
1 Reflection Principle

In general, some elementary functions f(z) possess the property that

f (z) = f(z)

for all points z in some domain, and others do not.

Example 1 The functions

z, z2 + 1, ez, sin z

have that property. On the other hand, the functions

iz, z2 + i, eiz, (1 + i) sin z

do not have this property.

The following theorem provides the conditions under which f (z) = f(z) and
is known as the reflection principle.

Theorem 1 Let f(z) be analytic inside the domain D which contains a segment
of the real axis and whose lower half is the reflection of the upper half with respect
to that axis. Then

f (z) = f(z) ∀ z ∈ D (1)

if and only if f(x) is real for each point x on the segment.

Proof. Necessary condition: Let the domain D contains the segment ABC of
the real axis. Also, let D be symmetrical about ABC and a function f(x) be
real for each point x on the segment ABC. Let F (z) = f(z). To prove result
(1), we first show that the function F (z) is analytic in the domain D. Let us
write

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

and
F (z) = U(x, y) + iV (x, y). (2)

Then
f(z) = u(x,−y) + iv(x,−y)

and hence,
F (z) = f(z) = u(x,−y)− iv(x,−y)

which on using (2) gives

U(x, y) = u(x,−y), V (x, y) = −v(x,−y)

or
U(x, y) = u(x, λ), V (x, y) = −v(x, λ), (3)
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where λ = −y. By hypothesis f(z) = f(x+ iλ) is an analytic function of x+ iλ,
the functions u(x, λ) and v(x, λ), together with their partial derivatives, are
continuous in D and they satisfy there the Cauchy-Riemann equations

ux(x, λ) = vλ(x, λ) and uλ(x, λ) = −vx(x, λ). (4)

Now, by (3), we get

Ux(x, y) = ux(x, λ), Uy(x, y) = uλ(x, λ)
dλ

dy
= −uλ(x, λ),

Vx(x, y) = −vx(x, λ), Vy(x, y) = −vλ(x, λ)
dλ

dy
= vλ(x, λ)

which in view of (4) gives

Ux(x, y) = ux(x, λ) = vλ(x, λ) = Vy(x, y),

Uy(x, y) = −uλ(x, λ) = vx(x, λ) = −Vx(x, y).

Thus the partial derivatives Ux, Uy, Vx, Vy are continuous (as ux(x, λ), uy(x, λ), vx(x, λ), vy(x, λ)
are continuous), and satisfy Cauchy-Riemann equations, hence, F (z) is analytic
in D .

Since f(x) is real, v(x, 0) = 0. Hence

F (x) = U(x, 0) + iV (x, 0) = u(x, 0).

Thus F (z) = f(z) at each point on ABC in the domain D, where both the
functions are analytic. Hence, by analytic continuation F (z) = f(z) in D which
proves the result (1).

Sufficient condition: Let the function f(z) has the property (1) that is f(z) =
f(z) in D. Hence, in particular, u(x, 0) − iv(x, 0) = u(x, 0) + iv(x, 0) which at
once proves that v(x, 0) = 0. Thus f(x) is real for each point x on the segment
ABC in D.

2 Poisson’s Integral Formula

Theorem 2 (Poisson’s Integral Formula) Let f(z) be analytic in a region
including the disc |z| ≤ R, and let u(r, θ) be its real part. Then for 0 ≤ r < R

u(r, θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
u(R,φ)dφ.

Proof. We may suppose without loss of generality that f(z) =
∑
anz

n, where
all the coefficients an are real. For, in the general case, if an = αn + iβn, then

f(z) =
∑

αnz
n + i

∑
βnz

n = f1(z) + if2(z)

and hence, we find
<ef(z) = <ef1(z)−=mf2(z),
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where f1(z) and f2(z) are also analytic for |z| ≤ R, since |αn| ≤ |an| and
|βn| ≤ |an| . So the general case follows from the special case. Thus we prove
the formula for this special case. Let z1 be a point on the circle |z| = R and
z = reiθ be any interior point of the circle |z| = R and let f(reiθ) = u+ iv and
f(z1) = f(Reiφ) = u1+iv1. Then by the reflection principle f(Re−iφ) = u1−iv1,
and by Cauchy’s integral formula

u+ iv =
1

2πi

∫
u1 + iv1
z1 − z

dz1 =
1

2π

∫ 2π

0

u1 + iv1
Reiφ − reiθ

Reiφdφ. (5)

