
UNIT - IV

LECTURE − I

We have seen that a free R-module F has a property that every

exact sequence of R-modules,

0−→M−→N−→F−→0

splits. Now we shall study a class of modules which satisfy this property.

Definition: A module P over a ring R is projective if to each R-

module epimorphism ψ : M → N and f ∈ Hom R(P,N), there exists

g ∈ Hom R(P,M) such that ψ ◦ g = f , i.e., the diagram

P

g ↓ ↘ f

M −→
ψ(epi)

N

commutes.

Theorem 0.1. The following conditions on a module P over a ring

R are equivalent:

(i) P is projective;

(ii) if ψ : M → N is an R-module epimorphism, then

ψ∗ : Hom R(P,M)→ Hom R(P,N)
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is an epimorphism of abelian groups;

(iii) if 0−→M1
φ−→M ψ−→M2−→0 is a short exact sequence of R-modules,

then

0−→Hom R(P,M1)
φ∗−→Hom R(P,M)

ψ∗−→Hom R(P,M2)−→0

is a short exact sequence of Z-modules.

Proof. (i)⇔ (ii) ψ∗ is surjective if and only if to each f ∈ Hom R(P,N),

there exists g ∈ Hom R(P,M) such that ψ∗(g) = f , that is, ψ ◦ g = f .

(ii) ⇒ (iii) If 0−→M1
φ−→M ψ−→M2−→0 is a short exact sequence

of R-modules, then since ψ∗ is epimorphism, by a theorem in Unit II,

0−→Hom R(P,M1)
φ∗−→Hom R(P,M)

ψ∗−→Hom R(P,M2)−→0

is a short exact sequence of Z-modules.

(iii) ⇒ (ii) If ψ : M → N is an R-module epimorphism, then we

have an exact sequence 0−→ kerψ−→M ψ−→N−→0. Thus,

0−→Hom R(P, kerψ)−→Hom R(P,M)
ψ∗−→Hom R(P,N)−→0

is an exact sequence of Z-modules. In particular, ψ∗ is surjective.

The first examples of projective modules are free modules.

Proposition 0.2. Every free module is projective.

Proof. Let F be a free module over a ring R with basis B = {xi | i ∈
I }. If ψ : M → N is an R-module epimorphism and f ∈ Hom R(F,N),

then to each f(xi) (i ∈ I), there exists yi ∈M so that ψ(yi) = f(xi) for

all i ∈ I. Let g : F → M be an R-module homomorphism defined by

g(xi) = yi (i ∈ I). Then ψg(xi) = f(xi) for all i ∈ I, and so ψ ◦ g = f .

Hence, F is projective.
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LECTURE − II
We have seen that every free module is projective. Now we will show

that every projective module is a submodule of a free module.

Theorem 0.3. The following conditions on a module P over a ring

R are equivalent:

(i) P is projective;

(ii) if 0−→M1
φ−→M ψ−→P−→0 is a short exact sequence of R-modules,

then it splits;

(iii) there exists an R-module K such that P ⊕K is free.

Proof. (i) ⇒ (ii) Since P is projective and 0−→M1
φ−→M ψ−→P−→0 is

a short exact sequence, ψ∗ : Hom R(P,M)→ Hom R(P, P ) is surjective

(Theorem 0.1). Therefore, there exists f ∈ Hom R(P,M) such that

ψ∗(f) = 1P , or ψ ◦ f = 1P and the sequence splits.

(ii) ⇒ (iii) Let F be a free R-module such that F/K ' P . Then

0−→K−→F−→P−→0 is a short exact sequence. Hence, it splits and

F ' P ⊕K.

(iii) ⇒ (i) Let F = P ⊕ K be a free R-module and let ψ : M →
N be an R-module epimorphism. Since F = P ⊕ K is free, so by

Proposition 0.2, F is projective. Therefore, ψ∗ : Hom R(P ⊕K,M) →
Hom R(P ⊕K,N) is an epimorphism. Let π : P ⊕K → P and ı : P →
P ⊕ K be the canonical projection and injection respectively. Then

for f ∈ Hom R(P,N), f ◦ π ∈ Hom R(P ⊕ K,N), and so there exists

ḡ ∈ Hom R(P ⊕K,M) such that ψ ◦ ḡ = f ◦ π. This gives ψ ◦ (ḡ ◦ ı) =

f ◦(π◦ı) = f as π◦ı = 1P . Now ḡ◦ı ∈ Hom R(P,M), so P is projective.

