M.A./ M.Sc. Semester II-Complex Analysis

This is the remaining part of the Syllabus.

1 Hurwitz's Theorem

Proposition 1 ((Hurwitz's Theorem)) Let U = B(0, R) and suppose $\langle f_n \rangle$ be a sequence in H(U) converges to f. Let 0 < r < R be such that f has no zero on the circle C of radius r at 0. Then there is n_0 such that for $n \ge n_0$, each f_n has the same number of zeros inside C as f does.

Proof. Since C is compact and |f(z)| > 0 on C, there is $\delta > 0$ such that

 $|f(z)| \ge \delta > 0$ for z on C. Let n_0 be such that $|f_n(z)| \ge \delta/2$ for all $z \in C$ and $n \ge n_0$. Then for $z \in C$ and for $n \ge n_0$,

$$\left|\frac{1}{f_n(z)} - \frac{1}{f(z)}\right| = \frac{|f_n(z) - f(z)|}{|f_n(z)| |f(z)|} \le \frac{2}{\delta^2} |f_n(z) - f(z)|$$

which proves that $< 1/f_n >$ converges uniformly to 1/f on C. Further, since $< f'_n >$ converges uniformly to f' on C, we have $< f'_n/f_n >$ converges to f'/f on C. Hence, $\frac{1}{2\pi i} \int_C (f'_n/f_n)$ converges uniformly to $\frac{1}{2\pi i} \int_C (f'_n/f_n)$ or

$$\lim_{n \to \infty} \frac{1}{2\pi i} \int_C \left(f'_n / f_n \right) = \frac{1}{2\pi i} \int_C \left(f' / f \right)$$

which by the Argument Principle proves the result.

2 Residue at the point at infinity

If a is an isolated singularity of f, then there is a circle of radius r > 0 such that f is holomorphic on $\{z : 0 < |z - a| < r\}$ and

$$\frac{1}{2\pi i} \int_C f(\zeta) \mathrm{d}\zeta = \operatorname{Res}(f, a).$$

Keeping this in mind, if ∞ is an isolated singularity of f, we define

$$\operatorname{Res}(f,\infty) = -\frac{1}{2\pi i} \int_C f(\zeta) \mathrm{d}\zeta, \qquad (1)$$

where f is holomorphic outside B(0, R) except ∞ .

Proposition 2 If f has only finitly many poles $p_1, p_2, ..., p_n$, then

$$\operatorname{Res}(f,\infty) + \sum_{j=1}^{n} \operatorname{Res}(f,p_j) = 0.$$

Proof. Let R > 0 be such that all the poles are inside the circle |z| = R. Then by Residue theorem

$$\frac{1}{2\pi i} \int_C f(\zeta) \mathrm{d}\zeta = \sum_{j=1}^n \mathrm{Res}(f, p_j)$$

which by (1) proves the result. \blacksquare

Proposition 3 If f has an isolated singularity at ∞ , then $Res(f, \infty) = -Res(g, 0)$, where

$$g(z) = (1/z^2) f(1/z).$$

Proof. Let R > 0 be such that $\operatorname{Res}(f, \infty) = -\frac{1}{2\pi i} \int_C f(\zeta) d\zeta$, where C is the circle |z| = R and f has no singularity outside C except ∞ . If we take $\zeta = 1/w$, then $d\zeta = -1/w^2 dw$ and the circle C is transformed by this inversion to the circle $C_1 : |w| = 1/R$ oriented negatively. Hence,

$$\begin{aligned} Res(f,\infty) &= -\frac{1}{2\pi i} \int_C f(\zeta) \mathrm{d}\zeta \\ &= -\frac{1}{2\pi i} \int_{C_1} \left(1/w^2 \right) f(1/w) \mathrm{d}w \\ &= -\frac{1}{2\pi i} \int_{C_1} g(w) \mathrm{d}w, \end{aligned}$$

where g has no singularity inside C_1 except 0. Thus $\frac{1}{2\pi i} \int_{C_1} g(w) dw = \text{Res}(g, 0)$ which proves the result.

With the use of the results proved in the Propositions 2 and 3, we may find integrals of the functions having large number of poles.

Example 1 Evaluate $I = \int_C \frac{dz}{(z-5)(z^{17}-1)}$, where C is the circle of radius 2 at the origin.

