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FIGURE 6 A directed graph.
€1 €1 €3 €4 £5 €6 €7
wlfl 0 0 0 0o 1 -1
v |1 1 0 0 0 0 1]
v3| 1 —1 1 0 1 0 0
| 0 6 -1 -1 0 -1 0
vs | O 0 0 1 -1 0 1

From the definition of A., it should be clear that each
column of this matrix has exactly two nonzero entries,
one +1 and one —1; therefore, we can obtain any row of
A, from the remaining rows. Thus,

rank{A,) <mn —1

An (n — 1)-rowed submatrix of A, s referred to as an
incidence matrix of G. The vertex which corresponds to
the row which is not in A, is called the reference vertex
of A.

2. Cut Matrix

Consider a cut (V,, V) in a connected directed graph G
with n vertices and m edges. Recall that {V,,, V},} consists
of all those edges connecting vertices in ¥, to V. This cut
may be assigned an orientation from V, to V, or from V,
to V,. Suppose the orientation of (V,, ¥,) is from V, to
Ve Then the orientation of an edge (v;, v;) is said to agree
with the cut orientation if v; € V,, and v; € V.

The cut matrix Q. =[g;] of G has m columns, one for
each edge, and has one row for each cut. The element ¢; 7
is defined as follows:

1, if the jth edge is in the ith cut and its
orientation agrees with the cut orientation
—1, if the jth edge is in the ith cut and its
orientation does not agree
with the cut orientation
0, if the jth edge is not in the ith cut

qi; =

Each row of (. is called the cur vecror. The edges
incident on a vertex form a cut. Thus it follows that the

matrix A, is a submatrix of Q.. Next we identify another
important submatrix of Q..

Recall that each branch of a spanning tree T of con-
nected graph G defines a fundamental cutset, The subma-
trix of Q.. corresponding to the n — 1 fundamental cutsets
defined by T is called the fundamental cutset matrix Q ;
of G with respectto 7.

Let by, b2, ..., b,_ denote the branches of 7. Let us
assume that the orientation of a fundamental cutset is cho-
sen s0 as to agree with that of the defining branch. Suppose
we arrange the rows and the columns of @ ; so that the /th
column corresponds to the fundamental cutset defined by
b;. Then the matrix ¢ can be displayed in 4 convenient
form as follows:

Qr=1[U|Qy.]
where {/ is the unit matrix of order # — 1, and its columns
correspend to the branches of T. As an example, the fun-
damental cutset matrix of the graph in Fig. 6 with respect
to the spanning tree T = (ey. €3, €5, €¢) is given below:

€] [4] €5 €g a3 €4 €7

eqfl 0 0 0O -1 -1 -1
e2|0 1 0 0 -1 -1 -1
Qr= .
es|0 0 1 0 0 -1 -1
|0 O 0 1 1 1 0
It is clear that the rank of Oy is n — 1. Hence,

rank(@ ) =n—1

3. Circuit Matrix

Consider a circuit C in a connected directed graph G with
n vertices and m edges. This circuit can be traversed in
one of two directions, clockwise or counterclockwise. The
direction we choose for traversing € is called the orien-
tation of C. If an edge e = (v;, v;) directed from v; to vy
isin C and if v; appears before v; as we traverse C in the
direction specified by the orientation of C, then we say
that the orientation agrees with the orientation of e,

The circuit matrix B, = [b;;] of G has m columns, one
for each edge, and has one row for each circuit in G, The
element b;; is defined as follows:

1, if the jth edge is in the ith circuit
and its orientation agrees
with the circuit orientation

bi; = ¢ —1, if the jth edge is in the ith circuit
and its orientation does not agree
with circuit orientation

@, if the jth edge is not in the ith circuit

The submatrix of B, corresponding to the fundamental
circuits defined by the chords of a spanning tree 7 is called
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the fundamental circuit mairix By of G with respect to the
spanning tree 7.

Let ¢y, €2, €3, ..., Cu—n+1 denote the chords of T. Sup-
pose we arrange the columns and the rows of B so that the
ith row corresponds to the fundamental circuit defined by
the chord ¢; and the ith column corresponds to the chord ¢;
If, in addition, we choose the orientation of a fundamental
circuit to agree with the orientation of the defining chord,
we can write B as:

By =[U L Byl

where U is the unit matrix of order m —»n + 1, and its
columns correspond to the chords of 7.