Further, since the point R2/z is outside the circle |z| = R, we have

0 =
1

2πi

∫
u1 + iv1
z1 −R2/z

dz1 =
1

2π

∫ 2π

0

u1 + iv1
Reiφ −R2r−1e−iθ

Reiφdφ.

Also, on replacing φ by −φ and v1 by −v1, we obtain

0 =
1

2π

∫ 2π

0

u1 − iv1
Re−iφ −R2r−1e−iθ

Re−iφdφ

which on simplifying gives

1

2π

∫ 2π

0

u1 − iv1
reiθ −Reiφ

reiθdφ = 0

or
1

2π

∫ 2π

0

u1 − iv1
Reiφ − reiθ

reiθdφ = 0. (6)

on adding (5) and (6), we get

u+ iv =
1

2π

∫ 2π

0

{
u1
Reiφ + reiθ

Reiφ − reiθ
+ iv1

}
dφ

which on taking real parts proves the result.

3 Jensen’s Formula

Theorem 3 (Jensen’s Theorem) Let f(z) be analytic for |z| < R. Suppose
that f(0) is not zero, and let r1, r2, ..., rn, ... be the moduli of the zeros of f(z) in
the disc |z| < R, arranged as a non-decreasing sequence. Then, if rn ≤ r ≤ rn+1,

log
rn |f(0)|
r1r2...rn

=
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ. (7)

Proof. Assume that the zeros are counted as often as its multiplicity. First we
write the formula (7) in terms of the number of zeros inside the disc. Let n(x)
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denote the number of zeros of f(z) for |z| ≤ x. Then, if rn ≤ r ≤ rn+1,

log
rn

r1r2...rn
= n log r −

n∑
m=1

log rm

=

n−1∑
m=1

m(log rm+1 − log rm) + n(log r − log rn)

=

n−1∑
m=1

m

∫ rm+1

rm

dx

x
+ n

∫ r

rn

dx

x
.

We have m = n(x) when rm ≤ x < rm+1 and n = n(x) when rn ≤ x < r.
Hence,

log
rn

r1r2...rn
=

n−1∑
m=1

∫ rm+1

rm

n(x)

x
dx+

∫ r

rn

n(x)

x
dx

=

∫ r

r1

n(x)

x
dx =

∫ r

0

n(x)

x
dx

as n(x) = 0 when 0 ≤ x < r1. Thus the formula (7) may also be given by∫ r

0

n(x)

x
dx =

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ − log |f(0)| . (8)

Now in order to prove the formula (7) or (8), we consider number of stages
(cases).

(i) If f(z) has no zeros for |z| ≤ r, then log f(z) is analytic for |z| ≤ r, and
hence, on applying Cauchy’s integral formula f or the function log f(z), we get

log f(0) =
1

2πi

∫
|z|=r

log f(z)

z
dz =

1

2π

∫ 2π

0

log f(reiθ)dθ,

which on equating the real parts proves the result (8):

log |f(0)| = 1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ. (9)

(ii) If a1 = r1e
iθ1 , 0 < r1 < r, then again on applying Cauchy’s integral

formula f or the function log (1− wa1) , we get∫
|w|=1/r

log (1− wa1)

w
dw = 0 (10)

since the function log (1− wa1) is analytic on and inside the circle |w| = 1/r
(as the singularity 1

a1
of log (1− wa1) lies out side of the circle |w| = 1/r). On
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writing 1− wa1 = −wa1
(

