
Single Source Shortest Paths
 Given a weighted graph G= (V,E) where the weights are >0.

 A source vertex, vo belong to V.

 Find the shortest path from vo to all other nodes in G.

 Shortest paths are generated in increasing order: 1,2,3,… ..

Dijkstra Algorithm
 S: Set of vertices (including vo) whose final shortest paths from the source

vo have already been determined.

 For each node wV-S,
Dist (w): the length of the shortest path starting from vo going through only
vertices which are in S and ending at w.

 The next path is generated as follows:
It's the path of a vertex u which has Dist (u) minimum among all vertices in
V-S
Put u in S.

 Dist (w) for w in V-S may be decreased going though u.

Algorithm:

Example:

 2 1

 5 2

 3

 1 3 2

 4

Iteration N DB DC DD DE DF

Initial {A} 2 3 5

1 {A,B} 2 3 3 4

2 {A,B, C} 2 3 7(A-C-D) 3 4(no change because

of same cost A-C-F)
3 {A,B, C,E} 2 3 5(min{(A-C-D,A- 3 4

Procedure SSSP (vo, cost, n)
Array S (1:n);

Begin
/* initialization*/

For i=1 to n do
S(i)=0, Dist (i)= cost (vo ,i)
End for.
S(vo)=1, Dist (vo)=o;
For i=1 to n-1 do.

Choose u s.t. Dist (u)= min {Dist (w) } & S(w)=0
S(u)=1;
For all w with S(w)=0 do.

Dist (w)= min (Dist (w), Dist (u) +Cost (u,w))
End for.

end for.
end.

A B

C D

E

F
This will change to 5 to 4 because

Min{(A-F), (A-B-F)}

Min{5,4}

B-E-D)}
4 { A,B, C,E,F} 2 3 5 no change 3 4

5 { A,B, C,E,F,D} 2 3 5 3 4

 2 1

 5 2

 3

 1 3 2

 4

 2 1

 5 2

 3

 1 3 2

 4

 2 1

 5 2

 3

 1 3 2

 4

A B

C D

E

F

A B

C D

E

F

A B

C D

E

F

 2 1

 5 2

 3

 1 3 2

 4

 2 1

 5 2

 3

 1 3 2

 4

 2 1

 5 2

 3

 1 3 2

 4

Implementation using min heap

 Build heap---------------- O(v)

 Extracting min element from min-heap & Adjusting min heap v times-- v

log2 v

 Decrease key operation:
o Delete min key from heap---- O(1).

A B

C D

E

F

A B

C D

E

F

A B

C D

E

F

o Adjust root ------log2 v
o We have to perform decrease key operation on rest of the vertices at

max. When the value change from infinite, we have adjust min heap
which takes log2 v (v time) So v log2v. At max we have perform this
decrease key operation v-1 times so decrease key operation v-1
times take v2 log2v

o v2 log2v we can write it as elog2v because e= v2 in dense graph
worst case.

Time complexity: O(v) + v log2 v + e log2 v

 Build heap

Time complexity: O(v2) when adjacency matrix if the input is represented using
adjacency list it can be reduced to O((e+v) log v) with the help of binary heap.

Drawback:

Dijkstra Algorithm will fail when there is negative weight cycle in the graph.

Extracting min

element from

min-heap &

Adjusting min

heap v times