Corollary 0.4. A projective module P over an integral domain R

is torsion free.
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Proof. Since P is projective, P is a submodule of a free R-module

(Theorem 0.3). Now a free module over an integral domain is torsion

free and a submodule of a torsion free module is also torsion free. Hence,

P is torsion free.

Corollary 0.5. An R-module P is finitely generated and projec-

tive if and only if P is a direct summand of a finitely generated free

R-module.

Proof. Suppose that P is a finitely generated projective R-module.

There exists a finitely generated free module F such that F/K ' P .

Thus we have an exact sequence 0−→K−→F−→P−→0, and it splits.

Therefore, P is a direct summand of F .

Conversely, if P ⊕ K ' F , F a free module, then P is projective

and as F/K ' P , so P is finitely generated.

Corollary 0.6. If R is a PID and P is a projective R-module,

then P is free.

Proof. By the above theorem, there exists an R-module K such

that P ⊕K is a free R-module. Since submodule of a free module over

a PID is also free, P is a free R-module.

Proposition 0.7. Let {Pi | i ∈ I } be a family of modules over a

ring R and let P = ⊕i∈IPi. Then P is projective if and only if each Pi

is projective.

Proof. Let P be projective. Then there exists an R-module K

such that P ⊕ K = F is a free R-module. Then F = P ⊕ K =

Pi ⊕ (⊕i 6=jPj ⊕K). So each Pi is projective.
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Conversely, if each Pi is projective, then there exists an R-module

Ki such that Fi = Pi ⊕ Ki is a free R-module. Now, F = ⊕i∈IFi =

⊕i∈I(Pi ⊕Ki) ' P ⊕ (⊕i∈IKi) is free. Hence, P is projective.

Proposition 0.8. If P and Q are finitely generated projective R-

modules over a commutative ring R, then Hom R(P,Q) is also a finitely

generated projective R-module.

Proof. Since P and Q are finitely generated projective R-modules,

there exist modules K and L such that P⊕K and Q⊕L are finitely gen-

erated free R-modules (Corollary 0.5). Therefore, Hom R(P ⊕K,Q ⊕
L) is a finitely generated free R-module Since, Hom R(P ⊕ K,Q ⊕
L) = Hom R(P,Q) ⊕ Hom R(P,L) ⊕ Hom R(K,Q) ⊕ Hom R(K,L), so

Hom R(P,Q) is a direct summand of a freeR-module. Hence, Hom R(P,Q)

is a finitely generated projective R-module (Corollary 0.5).

LECTURE − III
Now we study the class of modules which satisfy the dual of the prop-

erty of projective modules, that is, a module Q for which every exact

sequence of R-modules 0−→Q−→M−→N−→0 splits.

Definition: A module E over a ring R is said to be injective if

to each R-module monomorphism φ : M → N and f ∈ Hom R(M,E),

there exists g ∈ Hom R(N,E) such that g ◦ φ = f , i.e., the diagram

E

f ↑ ↖ g

M −→
φ(mono)

N

commutes.



6 UNIT - IV

Theorem 0.9. The following conditions on a module E over a ring

R are equivalent:

(i) E is injective;

(ii) if φ : M → N is an R-module monomorphism, then

φ∗ : Hom R(N,E)→ Hom R(M,E)

is an epimorphism of abelian groups;

(iii) if 0−→M1
φ−→M ψ−→M2−→0 is a short exact sequence of R-modules,

then

0−→Hom R(M2, E)
ψ∗
−→Hom R(M,E)

φ∗−→Hom R(M1, E)−→0

is an exact sequence of abelian groups.

Proof. Exercise. Similar to that of Theorem 0.1.

Proposition 0.10. Let {Ei | i ∈ I } be a family of modules over a

ring R and let E =
∏

i∈I Ei. Then E is injective if and only if each Ei

is injective.

Proof. Let πj :
∏

i∈I Ei → Ej be the j-th canonical projection and

let ıj : Ej →
∏

i∈I Ei be the j-th canonical injection.

