Single Source Shortest Paths

- Given a weighted graph G= (V,E) where the weights are >0.
- A source vertex, v_o belong to V.
- Find the shortest path from v_o to all other nodes in G.
- Shortest paths are generated in increasing order: 1,2,3,....

Dijkstra Algorithm

- S: Set of vertices (including v_o) whose final shortest paths from the source v_o have already been determined.
- For each node w∈V-S,
 Dist (w): the length of the shortest path starting from v_o going through only vertices which are in S and ending at w.
- The next path is generated as follows: It's the path of a vertex u which has Dist (u) minimum among all vertices in V-S

Put u in S.

• Dist (w) for w in V-S may be decreased going though u.

Compare Dist (u)+ cost (u,w) with Dist (w).

Algorithm:

Example:

This will change to 5 to 4 because Min{(A-F), (A-B-F)} Min{5,4}

		_	_	_		
Iteration	N	D _B	D _C	D _D	D _E	DF
Initial	{A}	2	3	∞	∞	5
1	{A,B}	2	3	∞	3	4
2	{A,B, C}	2	3	7(A-C-D)	3	4(no change because
						of same cost A-C-F)
3	{A,B, C,E}	2	3	5(min{(A-C-D,A-	3	4

				B-E-D)}		
4	{ A,B, C,E,F}	2	3	5 no change	3	4
5	{ A,B, C,E,F,D}	2	3	5	3	4

Implementation using min heap

- Build heap----- O(v)
- Extracting min element from min-heap & Adjusting min heap v times-- v $\log_2 v$
- Decrease key operation:
 - Delete min key from heap---- O(1).

- Adjust root -----log₂ v
- We have to perform decrease key operation on rest of the vertices at max. When the value change from infinite, we have adjust min heap which takes log₂ v (v time) So v log₂v. At max we have perform this decrease key operation v-1 times so decrease key operation v-1 times take v² log₂v
- \circ v² log₂v we can write it as **elog₂v** because e= v² in dense graph worst case.

Time complexity: $O(v^2)$ when adjacency matrix if the input is represented using adjacency list it can be reduced to $O((e+v) \log v)$ with the help of **binary heap**.

Drawback:

Dijkstra Algorithm will fail when there is negative weight cycle in the graph.