nor successor child has t keys (min no. of keys)    then 

merge the both the predecessor and successor node with parent then 
delete. 

 
 
 
 
 



Case 1.1 - delete 8 
 
 

 
 
 
 
 
 
 
 
 
 

The node contain target key (i.e. 8) have more than min no. of keys so we can 
simply delete 8. 
 

 
 
 
 
 
 
 
 
 
 

 
Case 1.2.2 - delete 10 
 The node contain key 10 contain min no. of keys so we cannot simple delete it. So 
barrow key from sibling node (right or left) which has more than min no of keys 
(right sibling node have 3 keys which more than min keys(2)). 
 
Case 1.2.1 will be same as case 1.2.2 you have to  barrow from left sibling by 
moving max key  of left sibling to parent node and parent key to target node and 
then delete target key. 
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Case 1.2.3: delete 5 
In this case both left and right siblings contain min no of keys, so we cannot 
barrow from either of them. Both the above case fails then we can merge target 
node with either with left or right sibling along with parent key then we can 
delete target key. 
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Move min key 13 to parent node 

Move parent 12 to down and delete 10 

1      2 4  5 Merge with left sibling and parent key 3 
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While merging parent  key 3 if 

there is  less no. of  key  left 

then min no. of key in parent 

node. Suppose only key 7 left 

then we have to barrow from 

neighbor (20, 24) but neighbor 

have  min no. of keys then we 

use case 1.2.3. 



 
 
 

 
 
 
 
 
 
 
 
 

 
 
Case 2.1 delete 7(target key is in internal node) 
In this case we replace the key with its inorder predecessor because predecessor 
node have more the min no. of key, and recursively delete the predecessor: (i.e. 
4) 

  
 
 
 
 
 
 
 

 
 
 
 
Case 2.2 similar to case 2.1 
In this case we replace the key with its inorder predecessor, and recursively 
delete the predecessor 
 
Case 2.3 delete 20 
In this case both predecessor node and successor node have min no. of keys so 
we can no replace with either of them. In 3 case we merge the both the 
predecessor and successor node along with target key. Then delete target key 
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Problem occurs because now this 

node have less then min no of key. 

Which invalid for  this b-tree, so 

barrow from neighbor. So here use 

case 1.2.3(because neighbor have 

min no of key) 

1  2 3  11  12

 

14 15 

151515 

17  18  21 22 25    26 

4  13  16  24 

Here we combine (4,13, 16 

,24) So height of tree shrinks. 