As an example, the fundamental circuit matrix of the
graph shown in Fig. 6 with respect to the tree T = (g4, 3,
es, g¢) 1s given below:

€3 €3 &7 €] €2 €5 @4

ea[1 001 1 0 -1
Br=es|0 1 0 1 1 1 —1
|0 01 1 1 1 0

Tt is clear from the above that the rank of By ism —n 4 1;
hence,

rank(B.) > m —n + 1.

The following results constitute the foundation of the
graph theoretic application to electrical circuit analysis.

Theorem 4 (orthogonality relationship)

1. A circuit and a cutset in a connected graph have an
even number of common edges.

2. If circuit and a cutset in a directed graph have 24
common edges, then & of these edges have the same rel-
ative orientation in the circuit and the cutset, and the re-
maining & edges have one orientation in the circuit and the
oppostite orientation in the cutset.

Theorem 5

If the columns of the circuit matrix B, and the columns
of the cut matrix @, are arranged in the same edge order,
then

B.O, = 0
Theorem 6
Rank(8.)=m —n—+ 1 and rank(Q,)=n — 1.

Note that it follows from the above theorem that the rank
of the circuit matrix is equal to the nullity of the graph,
and the rank of the cut matrix is equal to the rank of the
graph. This result, in fact, motivated the definitions of the
rank and nullity of a graph
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FIGURE 7 A network element with reference convention.

Il. GRAPHS AND ELECTRICAL
NETWORKS

An electrical network is an interconnection of electrical
network elements such as resistances, capacitances, induc-
tances, voltage and current sources, etc, Bach network ele-
ment is associated with two variables, the voltage variable,
v(t) and the current variable £(r). We also assign reference
directions to the network clements (see Fig. 7} so that i(¢)
is positive whenever the current is in the direction of the
arrow, and v{t) is positive whenever the voltage drop in the
network ¢lement 1s in the direction of the arrow. Replac-
ing each element and its associated reference direction by
a directed edge results in the directed graph representing
the network. For example, a simple electrical network and
the comresponding directed graph are shown in Fig. 8.
The physical relationship between the current and volt-
age variables of network elements is specified by Ohm’s
law. For voltage and current sources, the voltage and cur-
reni variables are required to have specified values. The
linear dependence among the voltage variables in the net-
work and the linear dependence among the current vari-
ables are governed by Kirchoff’s voltage and current laws.

Kirchofi’s Voltage Law (KVL): The algebraic sum of
the voltages around any circuit is equal to zero.,

Kirchoff’s Current Law (KCL): The algebraic sum of
the currents flowing out of a node is equal to zero.

As an example, the KVL equation for the circuit 1,3, 5
and the KCL equation for vertex b in the graph of Fig. 8 and

Circnit 1,3, 5
Vertex &

At uvs=0
—f +iy+iz=0
It can be casily seen that KVL and KCL equations for an
clectrical network N can be conveniently written as:
Ad. =0
and
B.V,= 0
where A, and B, are, respectively, the incidence and circuit
matrices of the directed graph representing N; I, and V,
are, respectively, the column vectors of element currents

and voltages in N. Because each row in the cut matrix Q.
can be expressed as a linear combination of the rows of
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the matrix, in the above we can replace A, by @.; thus,
we have

KCL: Q.L =0
KVL: B.V.=0

Thus, KCL can also be stated as: The algebraic sum of the
cutrents in any cut of ¥ is equal to zero.

If a network N has n vertices and m elements and its
graph is connected, then there are only (n — 1) linearly
independent cuts and only (2 — n + 1) linearly indepen-
dent circuits, Thus, in writing KVL and KCL equations we
need to use only B, a fundamental circuit matrix, and @,
a fundamental circuit matrix, respectively. Thus, we have

KCL: Q. =0
KVL: B;V,=0

We note that the KCL and KVL equations depend only
on the way network elements are interconnected and
not on the nature of the network elements. Thus, several
results in electrical network theory are essentially graph
theoretic in nature. Some results of interest in electrical
network analysis are presented in the reminder of this
chapter. In the following, a network N and its directed
graph representation are both denoted by V.

Loop and Cutset Transformations

Let 7' be a spanning tree of an electrical network. Let [,
and V; be the column vectors of chord currents and branch
currents with respectto 7.

