UNIT - IV

LECTURE — 1
We have seen that a free R-module F' has a property that every

exact sequence of R-modules,
0—M-—N—F—70
splits. Now we shall study a class of modules which satisfy this property.

DEFINITION: A module P over a ring R is projective if to each R-
module epimorphism ¢¥: M — N and f € Hom g(P, N), there exists
g € Hom r(P, M) such that ¢ o g = f, i.e., the diagram

P

g+ N\ f

M — N
P (epi)

commutes.

THEOREM 0.1. The following conditions on a module P over a ring

R are equivalent:
(i) P is projective;
(i) if : M — N is an R-module epimorphism, then

. Homg(P, M) — Hom (P, N)
1
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1s an epimorphism of abelian groups;
(1) if 0— M, i>Mi>M2—>O is a short exact sequence of R-modules,
then

0—s Hom (P, My)-22 Hom (P, M)-22 Hom g(P, My)—0
1s a short exact sequence of Z-modules.
Proof. (i) < (ii) 1. is surjective if and only if to each f € Hom r(P, N),
there exists g € Hom r(P, M) such that 1.(g) = f, that is, po g = f.

(i) = (u1) If 0—s My 25 M5 My—0 is a short exact sequence

of R-modules, then since 1), is epimorphism, by a theorem in Unit II,
0—Hom g(P, My)-2Hom (P, M)-2Hom (P, Ms)—0

is a short exact sequence of Z-modules.
(71) = (i) If : M — N is an R-module epimorphism, then we
have an exact sequence 0— ker v»— M N0, Thus,

0—Hom (P, ker t))—Hom (P, M)-23Hom g(P, N)—s0
is an exact sequence of Z-modules. In particular, ¢, is surjective.

The first examples of projective modules are free modules.
PROPOSITION 0.2. Every free module is projective.

Proof. Let F be a free module over a ring R with basis B ={z; | i €
I}. If¢: M — N is an R-module epimorphism and f € Hom g(F, N),
then to each f(z;) (i € I), there exists y; € M so that ¥ (y;) = f(x;) for
all 7 € I. Let g: F — M be an R-module homomorphism defined by
g(x;) =vy; (i € I). Then ¢g(z;) = f(x;) for all i € I, and so ¢ o g = f.

Hence, F' is projective.
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LECTURE — 11

We have seen that every free module is projective. Now we will show

that every projective module is a submodule of a free module.

THEOREM 0.3. The following conditions on a module P over a ring
R are equivalent:
(i) P is projective;
() if 0— M, 25 M -5 P—0 is a short ezact sequence of R-modules,
then it splits;
(71) there exists an R-module K such that P ® K is free.

Proof. (i) = (i) Since P is projective and 0— M~ M -5 P—0 is
a short exact sequence, ¥, : Hom g(P, M) — Hom (P, P) is surjective
(Theorem 0.1). Therefore, there exists f € Hom gr(P, M) such that
U.(f) =1p, or o f = 1p and the sequence splits.

(71) = (1) Let F be a free R-module such that F//K ~ P . Then
0— K—F—P—0 is a short exact sequence. Hence, it splits and
F~PoK.

(7i) = (i) Let F' = P @ K be a free R-module and let ¢: M —
N be an R-module epimorphism. Since F' = P & K is free, so by
Proposition 0.2, F' is projective. Therefore, ¢.: Hom g(P & K, M) —
Hom g(P & K, N) is an epimorphism. Let 7: P& K — P and +: P —
P @& K be the canonical projection and injection respectively. Then
for f € Hom g(P,N), form € Homz(P & K, N), and so there exists
g € Hom (P & K, M) such that ¢»o g = fom. This gives o (gor) =
fo(mor) = fasmor = 1p. Now goz € Hom g(P, M), so P is projective.

COROLLARY 0.4. A projective module P over an integral domain R

is torsion free.
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Proof. Since P is projective, P is a submodule of a free R-module
(Theorem 0.3). Now a free module over an integral domain is torsion
free and a submodule of a torsion free module is also torsion free. Hence,

P is torsion free.

COROLLARY 0.5. An R-module P is finitely generated and projec-

tive if and only if P is a direct summand of a finitely generated free
R-module.

Proof. Suppose that P is a finitely generated projective R-module.
There exists a finitely generated free module F' such that F/K ~ P.
Thus we have an exact sequence 0— K — F— P—0, and it splits.
Therefore, P is a direct summand of F.

Conversely, if P@® K ~ F, F a free module, then P is projective
and as F/K ~ P, so P is finitely generated.

COROLLARY 0.6. If R is a PID and P is a projective R-module,
then P 1is free.

Proof. By the above theorem, there exists an R-module K such
that P @ K is a free R-module. Since submodule of a free module over

a PID is also free, P is a free R-module.

