
M.A./ M.Sc. Semester II-Complex Analysis

This is the remaining part of the Syllabus.

1 Hurwitz’s Theorem

Proposition 1 ((Hurwitz’s Theorem)) Let U = B(0, R) and supose < fn >
be a sequence in H(U) converges to f . Let 0 < r < R be such that f has no
zero on the circle C of radius r at 0. Then there is n0 such that for n ≥ n0,
each fn has the same number of zeros inside C as f does.

Proof. Since C is compact and |f(z)| > 0 on C, there is δ > 0 such that

|f(z)| ≥ δ > 0 for z on C. Let n0 be such that |fn(z)| ≥ δ/2 for all z ∈ C and
n ≥ n0. Then for z ∈ C and for n ≥ n0,∣∣∣∣ 1

fn(z)
− 1

f(z)

∣∣∣∣ =
|fn(z)− f(z)|
|fn(z)| |f(z)|

≤ 2

δ2
|fn(z)− f(z)|

which proves that < 1/fn > converges uniformly to 1/f on C. Further, since
< f ′n > converges uniformly to f ′on C, we have < f ′n/fn > converges to f ′/f
on C. Hence, 1

2πi

∫
C

(f ′n/fn) converges uniformly to 1
2πi

∫
C

(f ′/f) or

lim
n→∞

1

2πi

∫
C

(f ′n/fn) =
1

2πi

∫
C

(f ′/f)

which by the Argument Principle proves the result.

2 Residue at the point at infinity

If a is an isolated singularity of f , then there is a circle of radius r > 0 such
that f is holomorphic on {z : 0 < |z − a| < r} and

1

2πi

∫
C

f(ζ)dζ = Res(f, a).

Keeping this in mind, if ∞ is an isolated singularity of f , we define

Res(f,∞) = − 1

2πi

∫
C

f(ζ)dζ, (1)

where f is holomorphic outside B(0, R) except ∞.

Proposition 2 If f has only finitly many poles p1, p2, ..., pn, then

Res(f,∞) +

n∑
j=1

Res(f, pj) = 0.
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Proof. Let R > 0 be such that all the poles are inside the circle |z| = R. Then
by Residue theorem

1

2πi

∫
C

f(ζ)dζ =

n∑
j=1

Res(f, pj)

which by (1) proves the result.

Proposition 3 If f has an isolated singularity at∞, then Res(f,∞) = −Res(g, 0),
where

g(z) =
(
1/z2

)
f(1/z).

Proof. Let R > 0 be such that Res(f,∞) = − 1
2πi

∫
C
f(ζ)dζ, where C is the

circle |z| = R and f has no singularity outside C except ∞. If we take ζ = 1/w,
then dζ = −1/w2dw and the circle C is tranformed by this inversion to the
circle C1 : |w| = 1/R oriented negatively. Hence,

Res(f,∞) = − 1

2πi

∫
C

f(ζ)dζ

= − 1

2πi

∫
C1

(
1/w2

)
f(1/w)dw

= − 1

2πi

∫
C1

g(w)dw,

where g has no singularity inside C1 except 0.Thus 1
2πi

∫
C1
g(w)dw =Res(g, 0)

which proves the result.

With the use of the results proved in the Propositions 2 and 3, we may find
integrals of the functions having large number of poles.

Example 1 Evaluate I =
∫
C

dz
(z−5)(z17−1) , where C is the circle of radius 2 at

the origin.

Let f(z) = 1
(z−5)(z17−1) . Then by Residue theorem I = 2πi

17∑
j=1

Res(f, pj),

where p′js are 17 , 17th roots of unity. Obviously this sum is not easy to
compute but in view of the abve Propositions, we have

Res(f,∞) +

17∑
j=1

Res(f, pj) + Res(f, 5) = 0

and
Res(f,∞) = −Res(g, 0),

where

g(z) =
z16

(1− 5z) (1− z17)
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and
Res(g, 0) = 0.

Thus
17∑
j=1

Res(f, pj) = −Res(f, 5) = − 1

517 − 1

and

I = − 2πi

517 − 1
.

3 Analytic Continuation

Let f1 and f2 be two functions analytic, respectively, analytic in the domains
D1 and D2 and let in the region D1∩ D2, f1(z) = f2(z), then f1 and f2 are
called the analytic continuation of each other from one domain to another.

For example: Let f1(z) =
∑∞
n=0 z

n (|z| < 1) and f2(z) = 1
1−z (z 6= 1) . Then

the function f2 is an analytic continuation of f1(z).
Analytic continuation is a property of analytic functions. Using this prop-

erty, we have following results:

Theorem 4 If f(z) is analytic in a domain D and let f(z) = 0 at some point
or at some part in D, then f(z) = 0 throughout D.

Proof. Let z0 be a point in D such that f(z0) = 0. Then in a Taylor’s series of

f(z) in some nbh. N0 (⊂ D) of z0 coefficients an = f(n)(z0)
n! = 0 ∀n and hence,

f(z) = 0 at each poit of N0. In this way, we may see that f(z) = 0 throughout
D.

Theorem 5 There can not be more that one continuations in the same domain.

Proof. Let f(z) be analytic in D and f1 and f2 be two analytic continuations
of f in the same domain D1. That is we have f = f1 in D∩ D1 and also f = f2
in D∩ D1 which implies that f1 = f2 in D∩ D1, where D∩ D1 is a part of D1.
Thus by (i), f1 = f2 throughout D1. This proves the uniqueness property on
analytic continuation.

The best method of analytic continuation is known as the power series
method of analytic continuation which is described as follows:

Let

f1(z) =

∞∑
n=0

an (z − z1)
n

(2)

be the Taylor’s series of the function f1(z) at z1. Then it is convergent within

the circle of radius r1 = lim
n→∞

|an|1/n. Let D1 := (z : |z − z1| < r1) . Then f1

is analytic in D1. Let L be a curve joining z1 to another point zn outside D1.
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We perform analytic continuation of f1 from D1 to Dn := (z : |z − zn| < rr) as
follows: Let z2 be any point on L lying within D1. Then from (2), we may find

f
(k)
1 (z) =

∞∑
n=k

n!

(n− k)!
an (z − z1)

n−k
=

∞∑
m=0

(m+ k)!

m!
am+k (z − z1)

m

and hence,

f
(n)
1 (z2)

n!
=

∞∑
m=0

(m+ n)!

m!n!
am+n (z2 − z1)

m
=: bn.

Thus a Taylor’s series of the function f1(z) at z2 is given by

∞∑
n=0

bn (z − z2)
n

which converges to f2(z) (say) within the circle of radius r2 = lim
n→∞

|bn|1/n . Let

D2 := (z : |z − z2| < r2) . Then f2 is an analytic continuation of f1 from D1 to
D2. Clearly, f1 = f2 in the common region D1∩ D2. Continuing in this way,
we can get a Taylor’s series of the function f1(z) at zn which converges to the
function fn within the disc Dn. The function fn is an analytic continuation of
f1 from D1 to Dn along the curve L.

Some times the continuation of a power series is not possible beyond its
region of convergence through any small arc of its circle of convergence, in that
case the circle of convergence is called a natural boundary.

Example 2 The circle of convergence of the power series

f(z) = 1 + z + z2 + z4 + z8 + ... = 1 +

∞∑
n=0

z2
n

is a natural boundary.

For any assistance, please contact at phone : 9453601277, 7991200647.
E-mail: poonambaba@gmail.com
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