Suppose that E is injective. Let φ : M → N be an R-module

monomorphism. If f ∈ Hom R(M,Ej), then ıjf ∈ Hom R(M,E) and

hence, there exists ḡ ∈ Hom R(N,E) such that ḡφ = ıjf . Now πj ḡφ =

πjıjf = f , as πjıj = 1Ej
. So by taking g = πj ḡ ∈ Hom R(N,Ej), we

have gφ = f . Hence, Ej is injective.

Conversely, assume that each Ei is injective. Let φ : M → N be

an R-module monomorphism and let f ∈ Hom R(M,E). Then for each

i ∈ I, πif ∈ Hom R(M,Ei), so there exists gi ∈ Hom R(N,Ei) such that

giφ = πif . Let g ∈ Hom R(N,E) so that πig = gi for all i ∈ I. Then

πigφ = πif for all i ∈ I. Thus, gφ = f and E is injective.
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LECTURE − IV

Our aim is to prove that every module is a submodule of an injective

module. For this purpose, we now introduce divisible abelian groups.

Definition: An abelian group A is said to be divisible if mA = A

for all m ∈ Z \ {0}.

Thus, an abelian group A is divisible if and only if for every nonzero

integer m and a ∈ A, there exists b ∈ A such that mb = a.

Example 0.11. Q is a divisible abelian group, as for every nonzero

integer m and a ∈ Q, b = a/m ∈ Q such that mb = a. It is easy to see

by the same logic that Z is not divisible.

Proposition 0.12. (i) Every homomorphic image of a divisible

group is divisible.

(ii) Direct product and direct sum of divisible groups are divisible.

Proof. (i) Let f : A→ B be an epimorphism of abelian groups and

let A be divisible. If m ∈ Z \ {0} and b ∈ B, then there are a, c ∈ A
such that f(a) = b and mc = a. Thus, b = f(a) = f(mc) = mf(c).

Hence, B is divisible.

(ii) Let A =
∏

i∈I Ai be a direct product of divisible abelian groups

Ai. If m ∈ Z\{0} and a ∈ A, then ai ∈ Ai, for all i. So for every i ∈ I,

there exists bi ∈ Ai such that mbi = ai. Now b ∈ A, where b(i) = bi

and mb = a. Same proof works for direct sums also, if we write only

finitely many ai 6= 0 after ai ∈ Ai and take bi = 0, if ai = 0 .

Using the Proposition 0.12, we have another example of a divisible

abelian groups, namely, Q/Z.



8 UNIT - IV

Theorem 0.13. Every abelian group is isomorphic to a subgroup of

a divisible abelian group. Thus, every abelian group can be embedded in

a divisible abelian group.

Proof. Let A be an abelian group, equivalently a Z-module. Then

there is a free Z-module F = ⊕i∈IFi, where Fi = Z for all i ∈ I, such

that A ' F/K. Let D = ⊕i∈IDi, where Di = Q for all i ∈ I. Then

D is divisible (Proposition 0.12), and F is a subgroup of D. Clearly,

F/K is a subgroup of D/K, and by Proposition 0.12, D/K is divisible.

Thus, A ' F/K and F/K is a subgroup of a divisible group D/K.

LECTURE − V

Lemma 0.14. A module E over a ring R is injective if and only if

for every left ideal I of R, any R-module homomorphism I → E may

be extended to an R-module homomorphism R→ E.

Proof. Let E be an injective R-module. Then for the inclusion map

ı : I → R and for f ∈ Hom R(I, E), there exists g ∈ Hom R(R,E) such

that gı = f , that is, g|I = f .

Conversely, let φ : M → N be an R-module monomorphism and

f ∈ Hom R(M,E). Since M ∼= Imφ, without any loss of generality, we

can replace M by Imφ and assume that φ is an inclusion mapping, so

that M is a submodule of N . Then to prove that E is injective, we just

have to extend f to N .

Let S be the set of all ordered pairs (K,h), where K is a submodule

of N containing M and h : K → E is an R-module homomorphism such

that h|M = f . Then S is partially ordered by the relation: (K,h) ≤
(K ′, h′) if K ⊆ K ′ and h′|K = h. We now apply Zorn’s lemma. If

{ (Ki, hi) | i ∈ I } is a chain in S then K ′ = ∪i∈IKi and h′ : K ′ → E, an
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R-module homomorphism defined by h′(x) = hi(x), whenever x ∈ Ki.