PROPOSITION 0.7. Let { P, | i € I} be a family of modules over a
ring R and let P = @, P;. Then P is projective if and only if each P,

18 projective.

Proof. Let P be projective. Then there exists an R-module K
such that P & K = F is a free R-module. Then FF = P ® K =
P, @ (®iz;P; ® K). So each P is projective.
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Conversely, if each P; is projective, then there exists an R-module
K; such that F; = P, ® K; is a free R-module. Now, ' = ®;c/F; =
Dicr (P @ K;) ~ P® (@ie;K;) is free. Hence, P is projective.

ProprosITION 0.8. If P and (Q are finitely generated projective R-
modules over a commutative ring R, then Hom g(P, Q) is also a finitely

generated projective R-module.

Proof. Since P and @ are finitely generated projective R-modules,
there exist modules K and L such that P& K and Q@ L are finitely gen-
erated free R-modules (Corollary 0.5). Therefore, Hom g(P & K, Q @
L) is a finitely generated free R-module Since, Hom z(P @& K,Q @
L) = Hom g(P,Q) @ Hom g(P, L) & Hom g(K, Q) & Hom g(K, L), so
Hom (P, Q) is a direct summand of a free R-module. Hence, Hom z(P, Q)
is a finitely generated projective R-module (Corollary 0.5).

LECTURE — 111
Now we study the class of modules which satisfy the dual of the prop-

erty of projective modules, that is, a module @) for which every exact

sequence of R-modules 0—Q— M — N —0 splits.

DEFINITION: A module E over a ring R is said to be injective if
to each R-module monomorphism ¢: M — N and f € Hom g(M, E),
there exists g € Hom g(N, E') such that go ¢ = f, i.e., the diagram

E

T Ny
M — N

¢(mono)

commutes.
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THEOREM 0.9. The following conditions on a module E over a ring
R are equivalent:
(i) E is injective;
(i) if ¢: M — N is an R-module monomorphism, then

¢*: Homg(N,E) — Homgr(M, F)

18 an epimorphism of abelian groups;
(i) if 0— M, i>Mi>]\/[2—>0 is a short exact sequence of R-modules,
then

0— Hom p(Ms, E)- Hom p(M, E)-2 Hom p(M;, E)—0
18 an exact sequence of abelian groups.
Proof. Exercise. Similar to that of Theorem 0.1.

PROPOSITION 0.10. Let { E; | i € I} be a family of modules over a
ring R and let E = [[,.; E;. Then E is injective if and only if each E;
18 1njective.

Proof. Let 7;: [[,.; Ei — E; be the j-th canonical projection and
let 1;: E; — [];c; Ei be the j-th canonical injection.

Suppose that E is injective. Let ¢: M — N be an R-module
monomorphism. If f € Hom zr(M, E;), then 1;f € Hom g(M, E) and
hence, there exists g € Hom g(N, E) such that g¢ = 1;f. Now 7;g¢ =
mif = f, as mj; = 1g,. So by taking g = 7;5 € Hom r(N, Ej;), we
have g¢ = f. Hence, E; is injective.

Conversely, assume that each F; is injective. Let ¢: M — N be
an R-module monomorphism and let f € Hom g(M, E). Then for each
i€ l,mf € Homg(M,E;), so there exists g; € Hom g(V, E;) such that
gi0 = mif. Let g € Hom g(N, F) so that m;g = ¢; for all i € I. Then
migp = m; f for all i € I. Thus, g¢ = f and F is injective.
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LECTURE — 1V

Our aim is to prove that every module is a submodule of an injective

module. For this purpose, we now introduce divisible abelian groups.

DEFINITION: An abelian group A is said to be divisible if mA = A
for all m € Z \ {0}.

Thus, an abelian group A is divisible if and only if for every nonzero

integer m and a € A, there exists b € A such that mb = a.

ExAaMPLE 0.11. Q is a divisible abelian group, as for every nonzero
integer m and a € Q, b = a/m € Q such that mb = a. It is easy to see
by the same logic that Z is not divisible.

PROPOSITION 0.12. (i) Every homomorphic image of a divisible
group 1s divisible.

(@) Direct product and direct sum of divisible groups are divisible.

Proof. (i) Let f: A — B be an epimorphism of abelian groups and
let A be divisible. If m € Z \ {0} and b € B, then there are a,c € A
such that f(a) = b and mc = a. Thus, b = f(a) = f(mc) = mf(c).
Hence, B is divisible.

(7i) Let A =]];c; Ai be a direct product of divisible abelian groups
A;. Iftm € Z\ {0} and a € A, then a; € A;, for all i. So for every i € I,
there exists b; € A; such that mb; = a;. Now b € A, where b(i) = b;
and mb = a. Same proof works for direct sums also, if we write only

finitely many a; # 0 after a; € A; and take b; =0, if a; =0 .