1. Loop transformation:

2. Cutset transformation:
Ve = Qr;V:
If, in the cutset transformation, we replace ¢ s by the

reduced incidence matrix A, then we get the node trans-
Jormation given below:

L3
FIGURE 8 (a) An electrical network N; (b) directed graph representation of N.

V.= A"V,

where the elements in the vector V, can be interpreted
as the voltages of the nodes with respect to the reference
node r. ( Note; the matrix A does not contain the row
corresponding to the node r.)

The abave transformations have been extensively em-
ployed in developing different methods of network analy-
sis. Two of these methods are described in the following.

lll. LOOP AND CUTSET SYSTEMS
OF EQUATIONS

As we observed earlier, the problem of network analy-
sis is to determine the voltages and currents associated
with the elements of an electrical network. These voltages
and currents can be determined from Kirchoft’s equations
and the element voltage—current (in short, v — ) relations
given by Ohm’s law. However, these equations involve
a a large number of variables. As can be seen from the
loop and cutset transformations, not all these variables
are independent Furthermore, in place of KCL equations
we can use the loop transformation which invioves only
chord currents as variables. Similarly, KVL equations
can be replaced by the cutset transformation which in-
volves only branch voltage variables. We can take ad-
vantage of these transformations to establish different
sytems of network equations known as the loop and cutset
systems.

In deriving the loop system we use the loop transfor-
mation in place of KCL, and in this case the loop vari-
ables (chord currents) will serve as independent variables.
In deriving the cutset system we use the cutset transfor-
mation in place of KVL, and the cutset variables {tree
branch voltages) will serve as the independent variables
in this case. Consider a connected electrical network N.
We assume that N consists of only resistances (R), ca-
pacitances (), inductances (L) (referred to collectively
as RCL) including mutual inductances, and independent
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voltage and current sources. We also assume that all initial
inductor currents and initial capacitor volatages have been
replaced by appropriate sources. Further, the volatage and
current variables are all Laplace transforms of the complex
frequency variable s. In & there can be no circuit consist-
ing of only independent voltage sources, for, if such a
circuit of sources were present, then by KVL there would
be a linear relationship among the corresponding voltages,
violating the independence of the voltage sources. For the
same reason, in & there can be no cutset consisting of only
independent current sources. So there exists in N a span-
ning trec containing all the voltage sources but not current
sources. Such a tree is the starting point for the develop-
ment of both the loop and cutset systems of equations.

Let T be a spanning tree of the given network such that
T contains all the voltage sources but no current sovrces.
Let us partition the element voltage V, and the element
current vector £, as follows:

Vi h
Vt = V;}. and L; = Ia
Vs Iy

where the subscripts 1, 2, and 3 refer to the vectors corre-
sponding to the current sources, RCL elements, and volt-
age sources, respectively. Let B be the fundamental cir-
cuit matrix of N, and @ ; the fundamental cutset matrix of
N withrespectto 7. Then the KVL and the KCL equations
can written as follows:

V
kvL: B,v,=|¢ B2 Bo VI -0
’ 77* 70 By Bxn a0

Vi

Il

On On 0]

KCL. Q1 =|: L =0

£ Oy QO U Ij

A. Loop Method of Network Analysis

o Step 1: Solve the following for the vector I; (note that
I; is the vector of currents in the nonsource chords of T').

Zify = —ByVi — BpZaBply (1)

where Z, is the impedance matrix of RCL elements and
Z; = By Z3 Byy. Equation (1) is called the loop svstem of
equations.

o Step 2: Calculate J; using:

Iy = B2 + By (2)
then,
Vo=2:5 (3)
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e Step 3: Determine V) and /3 using the following:
V) = —BpV, — BpWa ()]
Iz = Bl + Bnly (5)

Note that /) and V3 have specified values, since they cor-
respond to current and voltage sources, respectively.

B. Cutset Method of Network Analysis

s Step 1: Solve the following for the vector ¥, (note
that V}, is the vector of voltages in the nonsource branches
of T

YWV =—0uh - @nrh0nV, (6)

where Y, is the admittance matrix of 8L elements and
¥, = Q12Y> Q2. Equation (6) is called the cutser svstem
of equations.

» Step 2: Calculate V; using:

Vi=Qi2Ve + OnVs (N
then,
L =1nhh (8)
e Step 3: Determine V) and I3 vsing the following:

Vi=QuVe+ @nls (%

Li==0nh ~ @unh (10)

Note that f; and V5 have specified values, since they cor-
respond te current and voltage sources.