1− 1
wa1

)
, result (10) gives

1

2πi

∫
|w|=1/r

log

(
1− 1

wa1

)
dw

w
=

1

2πi

∫
|w|=1/r

log

(
− 1

wa1

)
dw

w

=
1

2πi
log

(
− 1

a1

) ∫
|w|=1/r

dw

w
− 1

2πi

∫
|w|=1/r

logw
dw

w

= log

(
− 1

a1

)
− 1

4πi

[
(logw)

2
]
|w|=1/r

= log

(
− 1

a1

)
− 1

4πi

[
(log 1/r + iθ)

2
]2π
θ=0

= log

(
− 1

a1

)
− log 1/r − iπ

which on equating the real parts proves that

1

2π

∫ 2π

0

log

∣∣∣∣1− 1

wa1

∣∣∣∣dθ =
1

2π

∫ 2π

0

log

∣∣∣∣1− r

r1
ei(θ1−θ)

∣∣∣∣ dθ = log
r

r1
(11)

which is the Jensen’s formula for the function

f(z) = 1− z

a1
.

(iii) The result in the above case may be extended to the case r = r1. In
that case we make a small circular indentation so that the singularity 1

a1
of

log (1− wa1) is excluded. The integral around the indentation tends to 0 with
the radius and the result we get the same as above.

(iv) In general case, if

f(z) =

(
1− z

a1

)(
1− z

a2

)
...

(
1− z

an

)
φ(z),

where φ(z) is not zero for |z| < rn+1, and φ(0) = f(0), then

log f(z) =

n∑
j=1

log

(
1− z

aj

)
+ log φ(z)

which yields on equating the real parts that

log |f(z)| =
n∑
j=1

log

∣∣∣∣1− z

aj

∣∣∣∣+ log |φ(z)|

and hence, on considering |aj | = rj we obtain

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ =

n∑
j=1

1

2π

∫ 2π

0

log

∣∣∣∣1− r

rj
ei(θj−θ)

∣∣∣∣dθ+ 1

2π

∫ 2π

0

log
∣∣φ(reiθ)

∣∣dθ
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which on using results (9) and (11) proves the formula

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ =

n∑
j=1

log
r

rj
+ log |φ(0)|

= log
rn

r1r2...rn
+ log |f(0)| .

The Theorem 3 may be extended to a function having zeros as well as poles.

Theorem 4 (Generalized Jensen’s formula) Let f(z) satisfy the same con-
ditions as in Theorem 3, with zeros a1, a2, ..., am and poles b1, b2, ..., bn with
moduli not exceeding r. Then

log

{∣∣∣∣ b1, ..., bna1, ..., am
f(0)

∣∣∣∣ rm−n} =
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ.
Proof. The function f(z) may be expressed as f(z) = g(z)/h(z), where the
functions g(z) and h(z) are analytic in |z| ≤ r having zeros, respectively, at
a1, a2, ..., am and b1, b2, ..., bn in |z| ≤ r. Thus, on applying Theorem 3 for these
functions, we obtain

log

{∣∣∣∣ g(0)

b1, ..., bn

∣∣∣∣ rn} =
1

2π

∫ 2π

0

log
∣∣g(reiθ)

∣∣dθ
and

log

{∣∣∣∣ h(0)

a1, ..., am

∣∣∣∣ rm} =
1

2π

∫ 2π

0

log
∣∣h(reiθ)

∣∣dθ
which on subtracting proves the result.

4 The Poisson-Jensen Formula

Theorem 5 Let f(z) have zeros at the points a1, a2, ..., am and poles b1, b2, ..., bn,
inside the disc |z| ≤ R, and be analytic elsewhere inside and on the circle. Then
for any r < R

log
∣∣f(reiθ)

∣∣ =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log
∣∣f(Reiφ)

∣∣dφ
−

m∑
µ=1

log

∣∣∣∣R2 − aµ reiθ

R (reiθ − aµ)

∣∣∣∣+

m∑
ν=1

log

∣∣∣∣R2 − bν reiθ

R (reiθ − bν)

∣∣∣∣ . (12)