Using the Proposition 0.12, we have another example of a divisible

abelian groups, namely, Q/Z.
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THEOREM 0.13. Every abelian group is isomorphic to a subgroup of
a divistble abelian group. Thus, every abelian group can be embedded in

a divisible abelian group.

Proof. Let A be an abelian group, equivalently a Z-module. Then
there is a free Z-module F = ®;c;F;, where F; = Z for all ¢ € I, such
that A ~ F/K. Let D = @1 D;, where D; = Q for all i € I. Then
D is divisible (Proposition 0.12), and F' is a subgroup of D. Clearly,
F/K is a subgroup of D/K, and by Proposition 0.12, D/K is divisible.
Thus, A ~ F/K and F/K is a subgroup of a divisible group D/K.

LECTURE -V

LEMMA 0.14. A module E over a ring R is injective if and only if
for every left ideal I of R, any R-module homomorphism I — E may
be extended to an R-module homomorphism R — E.

Proof. Let E be an injective R-module. Then for the inclusion map
1: I — R and for f € Hom g(/, E), there exists g € Hom g(R, F) such
that go = f, that is, g|; = f.

Conversely, let ¢: M — N be an R-module monomorphism and
f € Hom g(M, E). Since M = Im ¢, without any loss of generality, we
can replace M by Im ¢ and assume that ¢ is an inclusion mapping, so
that M is a submodule of N. Then to prove that E is injective, we just
have to extend f to N.

Let S be the set of all ordered pairs (K, h), where K is a submodule
of N containing M and h: K — FE is an R-module homomorphism such
that hlyy = f. Then S is partially ordered by the relation: (K, h) <
(K',n') if K C K" and K|k = h. We now apply Zorn’s lemma. If
{(K;,h;) |i€l}isachainin S then K’ = Uje;K; and b': K — E, an



UNIT - IV 9

R-module homomorphism defined by h'(z) = h;(x), whenever = € K.
Thus, (K’, k') is an upper bound for the chain. Therefore, by Zorn’s
lemma we have a maximal element (K,h) € S. We now claim that
K =N.

If K # N, then choose € N\ K. Let L = K + (z) and let
I={re€R|rxe K} Then I is a left ideal of R and the mapping
f': I — E defined by f'(r) = h(rx) is an R-module homomorphism.
By hypothesis there exists g: R — E an R-module homomorphism
such that g|; = f’. Let g(1) = y and let hy: L — E given by hy(a +
rz) = h(a) + ry. Now h; is well defined: if a; + 12 = ay + roz, then
ay —as = (ry —ry)r € KN {x), and so r; — ry € I, and this implies
that h(a;) — h(az) = h(ar — az) = h((ry — r1)x) = (12 — 11)9(1) =
(ro —r1)y = roy — r1y, that is, hy(a; + rx) = hi(ay + rox). It is easy
to see that hy € Hom (L, E). But then (K,h) < (L, h;) with K C L
and hi|g = h, contradicting the maximality of (K, h). Hence, K = N

and F is injective.

THEOREM 0.15. An abelian group is divisible if and only if it is an

injective Z-module.

Proof. First suppose that A is an injective Z-module. Let a € A and
m € Z*. Since A is injective, for the inclusion mapping 2: mZ — Z and
f € Hom z(mZ, A) defined by f(m) = a, there exists ¢ € Homz(Z, A)
such that go = f. Thus, a = f(m) = gi(m) = g(m) = mg(1). Hence,
A is divisible.

Conversely, we know that the only left ideals of Z are the cyclic
groups nZ, n € Z. If Ais divisible and f: nZ — A is a homomorphism,
then there exists a € A with na = f(n). Define g: Z — A by ¢g(1) = a.
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Then ¢ is a homomorphism that extends f. Therefore, A is injective
by Lemma 0.14.

LECTURE =VI

Let R be a ring and let A be an abelian group. Then it can be
verified, without much difficulty, that Hom (R, A) is an R-module with

scalar multiplication defined by:
(rf)(xz) = f(ar), (r,x€ R, f € Homg(R,A)).

Take it as an exercise and verify.

LEMMA 0.16. If A is a divisible abelian group and R is a ring, then

Homz(R, A) is an injective R-module.

