M.A./ M.Sc. Semester II-Complex Analysis

This is the remaining part of the Syllabus.

1 Hurwitz’s Theorem

Proposition 1 ((Hurwitz’s Theorem)) LetU = B(0, R) and supose < f, >
be a sequence in H(U) converges to f. Let 0 < r < R be such that f has no
zero on the circle C' of radius v at 0. Then there is ng such that for n > ng,
each f, has the same number of zeros inside C as f does.

Proof. Since C is compact and |f(z)| > 0 on C, there is ¢ > 0 such that

|f(2)| > 6 >0 for z on C. Let ng be such that |f,(z)| > 6/2 for all z € C and
n > ng. Then for z € C and for n > ng,
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which proves that < 1/f,, > converges uniformly to 1/f on C. Further, since
< f! > converges uniformly to f'on C, we have < f!/f, > converges to f'/f
on C. Hence, 5= [, (f1/fn) converges uniformly to 5= [, (f'/f) or

im = [ (st =5 01D
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[fn(2) = £(2)|

which by the Argument Principle proves the result. m

2 Residue at the point at infinity

If a is an isolated singularity of f, then there is a circle of radius r > 0 such
that f is holomorphic on {z:0 < |z —a| < r} and

/ F(Q)d¢ = Res(f, a).
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Keeping this in mind, if oo is an isolated singularity of f, we define
Res(f.0) = —5- [ () 1)

where f is holomorphic outside B(0, R) except co.

Proposition 2 If f has only finitly many poles p1,pa, ..., Pn, then

Res(f, 00 —i—ZRes f,pj) =

j=1



Proof. Let R > 0 be such that all the poles are inside the circle |z| = R. Then
by Residue theorem

27m/f ¢)d¢ = ZRes (f.pj)

which by (1) proves the result. m

Proposition 3 If f has an isolated singularity at co, then Res(f,00) = —Res(g,0),

where

g9(z) = (1/2°) f(1/2).
Proof. Let R > 0 be such that Res(f,o0) = 27” fc ¢)d¢, where C is the
circle |z| = R and f has no singularity out81de C' except co. If we take ¢ = 1/w,
then d¢ = —1/w?dw and the circle C is tranformed by this inversion to the

circle Cy : |lw| = 1/R oriented negatively. Hence,
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= —— (1/w?) f(1/w)dw

Res(f, )

where g has no singularity inside C; except 0.Thus ﬁ fcl g(w)dw =Res(g,0)
which proves the result. m

With the use of the results proved in the Propositions 2 and 3, we may find
integrals of the functions having large number of poles.

Example 1 FEvaluate I = fc (275)?%, where C' is the circle of radius 2 at
the origin.
17
Let f(z) = m Then by Residue theorem I = 27i ) Res(f,p;),
=1

where p;s are 17 , 17th roots of unity. Obviously this sum is not easy to
compute but in view of the abve Propositions, we have

17
Res(f,0) + ZRes(f,pj) + Res(f,5) =0
j=1
and
Res(f,00) = —Res(g,0),
where

2,16

9(=) = (1-52)(1—217)




and

Res(g,0) = 0.
Thus
17 1
ZRGS(f,Pj) = —Res(f,5) = T
j=1
and -
i

3 Analytic Continuation

Let fi and fo be two functions analytic, respectively, analytic in the domains
Dy and Dy and let in the region DiN Da, f1(z) = fa(z2), then fi and fy are
called the analytic continuation of each other from one domain to another.

For example: Let fi(z) = > o 2" (|2| < 1) and fo(z) = 1=~ (2 # 1). Then
the function fs is an analytic continuation of fi(z).

Analytic continuation is a property of analytic functions. Using this prop-
erty, we have following results:

Theorem 4 If f(z) is analytic in a domain D and let f(z) = 0 at some point
or at some part in D, then f(z) =0 throughout D.

Proof. Let zy be a point in D such that f(z9) = 0. Then in a Taylor’s series of

f(z) in some nbh. Ny (C D) of zg coeflicients a,, = % = 0 Vn and hence,
f(2) = 0 at each poit of Ny. In this way, we may see that f(z) = 0 throughout
D =

Theorem 5 There can not be more that one continuations in the same domain.

Proof. Let f(z) be analytic in D and f; and f2 be two analytic continuations
of f in the same domain D;. That is we have f = f; in DN Dy and also f = f5
in DN Dy which implies that f; = fo in DN D1, where DN D is a part of D;.
Thus by (i), fi = f2 throughout D;. This proves the uniqueness property on
analytic continuation. m

The best method of analytic continuation is known as the power series
method of analytic continuation which is described as follows:

Let

fiz) =) an(z—z)" (2)
n=0

be the Taylor’s series of the function fi(z) at z;. Then it is convergent within
the circle of radius ry = lim |an|1/". Let Dy := (z: |z — 21| <ry). Then fi
n—oo

is analytic in D;. Let L be a curve joining z; to another point z, outside D;.



We perform analytic continuation of f; from Dj to D,, := (2 : |z — z,| < 7,) as
follows: Let z2 be any point on L lying within D;. Then from (2), we may find

K — nl nek e (m A E)! .
1( )(Z) = Zman (z —21) = Z%amﬂc (z —21)
n=k

m=0
and hence,

£ (22) i (m + n)!

a2 = 2 e G 2" =

m=0
Thus a Taylor’s series of the function fi(z) at 25 is given by

o0

an (2 — )"

n=0

which converges to f2(z) (say) within the circle of radius 7, = lim |bn|1/ " Let
n—oo

Dy := (2 : |z — 29| <ry). Then f, is an analytic continuation of f; from D; to
Dsy. Clearly, fi = f2 in the common region DN Ds. Continuing in this way,
we can get a Taylor’s series of the function f1(z) at z, which converges to the
function f,, within the disc D,,. The function f,, is an analytic continuation of
fi from D; to D,, along the curve L.

Some times the continuation of a power series is not possible beyond its
region of convergence through any small arc of its circle of convergence, in that
case the circle of convergence is called a natural boundary.

Example 2 The circle of convergence of the power series
(o]

f(z) :1+z+22+z4+28+...:1+2z2n
n=0

s a natural boundary.

For any assistance, please contact at phone : 9453601277, 7991200647.
E-mail: poonambaba@gmail.com