Thus, (K ′, h′) is an upper bound for the chain. Therefore, by Zorn’s

lemma we have a maximal element (K̄, h̄) ∈ S. We now claim that

K̄ = N .

If K̄ 6= N , then choose x ∈ N \ K̄. Let L = K̄ + 〈x〉 and let

I = { r ∈ R | rx ∈ K̄ }. Then I is a left ideal of R and the mapping

f ′ : I → E defined by f ′(r) = h̄(rx) is an R-module homomorphism.

By hypothesis there exists g : R → E an R-module homomorphism

such that g|I = f ′. Let g(1) = y and let h1 : L → E given by h1(a +

rx) = h̄(a) + ry. Now h1 is well defined: if a1 + r1x = a2 + r2x, then

a1 − a2 = (r2 − r1)x ∈ K̄ ∩ 〈x〉, and so r1 − r2 ∈ I, and this implies

that h̄(a1) − h̄(a2) = h̄(a1 − a2) = h̄((r2 − r1)x) = (r2 − r1)g(1) =

(r2 − r1)y = r2y − r1y, that is, h1(a1 + r1x) = h1(a2 + r2x). It is easy

to see that h1 ∈ Hom R(L,E). But then (K̄, h̄) ≤ (L, h1) with K̄ ⊂ L

and h1|K̄ = h̄, contradicting the maximality of (K̄, h̄). Hence, K̄ = N

and E is injective.

Theorem 0.15. An abelian group is divisible if and only if it is an

injective Z-module.

Proof. First suppose that A is an injective Z-module. Let a ∈ A and

m ∈ Z+. Since A is injective, for the inclusion mapping ı : mZ→ Z and

f ∈ Hom Z(mZ, A) defined by f(m) = a, there exists g ∈ Hom Z(Z, A)

such that gı = f . Thus, a = f(m) = gı(m) = g(m) = mg(1). Hence,

A is divisible.

Conversely, we know that the only left ideals of Z are the cyclic

groups nZ, n ∈ Z. If A is divisible and f : nZ→ A is a homomorphism,

then there exists a ∈ A with na = f(n). Define g : Z→ A by g(1) = a.
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Then g is a homomorphism that extends f . Therefore, A is injective

by Lemma 0.14.

LECTURE = V I

Let R be a ring and let A be an abelian group. Then it can be

verified, without much difficulty, that Hom Z(R,A) is an R-module with

scalar multiplication defined by:

(rf)(x) = f(xr), (r, x ∈ R, f ∈ Hom Z(R,A)).

Take it as an exercise and verify.

Lemma 0.16. If A is a divisible abelian group and R is a ring, then

Hom Z(R,A) is an injective R-module.

Proof. By Lemma 0.14, it is sufficient to show that for each left ideal

I of R, every R-module homomorphism f : I → Hom Z(R,A) may be

extended to an R-module homomorphism g : R → Hom Z(R,A). The

mapping h : I → A defined by h(x) = f(x)(1) is a group homomor-

phism. Since A is divisible, so A is an injective Z-module (Theo-

rem 0.15). Thus there exists h̄ : R → A such that h̄|I = h. Now

let g : R → Hom Z(R,A), where g(r) ∈ Hom Z(R,A) is defined by

g(r)(x) = h̄(xr), x ∈ R. Also for r1, r2, x ∈ R, g(r1 + r2)(x) =

h̄(x(r1+r2)) = h̄(xr1)+h̄(xr2) = g(r1)(x)+g(r2)(x). Thus, g(r1+r2) =

g(r1) + g(r2) for r1, r2 ∈ R. Further, if s, r, x ∈ R, then g(sr)(x) =

h̄(x(sr)) = h̄((xs)r) = g(r)(xs) = (sg(r))(x), that is, g(sr) = sg(r).

Hence, g is an R-module homomorphism.