Proof. By Lemma 0.14, it is sufficient to show that for each left ideal
I of R, every R-module homomorphism f: I — Homyz(R, A) may be
extended to an R-module homomorphism ¢g: R — Hom (R, A). The
mapping h: I — A defined by h(x) = f(z)(1) is a group homomor-
phism. Since A is divisible, so A is an injective Z-module (Theo-
rem 0.15). Thus there exists h: R — A such that h|; = h. Now
let g: R — Homy(R, A), where g(r) € Homy(R,A) is defined by
g(r)(x) = h(xr), x € R. Also for 71, ro, x € R, g(r1 + 1r2)(z) =
h(z(ri+rs)) = h(xr)+h(zry) = g(r1)(x)+g(r2)(x). Thus, g(ri+r) =
g(r1) + g(re) for r1, ro € R. Further, if s,r,2 € R, then g(sr)(z) =
h(z(sr)) = h((zs)r) = g(r)(zs) = (sg(r))(x), that is, g(sr) = sg(r).
Hence, g is an R-module homomorphism.

We now show that g|; = f. Let r € [ and x € R. Then ar € [
and g(r)(z) = h(xr) = h(ar) = f(2zr)(1). Since f is an R-module
homomorphism, so f(zr) = xf(r), and so f(zr)(1) = (xf(r))(1) =
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f(r)(z). Therefore, f(r)(x) = g(r)(z) for all x € R, that is, f(r) =

THEOREM 0.17. Every module is isomorphic to a submodule of an

imjective module.

Proof. Let A be a module over a ring R. Since A is an abelian
group, there is a divisible abelian group D such that ¢: A — D is
a monomorphism (Theorem 0.13). The mapping ¢,: Homz(R, A) —
Hom 7z (R, D) defined by ¢.(f) = ¢f is an R-module monomorphism.
Since every R-module homomorphism is also a Z-module homomor-
phism, and as Homz(R, A) is an R-module, so Hom g(R, A) is an R-
submodule of Homyz(R, A). Thus, there is an R-module monomor-
phism from Hom g(R, A) to Homz(R, D). Also e know that A ~
Hom g(R, A). Therefore, there exists an R-module monomorphism
from A to Hom z(R, D). Since Hom z(R, D) is injective R-module, the

theorem is proved.

LECTURE —VII

We now discuss some examples.

(1) Every free module is projective. This is an example of a pro-
jective module which is not free.

If m and n are relatively prime integers, then Z,,, ~ Z,, ®

Z,, as abelian groups. It is easy to check that it is also a

ZLippp-module isomorphism. Since, Z,,, is a free Z,,,-module,

SO Zy, and Z,, are projective Z,,,-modules (Theorem 0.3). But

neither Z,, nor Z,, are free Z,,,-modules as both have lesser

than mn elements. ( If either Z,, or Z, is a free Z,,,-module,



UNIT - IV

then it will be a direct sum of copies of Z,,, and hence it will
have more than mn elements.)
(2) Example of modules which are projective and injective both.
Let R be a ring such that every exact sequence of R-
modules is split exact. Let ¢y: M — N be an R-module
epimorphism, then 0— ker ¢)— M Yy N—0 is an exact se-

quence, and so it splits. Hence, for every R-module A,
0—Hom g(A, ker ¢))—Hom (A, M)AHom r(A, N)—0

is a split exact sequence. So, 1, is surjective and A is a pro-
jective R-module.

Similarly, if ¢: M — N is an R-module monomorphism,
then

0—M -2 N—N/Im ¢—0

is an exact sequence, and so it splits. Hence, for every R-
module A,

0—Hom p(N/Im ¢, A)—sHom (N, A)->Hom (M, A)—s0

splits. So, ¢* is surjective and A is injective.

Now let D be a division ring. If 0— M;— M —M>—0
is an exact sequence of D-modules, then it can be verified
that M ~ M; & Ms, so, this sequence splits. Hence, every
module over a division ring is projective as well as injective.
In particular, a vector space over a field K is projective as well
as injective.

(3) Example of an injective module which is not projective.
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@Q is an injective Z-module as it is a divisible abelian group
but it is not a projective Z-module. ( If Q is projective Z-
module, then since Z is a PID, it should be a free Z-module,
see Corollary 0.6, which it is not.)

(4) A finitely generated Z-module is not an injective Z-module.
Equivalently, a finitely generated abelian group is not divisible.
Thus, Q is not finitely generated abelian group. To prove this,
let A be a finitely generated Z-module. Then A = T(A) & F,
where I is a free module of finite rank. Also T'(A) is finitely
generated (as A/F ~ T(A)). Let T(A) = (x1,...,zx). Then
Ann (T(A)) = N¥_ Ann (x;) # {0}. Let m € Ann(T(A)).
Then mT(A) = 0, and so mA = mF # A. Therefore, if
A is a divisible abelian group (equivalently, an injective Z-
module), then A should be a free Z-module of finite rank.
Thus, A~Z& ---®Z (finite summands). Again, this abelian
group is not divisible. Since for any m € Z, m # 0, +1, there
does not exist any x € Z®- - - ®Z such that mx = (1,0,...,0).

That’s all in UNIT-IV students. Wishing you all the best.

Take care and stay safe



