
 Unit-2 

RED – BLACK TREE : 

Red-Black Tree is a self-balancing Binary Search Tree (BST) where every node 

follows following rules: 

1. Every node has a color either red or black. 

2.  Root of tree is always black. 

3. Every Leaf node is Null / Nil node and black. 

4. Both children of red node are black. 

5.  Every path from a node (including root) to any of its descendant NULL 

node has the same number of black nodes. 

6. No root to Leaf path contains two consecutive red nodes. 

7. For each node x, all paths from x to descendent leaves contain the same 

number of black nodes (not counting x ). This number is the black height of 

the node x , denoted by bh(x).  

 

 

Need for Red Black tree: 

• Most of the Binary Search Tree operations take O(h) time (where ‘h’ is the 

height of the tree) for example: Search , Max , Min , Insert , Delete etc. 

• If Binary Search Tree becomes skewed then height of the tree will become 

equal to total number of nodes i.e. ‘n’ and complexity will increase to O(n). 



• So to make the complexity low we should balance the Binary Search Tree 

after each insertion and deletion operation. This will ensure the height h of 

tree as log n and complexity as O(log n).  

• So the height of a Red Black Tree is always log n.  

• If frequent insertion and deletion are required then Red Black Tree give 

better performance than AVL Tree. If insertion and deletion are less 

frequent then AVL tree give good performance because AVL Trees are more 

balanced than Red Black Trees but they can cause more rotation and can 

increase time complexity. 

Properties : 

• In a red black tree of height ‘h’ has black height bh(x) >=h/2 from any node 

x. 

• In a red black tree with ‘n’ nodes has height  h <= 2log(n+1). 

Insertion in Red Black Tree : 

 In Red-Black tree, we use two tools to do balancing. 

• Recoloring  

• Rotation 

We try recoloring first, if recoloring doesn’t work, then we go for rotation. 

Following is detailed algorithm. The algorithm has mainly two cases 

depending upon the color of uncle. If uncle is red, we do recoloring. If uncle 

is black, we do rotations and/or recoloring. 

Color of a NULL node is considered as BLACK. 

Let x be the newly inserted node. 
1. Perform standard BST insertion and make the color of newly inserted 

nodes   as RED. 
2.  If x is root, change color of x as BLACK (Black height of complete tree 

increases by 1). 
 
 
 



3. Do following if color of x’s parent is not BLACK and x is not root. 
 

3.1. If x’s uncle is RED (Grand parent must have been black ) 
          (i) Change color of parent and uncle as BLACK. 
         (ii) color of grand parent as RED. 
         (iii) Change x = x’s grandparent, repeat steps 2 and 3 for new x. 

 

 

3.2. If x’s uncle is BLACK, then there can be four configurations for    
x, x’s parent (p) and x’s grandparent (g) (This is similar to  
          i) Left Left Case (p is left child of g and x is left child of p) 

ii) Left Right Case (p is left child of g and x is right child of p) 
iii) Right Right Case (Mirror of case i) 
iv) Right Left Case (Mirror of case ii) 
 

Following are operations to be performed in four subcases when uncle is BLACK.  

 All four cases when Uncle is BLACK  

Left Left case (see g , p and x) 



 

Left right case (See g, p and x) 

 

Right Right Case (See g, p and x) 

 



Right Left Case (See g, p and x) 

 

Example of Insertion 

 

Deletion in Red Black Tree: 

In insert operation, we check color of uncle to decide the appropriate case. 
In delete operation, we check color of sibling to decide the appropriate 
case. 



The main property that violates after insertion is two consecutive reds. In 
delete, the main violated property is, change of black height in subtrees as 
deletion of a black node may cause reduced black height in one root to leaf 
path. 

Deletion is fairly complex process.  To understand deletion, notion of 
double black is used.  When a black node is deleted and replaced by a black 
child, the child is marked as double black. The main task now becomes to 
convert this double black to single black. 

 

Deletion Steps 

Following are detailed steps for deletion. 
1. Perform standard BST delete. When we perform standard delete operation 

in BST, we always end up deleting a node which is either leaf or has only 
one child (For an internal node, we copy the successor and then recursively 
call delete for successor, successor is always a leaf node or a node with one 
child). So we only need to handle cases where a node is leaf or has one 
child. Let v be the node to be deleted and u be the child that replaces v 
(Note that u is NULL when v is a leaf and color of NULL is considered as 
Black). 

2.  Simple Case: If either u or v is red, we mark the replaced child as black (No 
change in black height). Note that both u and v cannot be red as v is parent 
of u and two consecutive reds are not allowed in red-black tree. 

 
3. If Both u and v are Black. 

3.1. Color u as double black.  Now our task reduces to convert this double  
black to single black. Note that If v is leaf, then u is NULL and color of 
NULL is considered as black. So the deletion of a black leaf also causes a 
double black. 



                   
 

3.2. Do following while the current node u is double black and it is not root.   
Let sibling of node be s. 

3.2.1. If sibling s is black and at least one of sibling’s children is red,     
perform rotation(s). Let the red child of s be r. This case can be 
divided in four subcases depending upon positions of s and r. 

3.2.1.1. Left Left Case (s is left child of its parent and r is left 
child of s or  both   children of s are red). This is mirror of right 
right case shown in below diagram. 

 
3.2.1.2. Left Right Case (s is left child of its parent and r is right 

child).  This is   mirror of right left case shown in below diagram. 
 

3.2.1.3. Right Right Case (s is right child of its parent and r is 
right child of s or both children of s are red) 

 

 

 
 



3.2.1.4. Right Left Case (s is right child of its parent and r is left 
child of s) 

 

 
 

 
3.2.2. If sibling is black and its both children are black, perform 

recoloring, and recur for the parent if parent is black. 

 
In this case, if parent was red, then we didn’t need to recur for 
parent, we can simply make it black (red + double black = single 
black) 

 

https://media.geeksforgeeks.org/wp-content/cdn-uploads/rbdelete14.png
https://media.geeksforgeeks.org/wp-content/cdn-uploads/rbdelete15.png


3.2.3. If sibling is red, perform a rotation to move old sibling up, 
recolor the old sibling and parent. The new sibling is always black 
(See the below diagram). This mainly converts the tree to black 
sibling case (by rotation) and  leads to case (a) or (b). This case can 
be divided in two subcases. 

 

3.2.3.1. Left Case (s is left child of its parent). This is mirror of 
right right case shown in below diagram. We right rotate the 
parent p. 

 
3.2.3.2. Right Case (s is right child of its parent). We left rotate 

the parent p. 

  
 

3.3. If u is root, make it single black and return (Black height of complete 
tree reduces by 1) 

 
 Time complexity for insertion in red black tree is O(logn) and deletion is also 
O(logn). 
 

 

 