Proof. The Poisson-Jensen Formula (12) contains both Poisson and Jensen’s
formula in particular cases. If there are no zeros or poles, it reduces to the
Poisson formula for the function log f(z). On the other hand, if r = 0, we get
Generalized Jensen’s formula

log |f(0)| = 1

2π

∫ 2π

0

log
∣∣f(Reiφ)

∣∣dφ− log

{∣∣∣∣ b1, ..., bna1, ..., am
f(0)

∣∣∣∣Rm−n} .
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Further, in particular,
(i) if f(z) = z − a, where |a| < R, then the formula (12) is equivalent to

log
∣∣reiθ − a∣∣ =

1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log
∣∣Reiφ − a∣∣ dφ (13)

− log

∣∣∣∣R2 − a reiθ

R (reiθ − a)

∣∣∣∣
or

log

∣∣∣∣R− a reiθ

R

∣∣∣∣ =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log
∣∣Reiφ − a∣∣dφ,

where
∣∣∣R− a Reiφ

R

∣∣∣ =
∣∣R− a eiφ∣∣ =

∣∣Reiφ − a∣∣ , and this is the Poisson formula

for the function log
(
R− a z

R

)
.

(ii) if f(z) = 1/(z− b), where |b| < R, then the formula (12) is equivalent to

log

∣∣∣∣ 1

reiθ − b

∣∣∣∣ =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log

∣∣∣∣ 1

Reiφ − b

∣∣∣∣dφ
+ log

∣∣∣∣R2 − b reiθ

R (reiθ − b)

∣∣∣∣
or

log

∣∣∣∣R− b reiθ

R

∣∣∣∣ =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log
∣∣Reiφ − b∣∣ dφ

which is the Poisson formula for the function log
(
R− b z

R

)
.

(iii) If f(z) is analytic and has no zeros or poles in |z| ≤ R, the formula (12)
is the Poisson formula for log f(z) :

log
∣∣f(reiθ)

∣∣ =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
log
∣∣f(Reiφ)

∣∣dφ. (14)

In general, if

f(z) =
(z − a1) ... (z − am)

(z − b1) ... (z − bn)
φ(z),

where φ(z) is analytic with φ(z) 6= 0 in |z| ≤ R, then at z = reiθ,

log f(reiθ) =

m∑
j=1

log
(
reiθ − aj

)
−

n∑
j=1

log
(
reiθ − bj

)
+ log φ(reiθ)

which on equating the real parts yields

log
∣∣f(reiθ)

∣∣ =

m∑
j=1

log
∣∣reiθ − aj∣∣− n∑

j=1

log
∣∣reiθ − bj∣∣+ log

∣∣φ(reiθ)
∣∣ .

and by (13) and (14), it proves the formula (12).

7



5 Convex functions

Definition 6 A function φ(x) of a real variable x is said to be convex , if the
curve y = φ(x) between x1 and x2 always lies below the chord joining the points
(x1, φ(x1)) and (x2, φ(x2)) . Analytically the condition is given by

φ(x) ≤ x2 − x
x2 − x1

φ(x1) +
x− x1
x2 − x1

φ(x2) (x1 < x < x2) . (15)

Theorem 7 A convex function is continuous.

Proof. Let φ(x) be a convex function of x and let x1 < x < x2. Then φ satisfy
the inequality (15). If x1 → x and x → x2, then from inequality (15), we get,
respectively,

φ(x) ≤ φ(x− 0) and φ(x2 − 0) ≤ φ(x2)

which proves that for any x,

φ(x) = φ(x− 0).

Similarly, If x2 → x and x→ x1, then from inequality (15), we get, respectively,

φ(x) ≤ φ(x+ 0) and φ(x1 + 0) ≤ φ(x1)

which proves that for any x,

φ(x) = φ(x+ 0).