This completes the cutset method of network analysis.
Next we illustrate the loop and cutset methods of analysis
on the network shown in Fig. 9. The graph of the network is
shown Fig. 9b. We choose the spanning tree T consisting
of edges 4, 5, and 6. Note that 7 contains the voltage
source and has no current source. The fundamental circuit
and the fundamenta) cutset matrices with respect to T are
given below in the required partioned form:

1 23 4 5 &6
1|00—|—11

Bp=|1| 10 1 0 -l
ol o1 1 -1 0
1 2 3456
1] =1 1100

G| 1| B 10
1] 1 00 0 I
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FIGURE 8 A network and its graph.
From these matrices we get: C. Loop Method Example
B = [0 0 -1 —'l] Edges 2 and 3 are nonsource chords. So,

Bz = 1] I [52}
i = |z
0 1 0 I3
By = ]

01 —-1 -1 Substituting
(—1 Zy = BpZyBy,
By =
| 0 4 -1
1 -1 3
Q= o ] in Eq. {1), we get the following loop system of equations:
0:=[3 141 I Y
Tlo 1 o1 -1 3 ||li] " [-2
O = [—1] Solving for i; and i3, we get:
On=[1 0 0 (] fx=|:1.2=1,/11|:!51|
We also have = B
3 0 0 0 Using Eq. (2), we get:
Z, = ¢ 1 00 B3 7
001t 0 LY B B
0 0 0 1 =5y =R 1
1/3 0 0 0 is ] =&
0 1L 0 0 Then, using ¥, = Z; 1, we get:
Y. = _
*“lo o010 v 21
¢ 0 0 1 _s
i Vo | 2| =41
Vg = 2 volts Vg 1
i} = I ampere | Vs —6
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Finally, from Eqgs. (4) and {5) we get:
V) =[v] =-27/11
I =[] =4/11
D. Cutset Method Example

Edges 4 and 3 are the nonsource branches, so:

o[
[ ]

in Eq. (6), we get the following cutset system of equations:

73 K [w]  [-173
=[] [5]

Solving for V.

i | o Lo [ 2
b= Uj_f _*-6

From Eq. (7) we get:

Substituting

1y} _21
3 -5
Vo = =1/11
Yy 1
s _-~6
Using
=YV,
we get:
iz 7
iy —5
L=]|"|=1/11
14 1
is —6

Finally, using Eqs. (9} and (10},
Vi=[wn]=-27/11
Iy = [ig] = 4/11

This completes our itlustration of the loop and cutset meth-
ods of circuit analysis.

Suppose a network N has no independent voltage
sources. Then a convenient description of & with the node
voltages as independent variables can be obtained as fol-
lows. Let A be the incidence matrix of N with vertex v, as
reference. Let us also partition Aas A =[4,, A2], where
the columns of A and A, correspond, respectively, tothe
RCL elements and current sources. If f; and [ denote
the column vectors of RCL element currents and current
source currents, then KCL equations for & become;

841

Ay = —Anph
‘We also have
H =W

where V; is the column vector of voltages of RCL
elements and ¥ is the corresponding admittance matrix.
Furthermore, by the node transformation we have:

VI o Al]lvn

where V,, is the column vector of node voltages. So, we
get from the KCL equations:

(AuhA )V, = —Aph

The above equations are called node equations. The matrix
A Yy AY is called the node admirtance matrix of N.

FURTHER READING

For s more comprehensive discussion of other devel-
opments in graph theoretic concepts, please consult
Chen (1972, 2001), Swamy and Thulasiraman (1981),
and Watanabe and Shinoda (1999). For a very good
treatment of liner circuits and other releated references,
see Balabanian and Bickart (1981). Mitra (1974) provides
a very good early work on active networks, while Chua
et al. (1987) and Hasler and Neirynck (1986) are good
sources for nonlinear network theory.

SEE ALSO THE FOLLOWING ARTICLES

ANALOG-SIGNAL ELECTRONIC CIRCUITS o DIGITAL
ELECTRONIC CIRCUITS » ELECTROMAGNETICS o GRAPH
THEORY » KALMAN FILTERS AND NONLINEAR FILTERS
» NETWORKS FOR DATA COMMUNICATION ¢ POWER
ELECTRONICS
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