Let
$$f(z) = \frac{1}{(z-5)(z^{17}-1)}$$
. Then by Residue theorem $I = 2\pi i \sum_{j=1}^{17} \text{Res}(f, p_j)$,

where $p'_j s$ are 17 , 17th roots of unity. Obviously this sum is not easy to compute but in view of the abve Propositions, we have

$$\operatorname{Res}(f, \infty) + \sum_{j=1}^{17} \operatorname{Res}(f, p_j) + \operatorname{Res}(f, 5) = 0$$

and

$$Res(f,\infty) = -Res(g,0),$$

where

$$g(z) = \frac{z^{16}}{(1 - 5z)(1 - z^{17})}$$

10

$$Res(g,0) = 0.$$

Thus

and

$$\sum_{j=1}^{17} \operatorname{Res}(f, p_j) = -\operatorname{Res}(f, 5) = -\frac{1}{5^{17} - 1}$$

and

$$I = -\frac{2\pi i}{5^{17} - 1}.$$

3 Analytic Continuation

Let f_1 and f_2 be two functions analytic, respectively, analytic in the domains D_1 and D_2 and let in the region $D_1 \cap D_2$, $f_1(z) = f_2(z)$, then f_1 and f_2 are called the analytic continuation of each other from one domain to another.

For example: Let $f_1(z) = \sum_{n=0}^{\infty} z^n$ (|z| < 1) and $f_2(z) = \frac{1}{1-z}$ $(z \neq 1)$. Then the function f_2 is an analytic continuation of $f_1(z)$.

Analytic continuation is a property of analytic functions. Using this property, we have following results:

Theorem 4 If f(z) is analytic in a domain D and let f(z) = 0 at some point or at some part in D, then f(z) = 0 throughout D.

Proof. Let z_0 be a point in D such that $f(z_0) = 0$. Then in a Taylor's series of f(z) in some nbh. $N_0 \ (\subset D)$ of z_0 coefficients $a_n = \frac{f^{(n)}(z_0)}{n!} = 0 \ \forall n$ and hence, f(z) = 0 at each point of N_0 . In this way, we may see that f(z) = 0 throughout D.

Theorem 5 There can not be more that one continuations in the same domain.

Proof. Let f(z) be analytic in D and f_1 and f_2 be two analytic continuations of f in the same domain D_1 . That is we have $f = f_1$ in $D \cap D_1$ and also $f = f_2$ in $D \cap D_1$ which implies that $f_1 = f_2$ in $D \cap D_1$, where $D \cap D_1$ is a part of D_1 . Thus by (i), $f_1 = f_2$ throughout D_1 . This proves the uniqueness property on analytic continuation.

The best method of analytic continuation is known as the *power series* method of analytic continuation which is described as follows:

Let

$$f_1(z) = \sum_{n=0}^{\infty} a_n \left(z - z_1 \right)^n$$
 (2)

be the Taylor's series of the function $f_1(z)$ at z_1 . Then it is convergent within the circle of radius $r_1 = \lim_{n \to \infty} |a_n|^{1/n}$. Let $D_1 := (z : |z - z_1| < r_1)$. Then f_1 is analytic in D_1 . Let L be a curve joining z_1 to another point z_n outside D_1 .

We perform analytic continuation of f_1 from D_1 to $D_n := (z : |z - z_n| < r_r)$ as follows: Let z_2 be any point on L lying within D_1 . Then from (2), we may find

$$f_1^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n \left(z - z_1\right)^{n-k} = \sum_{m=0}^{\infty} \frac{(m+k)!}{m!} a_{m+k} \left(z - z_1\right)^m$$

and hence,

$$\frac{f_1^{(n)}(z_2)}{n!} = \sum_{m=0}^{\infty} \frac{(m+n)!}{m!n!} a_{m+n} \left(z_2 - z_1\right)^m =: b_n$$

Thus a Taylor's series of the function $f_1(z)$ at z_2 is given by

$$\sum_{n=0}^{\infty} b_n \left(z - z_2 \right)^n$$

which converges to $f_2(z)$ (say) within the circle of radius $r_2 = \lim_{n \to \infty} |b_n|^{1/n}$. Let $D_2 := (z : |z - z_2| < r_2)$. Then f_2 is an analytic continuation of f_1 from D_1 to D_2 . Clearly, $f_1 = f_2$ in the common region $D_1 \cap D_2$. Continuing in this way, we can get a Taylor's series of the function $f_1(z)$ at z_n which converges to the function f_n within the disc D_n . The function f_n is an analytic continuation of f_1 from D_1 to D_n along the curve L.

Some times the continuation of a power series is not possible beyond its region of convergence through any small arc of its circle of convergence, in that case the circle of convergence is called a *natural boundary*.

Example 2 The circle of convergence of the power series

$$f(z) = 1 + z + z^{2} + z^{4} + z^{8} + \dots = 1 + \sum_{n=0}^{\infty} z^{2^{n}}$$

is a natural boundary.

For any assistance, please contact at phone : 9453601277, 7991200647. E-mail: poonambaba@gmail.com