Hence, φ is a continuous function of x.
As an application of Maximum Modulus Principle we have proved following

Hadamard’s three circle Theorem:

Theorem 8 (Hadamard’s three-circle theorem) Let f(z) be an analytic
function, regular for r1 ≤ |z| ≤ r3. Let r1 < r2 < r3, and let M1,M2,M3 be the
maxima of |f(z)| on the three circles |z| = r1, r2, r3 respectively. Then

M
log(r3/r1)
2 ≤M log(r3/r2)

1 M
log(r2/r1)
3 . (16)

Theorem 9 (The three-circles theorem as a convexity theorem) Under
the same hypothesis of Theorem 8, let M(r) be the maxima of |f(z)| on the circle
|z| = r. Then logM(r) is convex function of log r.

Proof. For r1 < r2 < r3, we have

M (r2)
log(r3/r1) ≤M (r1)

log(r3/r2)M (r3)
log(r2/r1) (17)

which on taking logarithms is given by

log (r3/r1) logM(r2) ≤ log (r3/r2) logM(r1) + log (r2/r1) logM (r3)

and it is equivalent to

logM(r2) ≤ log r3 − log r2
log r3 − log r1

logM(r1) +
log r2 − log r1
log r3 − log r1

logM (r3)

this proves the result.
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6 Harmonic Functions

A real valued function u (x, y) is said to be harmonic in a domain of the xy plane
if throughout that domain, it has continuous partial derivatives of the first and
second order and satisfies the partial differential equation

uxx (x, y) + uyy (x, y) = 0 (18)

Equation (18) is called Laplace’s equation. If u (x, y) is harmonic in a disc, then
there exists an analytic function f(z) = u (x, y) + iv (x, y) , where v (x, y) is the
harmonic conjugate of u (x, y) .

Theorem 10 (Mean Value Property) Let U be an open disc B (a,R) and
let u : U → R be harmonic. Then

u(a) =
1

2π

∫ 2π

0

u(a+ reiθ)dθ.

Proof. Let u : U → R be harmonic. Then there exists f(z) = u (x, y)+ iv (x, y)
analytic in U . Hence, we have Gauss’s Mean Value Formula for any 0 < r < R,

f(a) =
1

2π

∫ 2π

0

f(a+ reiθ)dθ

which on equating the real parts proves the result.

Theorem 11 (Harnack’s inequality) Let u : clB (a,R) → R be continuous,
harmonic in B (a,R) and u ≥ 0. Then for 0 ≤ r < R and for all θ,

R− r
R+ r

u(a) ≤ u(a+ reiθ) ≤ R+ r

R− r
u(a).

Proof. Let u : clB (a,R)→ R be continuous, harmonic in B (a,R) and u ≥ 0.
Then there exists a function f(a+ reiθ) analytic in B (a,R) , hence, by Poisson
integral formula we have

u(a+ reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
u(a+Reiφ)dφ,

where
R2 − r2

R2 − 2Rr cos (θ − φ) + r2
=

R2 − r2

|Reiφ − reiθ|2

and
R2 − r2

(R+ r)
2 ≤

R2 − r2

|Reiφ − reiθ|2
≤ R2 − r2

(R− r)2
or

R− r
R+ r

≤ R2 − r2

|Reiφ − reiθ|2
≤ R+ r

R− r
Thus we get

R− r
R+ r

· 1

2π

∫ 2π

0

u(a+Reiφ)dφ ≤ u(a+ reiθ) ≤ R+ r

R− r
· 1

2π

∫ 2π

0

u(a+Reiφ)dφ

which by Mean Value Property proves the result.
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7 Order of an entire (integral) functions

An integral function f(z) is said to be of finite order if there is a positive number
A such that, as |z| = r →∞

f(z) = O
(
er
A
)

(19)

or
|f(z)| < er

A

.

The lower bound ρ of numbers A, for which (19) holds, is called the order of
f(z). Hence, if M(r) is the maximum modulus of f(z) on the circle |z| = r,
then the order ρ of f(z) is given by

ρ = inf
{
A ≥ 0 : M(r) ≤ er

A

for large value of r
}

or

ρ = lim
r→∞

sup
log logM(r)

log r
. (20)

Problem 12 Find the order of following functions:

(i) p(z) = a0 + a1z + a2z
2 + ...+ anz

n, an 6= 0

(ii) f(z) = exp (az) , a 6= 0

(iii) f(z) = sinz

(iv) f(z) = cosz

Solution 1 We first find maximum modulus of each of the functions and then
apply directly the formula (20).