We now show that g|I = f . Let r ∈ I and x ∈ R. Then xr ∈ I

and g(r)(x) = h̄(xr) = h(xr) = f(xr)(1). Since f is an R-module

homomorphism, so f(xr) = xf(r), and so f(xr)(1) = (xf(r))(1) =
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f(r)(x). Therefore, f(r)(x) = g(r)(x) for all x ∈ R, that is, f(r) =

g(r).

Theorem 0.17. Every module is isomorphic to a submodule of an

injective module.

Proof. Let A be a module over a ring R. Since A is an abelian

group, there is a divisible abelian group D such that φ : A → D is

a monomorphism (Theorem 0.13). The mapping φ∗ : Hom Z(R,A) →
Hom Z(R,D) defined by φ∗(f) = φf is an R-module monomorphism.

Since every R-module homomorphism is also a Z-module homomor-

phism, and as Hom Z(R,A) is an R-module, so Hom R(R,A) is an R-

submodule of Hom Z(R,A). Thus, there is an R-module monomor-

phism from Hom R(R,A) to Hom Z(R,D). Also e know that A '
Hom R(R,A). Therefore, there exists an R-module monomorphism

from A to Hom Z(R,D). Since Hom Z(R,D) is injective R-module, the

theorem is proved.

LECTURE − V II

We now discuss some examples.

(1) Every free module is projective. This is an example of a pro-

jective module which is not free.

If m and n are relatively prime integers, then Zmn ' Zm⊕
Zn as abelian groups. It is easy to check that it is also a

Zmn-module isomorphism. Since, Zmn is a free Zmn-module,

so Zm and Zn are projective Zmn-modules (Theorem 0.3). But

neither Zm nor Zn are free Zmn-modules as both have lesser

than mn elements. ( If either Zm or Zn is a free Zmn-module,
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then it will be a direct sum of copies of Zmn and hence it will

have more than mn elements.)

(2) Example of modules which are projective and injective both.

Let R be a ring such that every exact sequence of R-

modules is split exact. Let ψ : M → N be an R-module

epimorphism, then 0−→ kerψ−→M ψ−→N−→0 is an exact se-

quence, and so it splits. Hence, for every R-module A,

0−→Hom R(A, kerψ)−→Hom R(A,M)
ψ∗−→Hom R(A,N)−→0

is a split exact sequence. So, ψ∗ is surjective and A is a pro-

jective R-module.

Similarly, if φ : M → N is an R-module monomorphism,

then

0−→M φ−→N−→N/Imφ−→0

is an exact sequence, and so it splits. Hence, for every R-

module A,

0−→Hom R(N/Imφ,A)−→Hom R(N,A)
φ∗−→Hom R(M,A)−→0

splits. So, φ∗ is surjective and A is injective.

Now let D be a division ring. If 0−→M1−→M−→M2−→0

is an exact sequence of D-modules, then it can be verified

that M ' M1 ⊕ M2, so, this sequence splits. Hence, every

module over a division ring is projective as well as injective.

In particular, a vector space over a field K is projective as well

as injective.

(3) Example of an injective module which is not projective.
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Q is an injective Z-module as it is a divisible abelian group

but it is not a projective Z-module. ( If Q is projective Z-

module, then since Z is a PID, it should be a free Z-module,

see Corollary 0.6, which it is not.)

(4) A finitely generated Z-module is not an injective Z-module.

Equivalently, a finitely generated abelian group is not divisible.

Thus, Q is not finitely generated abelian group. To prove this,

let A be a finitely generated Z-module. Then A = T (A)⊕ F ,

where F is a free module of finite rank. Also T (A) is finitely

generated (as A/F ' T (A)). Let T (A) = 〈x1, . . . , xk〉. Then

Ann (T (A)) = ∩ki=1Ann (xi) 6= {0}. Let m ∈ Ann (T (A)).

Then mT (A) = 0, and so mA = mF 6= A. Therefore, if

A is a divisible abelian group (equivalently, an injective Z-

module), then A should be a free Z-module of finite rank.

Thus, A ' Z⊕ · · · ⊕Z (finite summands). Again, this abelian

group is not divisible. Since for any m ∈ Z, m 6= 0,±1, there

does not exist any x ∈ Z⊕· · ·⊕Z such that mx = (1, 0, . . . , 0).

That’s all in UNIT-IV students. Wishing you all the best.

Take care and stay safe