(i) On |z| = r,

|p(z)| =
∣∣a0 + a1z + a2z

2 + ...+ anz
n
∣∣

= |anzn|
∣∣∣∣ a0
anzn

+
a1

anzn−1
+

a2
anzn−2

+ ...+ 1

∣∣∣∣
≤ |an| rn := M(r),

for large value of r. We get

lim
r→∞

log logM(r)

log r
= lim

r→∞

log (log |an| rn)

log r
(
∞
∞

form)

= lim
r→∞

1

log |an| rn
1/ (|an| rn)

1/r
n |an| rn−1

= lim
r→∞

n

log |an| rn
= 0

Hence, order of p(z) is 0.

10



(ii) Here, M(r) = e|a|r and

lim
r→∞

log logM(r)

log r
= lim

r→∞

log (|a| r)
log r

(
∞
∞

form)

= lim
r→∞

1

|a| r
|a|
1/r

= 1.

(iii) We have

|sin z| =
∣∣∣∣z − z3

3!
+ ...

∣∣∣∣ ≤ r +
r3

3!
+ ... =

er − e−r

2
:= M(r).

Hence,

logM(r) = log er
(

1− e−2r

2

)
= r + log

(
1− e−2r

2

)
= r

(
1 +

1

r
log

(
1− e−2r

2

))

lim
r→∞

log logM(r)

log r
= 1 + lim

r→∞

log
(

1 + 1
r log

(
1−e−2r

2

))
log r

= 1.

(iv) Similarly, we may find the order of cosz is also 1.

8 Canonical products

If f(z) is an entire function of order ρ, then for all values of r,

log
∣∣f(reiθ)

∣∣ < Krρ+ε,

where K depends only on ε and from Jensen’s formula (8):∫ r

0

n(x)

x
dx =

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣dθ − log |f(0)| , (21)

we see that ∫ 2r

0

n(x)

x
dx < Krρ+ε.

But, since n(r) is non-decreasing,∫ 2r

r

n(x)

x
dx ≥ n(r)

∫ 2r

r

dx

x
= n(r) log 2.

Hence,

n(r) ≤ 1

log 2

∫ 2r

0

n(x)

x
dx < Krρ+ε
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or
n(r) = O

(
rρ+ε

)
which says that the higher the order of a function is, the more zeros it may have
in a given region.

Theorem 13 If r1, r2, ... are the moduli of the zeros of f(z), then the series∑
r−αn is convergent if α > ρ.

Proof. Let α > ρ. Then we will show that the series
∑
r−αn is convergent. If

α > β > ρ, then n(r) < Arβ . Taking r = rn, we get n < Arβn or r−αn < An−α/β

which proves the result.
The lower bound of positive number α for which

∑
r−αn is convergent is called

the exponent of convergence of the series, and is denoted by ρ1 and ρ1 ≤ ρ.
If f(z) is of finite order, then there is an integer p, independent of n, such

that the product
∞∏
n=1

E

(
z

zn
, p

)
(22)

is convergent for all values of z, which is possible if

∑(
r

rn

)p+1

(23)

is convergent that is if p+ 1 > ρ1 and so certainly if p+ 1 > ρ.
If p is the smallest integer for which (23) is convergent, the product (22) is

called the canonical product formed with the zeros of f(z) and p is called its
genus.

Theorem 14 (Hadamard’s factorization theorem) If f(z) is an integral func-
tion of order ρ, with zeros z1, z2, ... (f(0) 6= 0) , then

f(z) = eQ(z)P (z),

where P (z) is the canonical product formed with the zeros of f(z), and Q(z) is
the polynomial of degree not greater than ρ.

This theorem follows from the Weierstrass’s Factorization theorem. Only
it needs to show that the entire function g(z) is a polynomial Q(z) and the
product P (z) is the canonical product.

12


